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Program-iteration pattern algorithm
for the elasto-plastic frictional contact FM-BEM
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Abstract: A new program-iteration pattern algorithm, incomplete generalized minimal residual
method (IGMRES(m)) based on the fast multipole boundary element method (FM-BEM), was
proposed for the solution of highly nonlinear equations and its convergence theory was
established. With help of truncation technology, a new recursion formulae with the proposed
method using only some of the calculated vectors to compute the following vectors, which could
greatly reduce the computation and memory requirement. The fast multipole method (FMM) was
used to compute the matrix-vector products. Numerical experiments proved that the new
algorithm is highly efficient for computing elasto-plastic frictional contact problems, especially for
complicated iteration and time-consuming calculation. And it can greatly reduce the iteration
times and improve computational efficiency with ensured numerical accuracy.
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0 Introduction

The solution of a nonlinear equation can'’t
avoid a complicated and time-consuming iteration
process. For example, the coupled governing
equation for 3-D elasto-plastic frictional contact is
multi-nonlinear. It can be discretized into a rate
matrix equation, which is written as

AX =F (D
where A is a nonsingular coefficient matrix, X an
unknown vector of displacement and traction, and
F=f(u.0)+ Q)+ f()+ f(o”) a known vector
in which « and ¢ indicate the displacement and
traction, respectively; A the gap, p the coefficient
of friction, and ¢” the plastic stress.

Influenced by the
nonlinear factors f(A), f(u) and f(s”). the

solution of Eq. (1) must be subjected to a repeated

physical condition of

iterative convergence process. Of late years, FM-
BEM has been developed and it is attractive in
nonlinear analysis'’., One of the fast algorithms
with high precision to solve FM-BEM Eq. (1) is
the generalized minimal

(GMRES (m)®~* with a restart parameter m.

residual  algorithm
The algorithm is a kind of Krylov subspace
method™ , which is based on an Arnoldi complete
orthogonalization process when the base vectors
are constructed. And the residual norm reaches the

minimum in Krylov subspace®.

the GMRES (m) algorithm is

inconvenient in the construction of Hessenberg

However,

matrix elements and Krylov vectors because some
long recursion formulae are needed. Therefore, it
is necessary to resort to the popular truncation
technology and establish a kind of new truncation
GMRES (m) algorithm'" *,

that only some of the calculated vectors are used to

Its main thought is

construct new recursion formulae to compute the
following vectors, which can greatly reduce the
computation and memory requirement. This
method can easily take measures to accelerate the
convergent speed and quickly obtain the final

results.

For the solution of elasto-plastic frictional
contact problems with complicated iteration and
time consuming calculation, this paper presents a
kind of incomplete generalized minimal residual
method (IGMRES(m)).
the mathematical programming method™ and the
iteration method. In FM-BEM, the fast multipole
method (FMM)M% is introduced into the IGMRES
(m) algorithm to accelerate the convergence. It is
on the basis of the optimized GMRES (m)

algorithm™', and makes full use of the advantages

It is the combination of

of the mathematical programming method and the
iteration method. So the convergent process is

stable and fast with high calculating precision.

1 Fundamental formulae for the

elasto-plastic  frictional contact

FM-BEM

For the elastic body " without consideration
the body force, the boundary integral equation for
the displacement speed «; and the traction speed z;

can be written as
ciju] = LXUJi?dI“ —Jﬂ\T,flk?dI"“ 2

For the elasto-plastic deformable body QF, the
boundary integral equation with the plastic stress

rate ¢4 as the initial stress form can be written
ast1]

jU,,derﬂ j;;afdru

jgﬁe,;kag; o’ (3)

where Uj , T} ,e;, are the fundamental solutions,
ouj» Lij. eju are the related kernel functions, and
the superscript p indicates plasticity, The FM-

BEM forms of Uj; , Tj .e; are as follows

ij o

U (ray) = Py o) (55 )+ Q) (o) @
Tj (re3) = Ry () a0

S () [ 0 | (5)
e = P () (5 )+ Q@ (54 (6)

The FM-BEM forms of ¢5; » T%; »eiu are as follows
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oty = Puy (o) )+ Q@ () (7)
Ty (xsy) = ();\,1,(75)( )—Q—Pm(r)( )—l—

Qu; () [E(myk +ny; + njyj)]
(8)
€ = OW(I)( >+ PUH(T>(%>+ Qi (I)(Ry/>

(9)
1,2,3, P; (z) and Q; (x),
R;,.(x) and S;, (), Py (x) and Q; (x), Py; (1)
and Qy () s Oy () s Py; (2) and Qu; (2 5Oy ()

Py (2) and Q. (x) indicate the partial derivative

where i,j,m, k, [ =

1 . . )
of R with respect to x;, respectively'?),

After discretization, Eq. (3) can be written as
Eq. (1). The right term f in Eq. (1) is formed by
multiple nonlinear coupling problems. It mainly
consists of the traction force and displacement
f(t,u), the contact gap f (A), the frictional
dissipative energy f (p) and the elasto-plastic
deformation f (¢” ), which can be expressed
as follows
f=f@aw + Q)+ fGo + fG"  (10)
For the simulation of nonlinear frictional contact
and the elasto-plastic deformation behavior, the
discriminant mode of node-to-surface frictional
contact” is used to avoid some errors from node-
to-node slip contact and to simplify the mesh
division. The condition of convergence for contact

judgment is without penetration.

2 Progranr-iteration pattern IGMRES(m)
algorithm based on the FM-BEM

2.1 IGMRES(m) Algorithm Based on the FM-BEM
A kind of program-iteration pattern IGMRES
(m) algorithm is proposed to well solve the elasto-
plastic frictional contact problems. Compared with
the GMRES (m) algorithm'*, it shows many
superiorities. The difference between them is
that the base vectors {v;} (j =1,2,+-,m) formed
by incomplete orthogonalization, namely Av; (j =

1,2,++,m), are orthogonal only for IGMRES(m)

algorithm at most ¢ vectors wvjo, **y v, jo =
max{1,j—q¢—1}, with ¢g<im. So the base vectors
are generally not orthogonal, and the IGMRES(m)
algorithm can only give an approximate or quasi-
minimal residual solution. Let go=j,=max{1,;—
—1} be the truncation index for the IGMRES(m)
algorithm. Detailed steps are as follows:
(1) Initialization
Choose the step number m, and set the
parameter q(2< g<{m) and the precision ¢;
Choose the initial value 2 =0, and compute
£ = = A = P = BV = (o).
(II) Iteration
For j=1,2,-,m
(D Incomplete orthogonalization
= (Av;,v) G :jo,-“,j),l

- an
1+l Zhvv J

1]0

where the FMM is used to compute the product of
a matrix and some vectors, which can reduce the
memory requirement.

(@ Standardization

;H; - H Vi1 — Aj+l/hj+l.j 12

Upa || s

@ Renew the matrices V;;; and H;
Vi = Vv, H; = (Hjl o J
0 R ) Grnxg
(13)

H, is a strip upper Hessenberg matrix. Its nonzero
elements h; are generated by Eq. (12). When j=
1, the first column is omitted and then

AV, =V, . H, (14)
The FMM is used to compute the matrix-vector
products, which could accelerate the solution
procedure,

(Il ) Solve the least squares problems

[ 7 | = min || gy — H,y. | (15

e
to obtain v,

U?J'
(IV) Construct the approximate solutions
2" =29 +V, vy, (16)
(V) Compute the modular of residual vectors
[l =l f— Az || (an
(V) Restart judgment
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If || 7 || <e, =22 is the solution and

stop. Otherwise, set 2 = ™

and turn to Eq.
(1). e is a given convergence criterion, and can be
taken as e=1.0X107°,
2.2 Convergence theory for the IGMRES (m)
algorithm
The IGMRES (m)

accelerate the

algorithm is wused to
convergence rate of solution
procedure and to reduce the memory requirement.
But at the same time, some of its main properties
such as the orthogonality of the base vectors
{v;}7, the minimality of the residual norms || »* |
are lost, which are the most important references
to analyze the convergence for the algorithm. In
combination with the GMRES(m) algorithm, the
convergence of the IGMRES (m)
method is studied. And the convergence theory
of the IGMRES (m)

through

truncation

algorithm is established

theoretical analysis and numerical
experiments.

For convenience, the norms of residual vectors
for the IGMRES (m) algorithm and the GMRES
(m) algorithm are written as " (IG) and ¥ (&),
respectively. Define a matrix V,, 1 = (v, vs, **+,
Ut 1)

Theorem 2.1

column-ranked. The residual norms in K,,(+* ,A)

Suppose that V,.; is fully

satisfy the following relationship
| G || < SV, | r¥ (G| (18)
where V,., is formed through an incomplete
orthogonalizing process, S (V,:1) = | V1 |
| Vil and Vi, is the generalized inverse
matrix of V,4+,. If the IGMRES (m) algorithm
breaks down at the mth step, namely h,.+,.,, =0,
then ™ (IG)=x".
Proof According to r” =gV, e; and Eq.
(14), the residual value related to ™ (IG) is
r G =f—Ax" (IG) =
Vo (B —H,y,,(IG))
So
| ¥ (IG) || = || Vi (1 — H,v,, (IG)) ||
(19

", there exists fe; =

According to gV, 11 =71

Viar®. Eq. (14) is foremultiplied by Vi,
H,=V, AV,

and then Eq. (19) becomes

[ 7 G | = | Vot (Vi 7' =V, AV, (IG)) ||

Eq. (15) is equivalent to solving a least squares

problem
mil’l H V;trH r(O) 7V;trHAmem || -

v, €C"

min || V:rrH r *VTMAZ('”) || (20)

ek 0.
So, there exists
| ¥ (G || <
|| Vo H || Vo r'? *V:rrHAmem(IG) || -

| Vi |l - min() | Vi r® — Vi Az | <
LMek A
|| Vm-H H || VTJL,.H H - min(o H r(o) _Az(,,,) H _
ek, 1A
SWVoi1) min | 7O — Az || =

Smek OV
SV, || ¥ (G ||
and Eq. (18) is proved.

If h,41.,,=0, then Eq. (14) becomes
AV, =V,H,

where H,, is an m X m order strip upper
Hessenberg matrix without the last row in matrix
H,,. It means that the columns of V,, expand into
an invariant subspace of A. So the eigenvalues of

H,, all belong to A and H,, is nonsingular. Now

[ r G | = | r” —AV,y, 6 || =
|| r<0> _VIITHl”yl]T(IG) || -
|| Vm (&l 7 ﬁmym(IG)> ||

When vy, (IG) :ﬁﬁ,;lel , there exists
mln || &l - ﬁnlym(IG) H - O-

3, (TG EC™

So
| 7o (IG) | =0,

namely the exact solution

2"G) = 2 +V,y,,(IG) =z~
is found for the IGMRES (m) algorithm. The
proof is complete, L]

Comment 2.1 If ¢g=m, then the IGMRES

(m) algorithm equals to the GMRES (m)
algorithm, V,., is a theoretically standard
orthogonal matrix. So S(V,,.1)=1, and the equal

sign holds in Eq. (18). According to Eq. (18), the



74 FEAFHARFFIR

% 38 %

convergence of the IGMRES (m) algorithm
f SV, is
appropriate, then the IGMRES (m) algorithm is

strongly depends on S(V,1).

sure to converge, as has been demonstrated by a

large number of numerical experiments.

3 Numerical example

Consider cubes A, B and C (with sides of 50
mm, 40 mm and 30mm) in frictional contact with
each other. Body A is an ideal elasto-plastic one
with fixed constraint on the bottom surface, and
bodies B and C are elastic ones. The model and the
discrete mesh are shown in Fig. 1, and the discrete
data are shown in Tab. 1. For the three bodies, the
Young’s modulus is E= 210 GPa, the Poisson’s
ratio is y=0. 3, and the coefficient of friction is p=
0.2. For body A, the yield limit is 260 MPa. For
body C, a uniform load p=280 MPa is applied to
the top surface. The total load is divided into six

steps, and the contact tolerance is 0. 001 mm.

#=280 MPa

A

PaYLY-)

Fig. 1 Calculation model and discrete meshes

Tab. 1 Discrete data

body A body B body C sum
node number 152 218 98 4168
element number 150 216 96 462
contact nodes 36 49 25 110
contact elements 25 36 16 7
interior nodes 64 0 0 64
body elements 125 0 0 125
degree number 648 801 369 1818

The key step in the plastic analysis is the
computation of the equivalent stress, which uses
von Mises yield criterion to decide if the nodes are

in the plastic range. The plastic stress on the node

is then separated from the total stress and placed in
the equation used to recompute the stress and
displacement. The plastic iteration loop also
includes the frictional iteration. The contact zone
is fixed in each step. If penetration is discovered to
have occurred during the iteration step, the step
must be subdivided. The contact analysis is
converged if penetration does not occur. The
contact iteration also includes the plastic iteration.

The absolute convergence criterion used for
the force variable is given by:

ABS (2t — ) <e,
The relative convergence criterion used for the
displacement variable is given by
ABS (2! — 24,) /ABS (i) <,

When the forces and displacements are both

converged, the computation is considered
converged.
Set the restart parameter m = 100, the

truncation index ¢, can be taken as any integer
from 1 ~99. When ¢, = 100, the IGMRES (m)
algorithm is invalid. When ¢, =1, it becomes the
GMRES (m) algorithm. When ¢, is taken as an
integer among 1~99, the iteration times and the
computation time change dramatically during the
solution of elasto-plastic contact with friction, as is
shown in Fig. 2 and Fig. 3, respectively. From
Figs. 2 and 3, the optimal truncation index g, =90.
The computation results are shown in Fig. 4 and
Fig. 5, which are consistent with those of ¢, =1.
However, the computation time reduces from 25

120

105
90|

—e— jteration times |-

~
W

N
3

iteration times
D
S

W
(=]

—_
S W

beeeieiedd i R
0 10 20 30 40 50 60 70 80 90 100
truncation index / %

Fig. 2 Influence of truncation index

on the iteration times
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Fig. 3 Influence of truncation index

on the computation time

Fig. 4 Displacement distributions

on the contact surface for body A

Fig. 5 Pressure distributions in contact zone

minutes and 6 seconds to 8 minutes and 59
seconds, and the iteration times reduces from 105
to 6. The efficiency can be improved by 64 %, and
the iteration times can be reduced by 94% , which
shows the high efficiency of the new algorithm.
On the other hand, the influence of truncation
index g, on the calculating precision is shown in

Fig. 6 and Fig. 7, respectively.

-0.048 |

displacements / mm

-0.054 |

Y73 SN S S S S

Y-direction coordinate / mm

Fig. 6 Comparison of displacements on the contact
surface for body A (x=11. 67 mm, z=50 mm)

400
< 360F
E _
< 30
o
N
% 280
&,
g 240},
| .
© 2004
160 R I T N T P T
5 10 15 20 25 30 35 40 45
Y-direction coordinate / mm
Fig. 7 Comparison of contact pressure
(x=11. 67 mm, z=50 mm)
Comprehensively consider calculating
precision and computational efficiency, the

truncation index ¢, can be chosen as 90 to
dramatically improve computational efficiency with
ensured calculating precision. In addition, other
numerical examples also prove the high efficiency
of the newly proposed algorithm with appropriate

truncation index.
4 Conclusion

By using the truncation technology, a kind of
new program-iteration pattern IGMRES (m)
algorithm based on the FM-BEM was proposed to
greatly reduce the computation and memory
requirement. In combination with the GMRES(m)
algorithm, the convergence theory was established
for the new IGMRES (m) algorithm. Trough a
numerical experiment, the high efficiency of the
new algorithm and its excellent convergence were

analyzed. It shows that the truncation index plays
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an important role for computational efficiency and

calculating precision. If it is chosen properly,

computational efficiency can be greatly improved
and iteration times can be dramatically reduced.
This algorithm is especially suitable for the

solution of elasto-plastic frictional contact

problems with complicated iteration and time-

consuming calculation.
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