利用电离能去除40Ar²⁺对²⁰Ne⁺的干扰

李雪松,韦冠一,翟利华,张子斌

(西北核技术研究所,陕西西安 710024)

摘要:以⁴⁰ Ar 的第一和第二最小电离能之和作为阈值,在 GAM400 四极质谱计的探测限内以调节轰击电子 能量接近于该阈值的方式去除了⁴⁰ Ar²⁺ 对²⁰ Ne⁺ 的干扰。该方法不需要附加样品处理条件,不改变原始样品 成份,为 Ne 的同位素分析工作提供了一种简便快捷的去干扰方法。 关键词:Ne;Ar;电离能;电子轰击

中图分类号: O657.63 文献标志码: A 文章编号: 1000-7512(2009)04-0193-04

Eliminating the Interference of ⁴⁰Ar²⁺ to ²⁰Ne⁺ by Using Ionization Energy

LI Xue-song, WEI Guan-yi, ZHAI Li-hua, ZHANG Zi-bin (Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract: In order to eliminate the interference of 40 Ar²⁺ to 20 Ne⁺ in the GAM400 QMS's detectability, the method of regulating impacting electron energy near a threshold which is the sum of the first and second ionization energy of 40 Ar was used. This method needs no sample additional preparing conditions and doesn't change the origin sample. So it is a simple and quick method to eliminate the interference in the analysis of Ne isotopes.

Key words: Ne; Ar; ionization energy; electron-impact

在 Ne 的同位素质谱分析过程中, Ar 的双 电荷离子⁴⁰ Ar²⁺ 的存在会严重影响²⁰ Ne⁺ 的检 测^[1],当电子轰击型离子源(EI 源)的轰击电子 能量为 90 eV 时,等量进样条件下由 Ar 产生 的⁴⁰ Ar²⁺ 在质荷比 20 处对²⁰ Ne⁺ 的干扰达到 22.6%^[2]。因此在 Ne 的同位素分析过程中必 须考虑去除 Ar 的干扰。常用的去除 Ar 的方法 是低温吸附法,该技术比较成熟,应用广泛^[3-4], 可以去除气体样品中的 Ar。但是吸附法存在以 下两个缺点:--,低温吸附 Ar 的同时也吸附了 一部分 Ne,对于 Ne 含量较低的样品来说造成 检测困难;二,如果需要对气体成份作定量分析, 该方法会引入较大的不确定度。此后发展了一 种用烧结型不锈钢滤芯去除 Ar 干扰的方法,但 该方法去除干扰不够彻底,需要校正,而且在除 Ar 过程中会带来新的误差^[5]。色谱质谱联用技 术可以先对 Ne、Ar 进行分离,再进行质谱分析, 是一种较好的去干扰技术^[6],但此方法适用于 Ne 的分压大大高于 Ar 的样品。本研究拟从原 子电离能的角度出发,以⁴⁰ Ar 的第一和第二最 小电离能之和作为阈值,调整 EI 源的轰击电子 能量,在不需要添加任何去除 Ar 的处理设备和 操作的前提下,消除⁴⁰ Ar²⁺ 对²⁰ Ne⁺ 的干扰,从而 为同类的去干扰开辟一种新途径。

1 理论分析

通常 EI 离子源的电子轰击能量为 70 eV。 如果样品气体中同时含有 Ne 和 Ar,分析的目 标是 Ne,那么需要考察 70 eV 的能量对于 Ar 原 子电离的影响,若 Ar 原子有双电荷离子⁴⁰ Ar²⁺ 产生,则对²⁰ Ne⁺ 产生干扰。

Ar 原子的第一电离电位是 15.755 eV,第 二电离电位是 27.6 eV^[7]。理论上,电子轰击的 能量至少需要达到第一、第二电离电位之和,即 43.355 eV 时,才能将 Ar 原子电离为双电荷离 子,即 e + Ar \rightarrow Ar²⁺ + 3e。还有一种电离途 径,即两个低于 43.355 eV 的电子先后轰击到同 一个 Ar 原子上,使 Ar 电离,其反应式可表示为 e+Ar \rightarrow Ar⁺ + 2e 和 e+Ar⁺ \rightarrow Ar²⁺ + 2e。

对以上反应式作如下分析,实验中四极质谱 (QMS)的分析室真空计显示为 10^{-5} Pa 量级, 而 EI 源为封闭式的,所以离子源内部的压强高 于真空计显示的值,按离子源开孔通道估算内部 压强约为分析室压强的 $10 \sim 100$ 倍,则为 $10^{-3} \sim$ 10^{-4} Pa 量级。在这样的真空度下,分子的平均 自由程约为 0.5~5.0 m, 再加上离子拉出电场 对产生的 Ar⁺ 有力的作用,因此在体积约为 2 cm^3 的离子源空间内,一个 Ar 原子先后撞上 两个电子的概率是极小的。要证明这一点,只要 将电子轰击能量调节到 43.355 eV 以下,此时由 反应式 $e + Ar \rightarrow Ar^{2+} + 3e$ 产生的 Ar^{2+} 将消失, 只剩下由反应式 $e + Ar \rightarrow Ar^+ + 2e$ 和 $e + Ar^+$ → Ar^{2+} +2e 产生的 Ar^{2+} ,观察此时的 Ar^{2+} 的强 度可以对一个 Ar 原子先后撞上两个电子的概 率有直观的认识。实验证明这种情况产生的概 率极小,可以忽略,具体数据参见第2节。

综上所述,可以认为,70 eV 的电子轰击能 量远大于 43.355 eV,必然产生较强的 Ar²⁺ 双 电荷峰;当能量降低至 43 eV 以下时,基本能去 除⁴⁰ Ar²⁺ 对²⁰ Ne⁺ 的干扰。

2 实验部分

2.1 主要试剂及仪器

高纯气 Ar(99.99%):西安阳光特种气体有 限公司提供。GAM400 四极气体质谱计:德国 IPI 公司产品,质量范围 0~340,该质谱计属于 单位质量分辨质谱计,离子源为电子轰击能量可 调的 EI 源。

2.2 实验方法

用高纯气 Ar(99.99%)作为实验样品,以理 论分析的能量阈值 43.355 eV 作为电子轰击能 量参考点,研究⁴⁰ Ar²⁺峰(即²⁰ Ne⁺的干扰峰)随 电子轰击能量增大的变化规律。

用锆铝消气剂在 800 ℃下除去空气中的活 性组份得到纯化空气样品。

变量定义:P为峰高; P_{2+} 为⁴⁰Ar²⁺的峰高; E_e 为电子轰击能量;k为⁴⁰Ar²⁺和⁴⁰Ar⁺的峰高比;M为质荷比。

3 结果与讨论

3.1 $E_e = 70 \text{ eV}$ 和 $E_e = 45 \text{ eV}$ 时的⁴⁰Ar²⁺峰

电子轰击能量 $E_e = 70 \text{ eV}$ 时,⁴⁰ Ar^{2+} 和 ⁴⁰ Ar^+ 的测量峰示于图 1。由图 1 可知, $E_e =$ 70 eV 时,⁴⁰ Ar^{2+} 峰高(M=20 的峰)显著高于本 底,⁴⁰ Ar^{2+} 和⁴⁰ Ar^+ 的峰高比 k=12.28%,说明 当待测样品中 Ar 、Ne 含量相当或 Ne 含量低于 Ar 含量时,⁴⁰ Ar^{2+} 峰对²⁰ Ne⁺相对影响与 k 相 关, 且 k 越大,影响越显著。影响的程度可以通 过⁴⁰ Ar^+ 的峰高及 k进行估算。

图 1 电子轰击能量 $E_e = 70 \text{ eV}$ 时⁴⁰ Ar²⁺ 和⁴⁰ Ar⁺ 的测量峰

电子轰击能量 $E_e = 45$ eV 时⁴⁰ Ar²⁺ 和 ⁴⁰ Ar⁺ 的测量峰示于图 2。由图 2 可知,⁴⁰ Ar²⁺ 的 峰高保持在本底水平,⁴⁰ Ar²⁺ 和⁴⁰ Ar⁺ 的峰高比 k 趋近于 0,说明当电子轰击能量 $E_e = 45$ eV 时,⁴⁰ Ar²⁺ 的峰对²⁰ Ne⁺ 已经没有影响,也说明了 一个 Ar 原子先后撞上两个电子的概率极小,可 以忽略。另外,图 2 中⁴⁰ Ar⁺ 的峰高绝对值比图 1 中的⁴⁰ Ar⁺ 峰降低了 6.1%,这主要是由于电子 轰击能量的降低使得 Ar 的电离效率降低带来 的负面效应。

3.2 P₂₊及 k 随 E_e 的变化

⁴⁰ Ar²⁺ 峰高 P_{2+} 随电子轰击能量 E_e 的变化 曲线示于图 3。由图 3 可见,⁴⁰ Ar²⁺ 峰呈现出随 电子轰击能量 E_e 降低而降低的趋势。电子轰击 能量 $E_e < 50 \text{ eV}$ 时,⁴⁰ Ar²⁺ 峰高迅速趋近于 0; $E_e > 70 \text{ eV}$ 时,⁴⁰ Ar²⁺ 峰高增加速度减缓,趋于 稳定,出现一个平台区,由于实验条件的限制没 有进一步进行实验验证。可以肯定的是, $E_e =$ 45 eV 时,⁴⁰ Ar²⁺ 峰已经处于本底水平,此时可 以认为 Ar 在质荷比为 20 的位置没有干扰。此 时的 E_e 与 Ar 的第一和第二电离电位之和 43.355 eV非常接近。

峰高比 k 随电子轰击能量 E_{e} 的变化曲线示 于图 4。由于随着电子轰击能量的降低, Ar 的 电离效率也在降低, 所以⁴⁰ Ar⁺ 峰和⁴⁰ Ar²⁺ 峰均 会有不同程度的下降。采用⁴⁰ Ar²⁺ 和⁴⁰ Ar⁺ 的峰 高比 k 随电子轰击能量的变化曲线可以更准确 地加以描述。

由图 4 可见,⁴⁰ Ar²⁺ /⁴⁰ Ar⁺ 的峰高比 k 随 电子轰击能量 E_e 的降低而减小,与图 3 的趋势 基本一致。在 $E_e = 45$ eV 时峰高比 k 已经等 于 0。

图 4 峰高比 k 随电子轰击能量 E。的变化曲线

由于 E_e 的下降,电离效率会明显下降,文 献^[8]数据显示,与 70 eV 相比, E_e 等于 45 eV 时,Ne 的电离效率降低约 50%。本研究中 Ar 的电离效率降低约 6.1%,基本不影响二者的质 谱测量。对于 Ne 的电离效率降低,可通过增大 阴极电流(即增加轰击电子密度)和提高进样压 强进行弥补^[9]。

3.3 纯化后空气样品在 $E_e = 45$ eV 时的谱图

纯化后空气样品在 $E_e = 45$ eV 时的谱图示 于图 5。图 5 谱图采用法拉第筒方式测量,纯化 后的空气样品中²⁰ Ne 的峰清晰可见,如果采用 电子倍增器方式,峰高将增加 1 000 至 10 000 倍,因此可以准确测量²⁰ Ne。空气中 Ne 的体积 含量为 18.18×10⁻⁶,Ar 与 Ne 的摩尔比约为 500,所以 Ne 的体积含量与空气本底相当,并且 Ar 体积含量高出 Ne 的 500 倍时,采用调节电 子轰击能量去除⁴⁰ Ar 的干扰方法可以准确测 量²⁰ Ne。具体的定量测量将在后续的研究中 开展。

图 5 纯化后空气样品在 E₆ = 45 eV 时的谱图

4 结 论

本工作对调节 EI 源中的轰击电子能量消

除⁴⁰ Ar²⁺ 干扰的方法进行了初步理论分析,并实 验验证了理论分析的正确性。利用⁴⁰ Ar 的第一 和第二电离能之和作为阈值来设定轰击电子能 量,可以消除⁴⁰ Ar²⁺ 对²⁰ Ne⁺ 分析的干扰。

(1) $E_e = 45 \text{ eV}$ 时,⁴⁰ Ar²⁺/⁴⁰ Ar⁺ 的峰高比 k = 0,该 E_e 值即为去除 Ar 干扰的设定阈值。 文献结果表明,在此阈值条件下,与 $E_e = 70 \text{ eV}$ 相比,Ne 的电离效率约降低 50%,但可通过增 大阴极电流(即增加轰击电子密度)和提高进样 压强来进行弥补。

(2)本方法的优点:一是不需要对样品气体中的Ar进行附加处理,简化了样品进样处理系统;二是方法简单,只需调节阴极电压。

(3) 在设定阈值为 E_e = 45 eV 的条件下,
k=0。这一结果说明由两个低于 43.355 eV 的
电子先后轰击同一个 Ar 原子的作用方式可以
忽略。

此外, 40 Ar ${}^{2+}/{}^{40}$ Ar ${}^{+}$ 的峰高比 k 趋近于 0 的 设定 阈 值 $E_e = 45$ eV,该 值 比 理 论 计 算 值 43.355 eV略大,有关原因有待进一步研究。 参考文献:

- [1] 孙明良,王宗礼.天然气中稀有气体同位素测试 结果的比对与讨论[J].质谱学报,2003,24(2): 377-380.
- [2] PFEIFFER 公司. 四极质谱仪说明手册[M]. 德 国:PFEIFFER 公司. 2002-2004: 53.
- [3] 孙明良,叶先仁.固体样品中 He、Ar 同位素的质 谱测定[J]. 沉积学报,1997,15(1):48-53.
- [4] Hohenberg CM. High sensitivity pulse-counting mass spectrometer system for noble gas analysis
 [J]. Rev Sci Instrum, 1980, 51(8):1 075-1 082.
- [5] 叶先仁,吴茂炳,孙明良. 岩矿样品中稀有气体同 位素组成的质谱分析[J]. 岩矿测试,2001,20 (3):174-178.
- [6] 杜晓宁,李虎林,李良君. Ne 同位素分离中微量杂 质的气相色谱法[J]. 化学世界,2004,8(11): 583-585.
- [7] 实用化学手册编写组. 实用化学手册[M]. 北京:科学出版社, 2001.
- [8] PFEIFFER Company. Mass spectrometer [M]. Germany: PFEIFFER Company, 2002-2004: 11.
- [9] 冯焱,李得天,张涤新,等.四极质谱计灵敏度与离 子源参数关系的实验研究[J].真空科学与技术, 2003,23(3):203-207.