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Abstract: The structure of cyclic and constacyclic codes of odd length n over ring R=F,+uF,+

«++u'F, was established, where F, denoted a finite field with ¢ elements, ¢g= p* for some prime

p and positive integers s, e, (n,p) =1. Besides. It was shown that all ideals in R were principal

ideals and provide alternative expression forms of the structures of cyclic and constacyclic codes

over R. Moreover, the rank of constacyclic codes over the ring R and their minimal generating

sets were also obtained.
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0 Introduction

Progress has been attained in the direction of
determining the structural properties of codes over
large families of rings. Pless et al investigated the
generators of cyclic codes and quadratic residue

over Z, in Ref. [1]. The structure of cyclic codes
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over ring Z, was obtained in Ref. [2] and later
on, with a different proof in Ref. [5]. Qian et al
studied the structure of cyclic codes over ring F,+
uF,+++u*"'F, in Ref. [8]. Feng et al discussed
constacyclic codes over the integers modulo p**! in
Ref. [11]. Dougherty et al studied cyclic codes

over Z, of even length in Ref. [4]. Tapia-Recillas
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and Vega considered some constacyclic codes over
Zyu,
structure of cyclic and constacyclic codes of odd

length n over ring F,+uF,++++u"'F,, where F,

denotes a finite field with ¢ elements, ¢= p* for

In this paper, We first investigate the

some prime p and positive s, ¢, and then show that
all ideals in F,+ uF,+ -+« 'F, are principal
ideals and provide an alternative expression form of
the structure of constacyclic codes over F,+uF,+
oty 'F,.
of constacyclic codes are also obtained. We denote
R=F,+uF,+++uw 'F, for convenience.

The rank and minimal generator sets

1 The structure of cyclic codes over
ring R

The quotient ring R is a local ring with its
maximal ideal («). The ideals of R form a chain
OOC(w™HCTCH T CT(1)=R, uis
nilpotent and its nilpotent index is s. The units of
R are the elements a € R such that a0 (mod ).
A codeword (c¢q s **
polynomial ¢, +cix+++c, 12" 'ER[x]. If for a
v ¢,) € C, its right cyclic

‘s ¢,) € C can be viewed as a

given codeword (c¢;,
shift C¢y sty c,5c0) is also a codeword of C, then
the linear code C is called a cyclic code. It is
straightforward to show that a cyclic code C of
length n by viewing its codewords as polynomials is
an ideal in R[ x]. The structure of cyclic codes
over F,+uF, is investigated in Ref. [1]. Further,
the structure of cyclic codes over Zg is
investigated in Ref. [5] and the structure of cyclic
codes over F,+uF,++++u*"'F, is investigated in
Ref. [8]. We will go over the structure of codes
over R by a generalization of Refs. [ 7,8, 11 ].
Because 2" —1 is a regular polynomial in R[ X |'%/,
so a factorization of 2" —1 in F,[x] can be lifted
uniquely to the same factorization in R[ x]. Since
R[x] is a local ring™ , we have the following lemma;
Lemma 1. 1% Let 2" —1=f, f,+*= f,, where
fito)yeF,[x], i=1,2,++,r, are the irreducible
monic polynomials. Then 2" — 1 has the same
factorization and irreducible polynomials in R[ x].

The following theorem can be easily obtained

by similar steps as Refs. [7,8].

Theorem 1.2 Assume that n is not divisible
by p. There exist F; (0<{i<{s) basic irreducible
and pairwise coprime polynomials where 2" —1=
FyF, -+ F, such that any ideal in R[x]/(x"—1) is a

sum of ideals of the form (Fl ), (qu), ey,
(MX71FX)7 i. e.
C= (Fy+uFs . u'F,),

where F, denotes the product of all F; except

F;, j7i.
Remark  Some generators in the result of

Theorem 1. 2 may be zero, if for some £, 1<(b<s,

F,=1, then
Fk — Fle"' Fk*leH“. F_‘ = O(mod x" 71).

The following theorem shows that all ideals in
R[x]/(a"—1) are principal. In particular, it gives
the structure of cyclic codes over R, which can also
be found in Ref. [12]. Here we will give a detailed
proof.

Theorem 1.3 Let C be a linear code of length
n over R. Then C=(g(x)) for some g(x) ER[ 2]/
(a"—1).

Proof If Cis a linear code of length n over R,
then, by Theorem 1.2, C=(F, cuF, eou FD)
where 2" — 1 = F,F, -

(0<{i<(s) are pairwise coprime. If we take g(x)=

F, and polynomials F;

FHruAFer---+u“ﬂ F , Theorem 1. 3 is proven. It

is clear that
g(x) = F +uF, ++uw'F CC=
(Fl D uf}z, "',Z[ﬁlﬁx).

To show the reverse, note that for any distinct

iy,7 €{0,1,,5), we havex”—l\ﬁiﬁj, ) F,-Fj:
0 in R[x]/(2"—1). Moreover, for any i with 1<C

i1<s, F,,F; are coprime, hence, there exist s;(x),

t;(x) € R[ x] such that s; () F; +¢ (2) F.=1.
Thus, for any integer j € {1,2, -, s}, we have

H (s;F; th,-F,) = 1. Multiplying the left-hand side
=1

of this equation out, we get that there exist
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polynomials w;.q -+, w;,; such that
w0 F1Fyee F; +u{1,1F1Fz"°F1 _'_Wj,ZFlFZ'"Fj +
"’+w]‘,]'FlF2"'F]‘ le - 1.

In particular, when j=s—1, we have
Wy, 0 Fyeee Foy "‘w.ﬂ.lFle'" Foo+
W 1.2F1F2"‘F.- e

Wy, L Fy e F.\*ZFxgl =L
Multiplying both sides of the above equation by

w ! F\, yields «! F\,wﬁl,o FF,«+F._ ,=u 'F..

By hypothesis
g(x) = F, +uF, +++u'F,,

which implies

g(l‘)Fle"' Fx 1 — Z[\gll’\:‘_‘Fle"' F_; 1.

Hence,
g(I)Fle”' F.\- 1We1,0 = U lF\-Fle"’FV 1Ws-1,0 —

u ! 1:"‘ 5
Therefore,

u' IF\. su' ZFH ,"-,uFZ ,Fl € (g(x)).
Consequently, C=(g(x)). L]
Theorem 1.4 Let C be a linear code of length
n over C, where x"—1=F,++ F, and F; (0<;<s)
irreducible coprime

are basic and pairwise

polynomials. Then there exist polynomials fy, /1,
eoy foo1 in R[x] such that C= (fo, ufi, =,
w ' fi1)s where foi | foo || fol (2" —1) and

s—1
Cl=q¢" . k= Z(A‘—i)(n—deg F.D.

=0
Proof We can obtain the desired results by taking
JF()(J')F,+2(I)"' F.(x),
f,(l"): ifo<i<5*2;
IFO(I) , ifi=s—1.
Theorem 1.4 provides

In fact, an alternative

expression form of the structure of cyclic codes over R.

2 The constacyclic codes over R

For some fixed unit A of R, let v, be the
automorphism on R" given by v, =(ay.a,,***»a, 1) =
(A@y—1 saosar s ***sa,— ). Recall that a subset C of
R" is a constacyclic code of length # if there exists a

unit A of R such that it is invariant under the

automorphism v, , that is, v, (C)=C. If A=1 the
code is said to be cyclic. Constacyclic linear codes
of length n over R can be identified as ideals in the
quotient ring R[x]/(2"—}) via the isomorphism ¢
from R" to R[ x]/(a2"—2) defined by
(apsay s+ say) —>a +ar x4+ +a, 12",

Theorem 2. 1
n over R. Then C is a A-cyclic code of code length n
if and only if (O is the ideal of ring R[x]/(a"—).

Proof Tor Ve=(coscis00,1)E€C, ¢plo)=
cotcaxtete, 12" ' =c(x), the corresponding

Let C be a cyclic code of length

polynomial of ¢=V, () =(Ac, 1+CosC1s**"sCr ) 1S

(7)) = Mna Foxtoaxl+ o~ 27 =
cox+axt+ -+ (mod 2" —A) =
2l taxt++tea 2 =
ac () (mod " — ).
Because ¢(C) is the ideal of ring R[ x]/(z"—2), it
follows that Y c(x2) € p(C), xc(x) € ¢(C), hence

() €¢(O). Namely ¢=(A¢, 1+CosC1s 20, 2) €
C, thus C is a A-cyclic code. Next we prove the
reverse. Suppose C is a A-cyclic code over R, it
follows that for ¥V c=(cysc1s* 5,1 EC, 1y (c)=
(ACu—15¢0sC1 5%+ ¢ 2) €C, equivalently for
() =cotaxtteoqxm € olo),
Ap Feoxtcat f ot =
¢ () (mod 2" —2) € o(O).
Hence for V1<ii<in—1, z'c(2) € ¢(C), then for
Y () ER[x]/(2"—N), it follows that f(x)c(x) €
@ (O, s0 p(O)IR[x]/(x"—). ]
Theorem 2.2 Let p be prime, p {n, 2" — A=
fiforr f,s where f;ER[x], 1=<{i<r are the basic
irreducible monic polynomials. Then the ideals of

R,=R[x]/(x" — 1) are the direct sum of some
(it =20, Cu fi + (2" — 20, (b2 f, +
(=) sees (L fi (2" —2)) s where 0<li<<r,

fi=@" =X/ fi.
Proof Since [, f5,-*
polynomials, so
@ =2 = (fifef) =
DO N NN s

according to the Chinese remainder theorem

-, f, are pairwise prime
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R, = Rlz]/(a" =2 =
Rlz1/(f)) NRLx]/(f2) N+ N RLz]/(fO.
I IQR,, then I=[,PLP:-PI,, where I, <
R[x]/(f). Similar to Lemma 2.1, I, =0 or
(W +(f)), 0<j<<s— 1. Thus I; corresponded to

the ideal ]},v—|—(x”*/\) of R,. (]
Theorem 2. 3

cyclic code of length n over R, then there exist

Let p be prime, p |n, C is A-

basic irreducible and pairwise coprime polynomials
F,(0<i<s) such that 2" —A=F F,+ F, and C=

(F)+uFy .. 'F,) where F, denotes the product
of all F; except F;, j #i, |C-|=p',

s—1
[ = > (s—i)deg Fi.

=0
Proof Let 2" —X= f,fs+ f,» where f; €

R[x], 0<{i<{r are the basic irreducible monic
polynomials. According to Theorem 2.2, C is the

sum of the following forms
(]}zlﬂ ) (]}zﬁz) LR (]}11+12 )3 (u]}11+12+l PRREER

(u]}11+12+13 Yieees (! ]}zl+zz+---+z_\+1 RN (A
namely
C= (fifoe fz, f‘zl+z2+1 S
wfrforee f/,+/2 f‘/,+/2+z3+1"' Soo
W f1fs "'fz,+/2+/3 f/,+/2+z3+z4+1 e S

s 1 for [ )

Let
Fl = fifafse le f11+12+1'“ Soo
Fz = fifofse fzﬁzz le+z2+/3+1'“ oo
Fw = NSaSs f11+12+~-~+1_\-
Taking
F,(x) = Jf10+11+--~+1,.+1"' flo+ll+'"+li+l o i L 05

11» if Zf+1 = 0;
1y,=0, 0<i<Cs; then it is easy to verify that ' —A=
FoFy-+ F,, so
C= (Fl,uﬁz,-",u’ IF.c) -
(F) @ F) e @ (w'F).

Hence

1C = (FD) || uFy) | o+ | W 'F) |=

p.\‘(:hdeg ;‘1 >p(.~*l>(n*deg ;72) ._.p(:hdeg ;‘A) l:‘

Corollary 2.4 Let p be prime, C is a A-cyclic
code of length n over R, p |n, then there exist
polynomials go» g1 ***s g such that g1 | g | **
lgo | (x"—2) and C=(go ugsu’gss+*su’ ‘g, 1).

Proof  According to Theorem 2.3, C =

(F] 7MAP‘2""’uX71F,\-)y fuiA:FOF]"' Fx? let g8 =
FoFip - Foy 0<i<{s — 23 g1 = Fo, then
goilgoallgol(x"—=2, for Vi, 0<li<ls—1,

uiFm = W' F,F,* FF,,F, = ug,F F,- F,,
so CC(gysugsu’gss+=su’” 'g1). Because F; and
F, are coprime, then there exist polynomials
ps g€ R[ 2] such that pF, +¢F,=1, hence

ug, = uF Fi--F, =
u( pFy +qF ) FyFy+ F, =
uplb o F 1 Fs- I, +ugF FyFye-- F, =

uppg +uqg, = u])Fg —|—uqF1 e C.
Proceeding like this we can conclude that u'g; €
C(1<i<s—1). Thus

C= (gosugist’gorsu’ ' go1). ]

The following corollary can be obtained
according to the proof process of Theorem 1. 3.

Corollary 2.5 Let p be prime, p In, if R,=
R[x]/(x"—21) is a principal ideal ring, C < R,,

then C=(g(2)) = (F, +uF,++++u"'F).

Now we discuss the dual codes of A-cyclic
codes C.

Lemma 2.6 Let C be a nonzero linear code of
length n over R, | C| =p's | CL| = p", then
C||Ct|=p", where h-+I1=ns.

Lemma 2.7

Let C be A-cyclic code of length n

over R and C:(Fl yuAFz ) "',u“’fli“s ), where 2" —A=

F,F,Fy+ F, and F,, F,, F,, +-+, F, are coprime.

Then C+ = (FO* , uF,* , uzﬁf‘;l N A Fz* ),
s—1
where h = Eideg F., and F* =

=0

2% P F(1/2) is the reciprocal polynomial of F.

CL‘:th
Proof Let C, = (F&" , uAFf , u2Ff 1s "%y

w'Fy ). for YO<Ti.j<<s— 1. whether i +1%
s—j+1ori+17#s—j+1 not, we can obtain that

(" =2 | WF ) (WF o). Thus («Fpop) e



% 62

Constacyclic codes over ring F, +uF,+++u"'F, 587

(qu;” i+1)=0(mod 2" —2A), so C;, = C*-. Also

‘Cl | :]).vdeg Fy ])(.\'*l)deg F .._])deg F, :])/1 , Where h =
s—1

Zideg F,-+19F,\+1 = Fo-

i=0

suppose | CL | = ph,

On the other hand,
| C, | = p', according to

s—1
Theorem 2. 3, [ = 2 (s—1i)deg F, » according to
i=0
s—1

Lemma 2.6, hy +[=ns. Hence h, = 2 ideg F;iy =

k=0

h, namely C, =C"*.

3 The minimal generating set of

constacyclic codes over R

Dougherty defined the rank of a code C of
length n over R, in Ref. [ 3], defined the rank of C,
denoted by rank (C), by the minimum number of
generators of C, and defined the free rank of C,
denoted by frank (C), by the maximum of the
ranks of R-free submodules of C. A code of rank r
over R, with free frank £, and k, =r—F, , will have
4" 2% elements and we shall often denote the code
as being of type {4, ks }. According to the
description above we can define the rank of cyclic
codes over ring R naturally.

Definition 3. 1
are free R-submodules, denoted the rank of (C) by

The cyclic codes over ring R

rank (C), by the number of the elements of its
basis, or equivalently by the minimum number of
generators of C.
Lemma 3. 2!
code over R, where g(x) 2" —1 and degg(x) =r.
Then C is a free R-submodule with rank (C) =

n—r, and its minimal generating set is

Let C=(g(x)) be a cyclic

n—r—1

B={g(x)xg(x) 2" ' gx)).

Theorem 3. 3" Let C= («'h (2)) be a cyclic
code over R. In R[x],h(x) |x2"—1 and deg h(x)=
rou' 7 0. Then C is a free R-submodule with
rank(C) =n—r, and its minimal generating set is

B={u'h(x)xu'h(x) 2" uh (2)).

Theorem 3.4 Let C=(go,ugis-su’ ‘g 1)
be any constacyclic code over R, where g1 | g2 |***|
gl (2" —1), deg g, =r; and ro ) <rpp<o+<ry.
Then C is a free R-submodule with its rank(C) =

n—r.,, and its minimal generating set is

n—ry—1

20 xgo oo x 20
ug, xug xo ! ug,
Wl gy au’ 2 g e e L2 s

! g T g | g

Proof ILet C=(go,ugi.**»u"'g1) be any
cyclic code over R, where g | g2 |***1 g0 | (2" —1),
deg g;=r; and r | <r,y<++<s,. If any of the
generators in C above is equal to 0, then we
eliminate it from the generators. So we may
assume all the generators are nonzero. First, we
show that 8 spans C, by Lemma 3. 3, it suffices to

show that 3 spans

n—r;—1

X0 ug x ug,
—ry .2 =1 2
l,rl Ty u gZ ee Irrfrz lu gZ
B =
1,1"\¥3 ) u.\' Zg_\~2 oo xn T o lu.\‘ Zg_\~2
[T R | oo nr =1 1
X Slu g T (22

By similarity, we only need to show that 8 spans
20 mufy. Since a2 ugi, ug, € (ug; ). By
Lemma 3. 3, it follows that
20 ugy —ugo = avug tarxug, + o+
Qry—r, L0 gy +017-0 n 0 ugy Tt
" g (D

Since we may assume that g,,g; are monic, then

an*r] —1 X

the largest power on the left-hand side of Eq. (1) is
less than r,. Therefore o, -, u=**=a, 1 u=0.
Hence,

20 ug ) = ugo +avug +arxug, +
et  ug
Hence, 8 spans B. Now, we show that none of the
elements in B is a linear combination of the others.
Suppose that zu'g; for i=0,1,++,5—1 is a linear
combination of some elements in f—xu'f; for i=0,
1,:-, s — 1 (Note that the proof works if we
choose any other element). The largest power in
xu'giis equal to r; + 1. It is easy to see that no
linear combination of elements in f—au'g; will give
a polynomial of degree equal to »,+1. So, B is a
minimal generating set for C, with its rank=n—r, ;.

(F#% 593 W)





