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Determining stress singularity exponents of
plane V-notches in bonded bimaterial
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Abstract: A new numerical method is proposed to determine the singularity orders of plane V-

notch problems. Based on the assumption of asymptotic displacement field near the V-notch tip,

the governing equations of the elastic theory were transformed into the eigenvalue problems of

ordinary differential equations (ODEs) around the notch tip. Then the interpolating matrix

method was further employed numerically to analyze the general eigenvalue problems of ODEs,

Thus, the values of the singularity orders of the V-notches were determined through solving the

corresponding ODEs by the interpolating matrix method. Two examples are given to illustrate the

accuracy and effectiveness of the method.
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0 Introduction

The cases of V-notches of bonded dissimilar
material are frequently encountered in engineering.

There exists strong stress concentration near the
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sharp notches and the interface ends. In
particular, the peak stress at the notch tip is
singular according to the elastic theory.

For a V-notch of homogeneous isotropic

material with opening angle «, as shown in Fig. 1,
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the singular stress field near the V-notch tip can be
expressed as a series expansion with respect to the
radial coordinate. One of the terms can be

written as

o5 = Ao’y (O) (D

Fig.1 A V-notch with opening angle «

where 2 is called the singularity exponent/order.
With  the Williams™
established the eigenequation as

+ Asin B+ sin(AB) = 0 (2

where 3= 2nx —a. It can be seen that exponent A

eigenfunction method,

depends on the notch angle a.

In a general case of V-notch, the singularity
exponents/orders may be either real or complex.
Some methods have been proposed for treating
various V-notch problems. Gross et al.’” and
Carpenter™® obtained the stress intensity factors
for plane V-notch problems by boundary
collocation. Boundary element method was used to
solve the displacement and stress field of plane V-

45 Through utilizing the solver

notch problems
of ordinary differential equation (ODE), Xu et
al. ' employed the inverse iteration method to
search for the stress singularity orders of plane V-
notch problems. However, it was only suitable to
find the real roots among all solutions. With Eq.
(2) as the starting point, the subregion accelerated
Miiller method™ was utilized to compute the
eigenvalues of the stress field near V-notch tip.
Yao et al. ™™ by using coherent gradient sensing

 CGSH studied the

singularity and fracture behaviors at mode-[ V-

experimentally stress

notch tip. Recently, a special finite element
method was used to deal with various V-notch

problems based on the assumption of asymptotic

expansion of the stress field near V-notch tip.
Chen et al. ! proposed a new eigenanalysis method
with hybrid finite element to determine the stress
exponents and stress intensity factors of bonded
bimaterial V-notches.

The aim of this paper is to analyze the stress
singularities of plane V-notch problems of bonded
bimaterial. The governing equations of linear
elastic theory are transformed into the eigenvalue
problems of ODEs based on the assumption of the
[ 10 ]

established the interpolating matrix method to

asymptotic  displacement field.  Ref.
solve two-point boundary value problems of ODEs,
The method is further employed in the present

work to solve the eigenvalue problems of ODEs,

1 The eigenvalue problems of ODEs for
plane notches in linear elasticity

Firstly, let us consider a V-notch of isotropic
material with opening angle 2r—60; —6, as shown in
Fig. 2. Define a polar coordinate system of in
which the notch tip coincides with the pole. In
terms of the linear elastic analysis, it has been
verified that the asymptotic displacement field near
the V-notch tip

can be expressed in the

following form

u,(0:0) = 0", (0) |
(0@ = 0y () |

3

Fig. 2 Geometry of the notch

Introducing Eq. (3) into the geometrical equations
of linear elastic theory yields the strain components

as
e, = 1 +gu,
& = du, () +gus () 4
m—y%@+¢%mﬁ
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) =d (e

from Hooke’s law the

where (- )/df. In the case of plane

stress, stresses are

expressed as

1

o, = fyzpkm +04, +w2,,+u&;]1
_ _E ~ o~y

o) = 1—v2‘d‘[(1 + 0w, Fu, uy] o (5)
E ~

Op — mpl (/\ug + up)

where E is the Young’s modulus and v the Poisson

ratio. Neglecting the body forces and substituting

Eq. (5) into the equilibrium equations result in

14 Yy

1— v

it )uﬁr oA+ Du, =0
A [2+§(1 02 Jult

S A —VAA+ 2w, = 0

g€ 0,0,
(6)
Assume that all of the tractions on the two
edges Il and I, near the notch tip are zero. That
is
fdo W
1%0 fo o 16;70 fo 0, 1()[ v
Hence, substitution of Eq. (5) into Eq. (7) yields
Wk Aty =0 |
WAty =0, 0= 6 and 0,] 8
Observe that there is a factor A* in Eq. (6),
which will lead to nonlinear eigenanalysis if Eq. (6)
is solved directly. An alternative way for Eq. (6) is
to introduce two new field variables as follows
2,0 =, (), 0 € ), 0]
200 = Juy (0. 0 € (0.0 ]
Thus, utilizing Eq. (9), Eq. (6) can be rewritten

(9)

as

14y
1—vy

i (22— 2)u T2 20g, = 0
dit 245 o+

%(1—V><A+2>g0 —0

o0& (0h:0:)
(10)

Summing up the above procedure, the
evaluation of the singularity orders near the V-
notch tip has been transformed into the linear
eigenvalue problem of ODEs governed by Egs. (9)
and (10) subjected to the boundary condition of
Eq. (8). Meanwhile, the

eigenfunctions u, and u, can be achieved, which are

corresponding

useful to determine the stresses in the vicinity of

the notch tip.

2 Evaluation of the stress singularity
orders of the V-notches of bonded
bimaterial
For the V-notch bonded

bimaterial, as shown in Fig. 3, the body consists

problem  of

of two subdomains of different materials. E; and v,
are Yong's modulus and Poisson’s ratio of the
subdomain (2,, respectively, while E; and v, are
the ones of the subdomain 2,. Observing the above
derivation, it is known that Egs. (9) and (10) are
available for each subdomain for analyzing the
stress singularity orders near the interface tip of
the two materials. Thus, the governing equations

are written as

ulﬁ— (i +V1

A—Z)uhﬁ— St 2, =0

it [ 2 +4 4y 2+

A=) Q+2)gy =0
o€ 0.0
an
g =, @, 0€ 00|

2@ = hiy(@, 06€ (0.0

and

Fig. 3 A V-notch of bonded bimaterial
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1+,
1—

A*Z)LL?()JF (/\+2)g2p -

o (1T
u;ﬁ— [2 *(1 +v>)/\]u 2t

(1—1/2)(/\+2)g25:0, 66 (62963)

1
2
(13)

200 () = dus, (), 0 € (040

g0 (@ = hin(@ . 0E (0.0 )

where Ztlp 9, th (0) are the eigenfunctions of

(14

displacement components in subdomain 2, near the

notch tip, ;tgp (). usy () are ones in subdomain
.. For the bonded bimaterial, the displacement
tractions are

components and the interface

compatible on I';. This means

flp(ez) - ?257(62)1 (15)
uw(ez) = Mzo(ez)f
[oul - _[ew] (16)

161,)0 Jozoz lﬁw fo 0,

Substitution of Eq. (5) into Eq. (16) gives

%[&ﬁﬁ A+v +mdu,] —
1

1
%[ﬁéﬁ (I 4w +vDus, ] =0
. ’ an
1 = - o
2(1+v1)(u1p+Auw)
E ~ o~
m(uzﬂrkugg) =0, 0= 5’2

Similar to Eq. (8), the boundary conditions

on I} and I'; are traction-free as

Wit L+ Fuw, =0, 0= 6]
-, N - (18)
ulﬁ—/\uw:O, 0 =0 J

ot (1w F 02Dy, = 0, 0= 0]
., N - (19
u2p+/11/£20 — Oy (9 - (93 f
Therefore, the evaluation of the singularity orders
A near the V-notch tip of bonded bimaterial has been
transformed into solving ODEs Egs. (11) ~ (14) and
boundary conditions Egs. (15), (17)~(19).
There have been some numerical ways to find

the solution of the ODEs.

commonly used methods for solving ODEs are the

At present, the most

finite  difference, shooting and collocation

methods. Ref. [10] established a numerical method
by the name of interpolating matrix method to
solve BVPs in ODEs, which chooses the highest
derivative in the ODEs as the unknowns of the
ODEs. Here the

interpolating matrix method is further employed as

discrete system of the
a solver of the eigenvalue problems of ODEs.
Consequently, the stress singularity orders are
obtained by implementing the interpolating matrix
method for the ODEs of the V-notches.

3 Numerical examples

Example 3.1 A V-notch of isotropic material
as shown in Fig. 2.

With the

method, Fu et al. ' computed a number of the

subregion accelerated Miiller
eigenvalues of the stress singularity orders of the
V-notch problem. Here the interpolating matrix
method (IMM) is used to solve the ODEs Egs.
(10), (9) and (8) where y=0. 3. The results are
given in Tabs. 1 and 2, in which « is the opening

The eigenvalues A are often complexes

:5k+i77k where i=+/—1. Tab. 1

corresponding to the

angle.

expressed by A,
lists the eigenvalues
symmetrical displacement (mode | ) eigenfunction
;p(ﬁ) and Tab. 2 lists the ones corresponding to the
( mode I )
eigenfunction z;p(ﬁ) , where n is the number of the
divisions within interval [, ,0, ] in IMM.

Tabs. 1 and 2 show that the eigenvalues

anti-symmetrical  displacement

obtained by using IMM are in good agreement with
the results of Ref. [ 7] as n increases. Note that
the eigenvalues whose real parts are between — 1
and 0, i. e. Re(A) € (—1,0) should be paid more
attention to, which indicates that the stress field at
the V-notch tip is singular. It is found that there
exist either one or two real eigenvalues in the range
of —0.5<A,<<0 when 0<{a<(180° for the V-notch
of isotropic material. All the first two eigenvalues

for the schemes of #=40 in Tabs. 1 and 2 have

converged up to the fourth significant figure.
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Tab.1 The eigenvalues corresponding to the symmetrical displacement eigenfunction Zp @

a methods & i & 7 & 7 & 7
Ref. [7] —0. 099 956 0 1.001 795 0 1. 695 232 0 3. 022 680 0
170° IMM, n=20 —0.099 7671 0 1. 000 629 0 1. 706 359 0 2.972 986 0
IMM, n=40 —0.099 949 0 1.001 733 0 1. 695 693 0 3. 020 562 0
- Refl.[7]  —0.248025 0 110628  0.096 100  2.828204 0,347 177  4.547288 0,459 268
150° IMM, n=20 —0.247 871 0 1.109 776 0. 087 307 2. 859 206 0. 321 400 4. 705 928 0. 308 320
IMM, n=40 —0.248 019 0 1. 106 531 0. 095 588 2. 830 449 0. 345 590 4. 556 639 0. 452 879
- Ref.[7]  —0.384269 0  0.833549  0.252251  2.343717  0.414037  3.849 458  0.506 015
120° IMM, n=20 —0.384 138 0 0. 836 062 0. 252 153 2. 365 450 0.414 282 3.957 761 0. 498 516
IMM, n=40 —0. 384 259 0 0. 833 734 0. 252 249 2.345 190 0.414 126 3. 856 164 0. 506 382
- Rel.[7]  —0.455516 0  0.620257  0.231251 1971844  0,373931  3.310377  0.455494
90°  IMM, n=20 —0.455 395 0 0.631 172 0.232 519 1. 988 336 0. 383 516 3. 394 304 0. 488 602
IMM, n=40 —0.455 511 0 0. 629 323 0. 231 332 1. 972 392 0.374 414 3. 313 047 0. 457 263
- Rel.[7]  —0.487779 0  0.471028  0.141853 1677615  0,284901  2.881487  0.360 496
60°  IMM, n=20 —0.487 717 0 0.471 813 0. 143 640 1. 684 805 0. 296 623 2.924 016 0. 408 020
IMM, n=40 —0.487 775 0 0.471 073 0. 141 991 1. 678 017 0. 285 650 2. 883 292 0. 363 632
- Ref.[7]  —0.498547 0  0.202957 < 0o 0.490 378 o 1.440 492 0.114 207
30°  IMM, n=20 —0.498 472 0 0. 205 806 0 0. 488 633 0 1. 445 210 0. 147 248
IMM, n=40 —0.498 540 0 0. 203 164 0 0. 490 268 0 1. 440 740 0.116 222
""""""" Ref.[7]  —0.499947 0  0.05883 0 0499728 o 1.11882 0
10°  IMM, n=20 —0.499 856 0 0. 060 933 0 0. 498 345 0 1. 151 176 0
IMM., n=40 —0.499 934 0 0.059 126 0 0.499 521 0 1. 122 380 0
"""""" Exact solu.  —0,50000 ©O0 o 0 0500 0 10000 0
0°  IMM, n=20 —0.499 794 0 0.003 578 0 0. 497 325 0 1. 043 82 0
IMM, n=40 —0.499 985 0 0. 000 257 0 0. 499 804 0 1.002 93 0
Tab.2 The eigenvalues corresponding to the anti-symmetrical displacement eigenfunction ;,, ()]
a methods & /I & 7 & m & 75
Ref. [7] 0.798933 0 0 0 2.007 826 0 2.586 721 0 4,060 480 0
170° IMM, n=20  0.800916 0 0 0 1.997 193 0 2.631 530 3.902 388 0
IMM, n=40  0.799004 0 O 0 2,007 389 0 2.588 412 4,048 878 0
- Ref. [7] 0.485814 0 0 0 1.967836 0.261 186  3.688 038  0.409575 5406179  0.500 793
150° IMM, n=20 0. 487 279 0O 0 0 1.979 418 0. 249 763 3.760 510 0. 349 527 5. 467 941 0
IMM, n=40 0. 485 919 0O 0 O 1. 968 624 0. 260 421 3. 692 685 0. 406 489 5.422 865 0. 490 318
o Rel. [7] 0.148913 0 0 0 1589479 0.348375 3.090 928 0,464 641 4,601 514 0,541 087
120° IMM, n=20 0. 150 009 0 0 0 1.597 549 0. 348 528 3. 147 310 0. 463 943 4. 820 487 0. 503 578
IMM, n=40 0. 148 992 0O 0 O 1. 590 100 0. 348 397 3.100 330 0. 464 789 4. 614 583 0. 541 504
S Ref.[7]  —0.091471 0 0 0 1301327 0.315838 2641420 0.418787 3.978 902  0.486 625
90°  IMM, n=20 —0.090574 0 0 0 1. 307 470 0. 319 829 2. 680 315 0. 437 987 4. 148 389 0. 532 426
IMM, n=40 —0.091436 0 0 0 1. 301 562 0. 315 956 2. 642 884 0.419 538 3.984 719 0. 489 385
- Ref. [7]  —0.269099 0 0 0 1.074826 0.229426 2.279 767  0.326 690  3.482 900 0,388 984
60°  IMM, n=20 —0.268710 0 O 0 1.077 382 0. 234 207 2.297 998 0. 351 998 3.574 251 0. 469 510
IMM, n=40 —0.269070 0 0 0 1. 075 014 0. 229 741 2. 280 884 0. 328 306 3. 487 289 0. 394 444
o Ref.[7] ~ —0.401808 ©0 0 0 0.838934 0 0.948 560 - 0 1.987005 0.166 741
30° IMM, n=20 —0.401460 0 O 0 0.881197 0 0. 909 578 0 1. 999 550 0. 222 443
IMM, n=40 —0.401 781 0 0 0 0.840 591 0 0. 947 180 0 1. 987 897 0. 170 364
"""""" Ref. [7]  —0.470645 0 0 0 0.588609 0  0.99107 0 1649700 0
10°  IMM, »n=20 —0.470319 0 0 0 0.597 760 0 0. 991 337 0 1.770 116 0
IMM, n=40 —0.470599 0 0 0 0.589 736 0 0. 998 226 0 1. 659 348 0
© Exactsolu.  —0.,50000 0 0 0 0.50000 0 1000000 o 150000 0
0°  IMM, n=20 —0.499373 0 0 0 0.513993 0 0. 987 129 0 1. 625 22 0
IMM, n=40 —0.499954 0 0 0 0.500 983 0 0. 999 039 0 1. 507 41 0
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Tab, 3 The eigenvalues of the V-notch with 9, = 0°, ¢, = 135°, 0, = 270°, v =, = 0.3

Interpolating matrix method

Ref. L11] n=20 n=40 n=80
E\/E; Al Az Al Az Al Az Al Az
1 —0.455 52 —0.09147 —0.4555048 —0.0914623 —0.4555157 —0.091 4666 —0.4555162 —0.091 470 4
3 —0. 434 60 —0.127 80  —0.434 5624 —0.127 7757 —0.4345961 —0.127 7969 —0.4345965 —0.127 800 3
5 —0.413 94 —0.16025 —0.414 1289 —0.159 984 7 —0.413 9380 —0.1602475 —0.413 9384 —0.160 250 7
7 —0.398 22 —0.18306 —0.398 2022 —0.1831172 —0.3982189 —0.1830582 —0.3982192 —0.183061 4
10 —0. 380 32 —0.20735 —0.3803192 —0.2072999 —0.3803199 —0.207 3422 —0.3803201 —0.207 3453

Example 3.2 A V-notch of bonded dissimilar
bimaterial as shown in Fig. 3.

The V-notch is considered as the plane stress
problem. The bonded interface lies at 0=0,. The
Poisson’s ratios of the materials are y; =y, = 0. 3,
and E,/E, is variable. In Ref. [11], Newton’s
iteration is used to calculate the stress singularities
through an eigenequation derived by means of
complex functions. In the case of the bimaterial V-
notch, there exist two real eigenvalues in the range
of —1<<A,<<0. In applying IMM, the two intervals
[6,50.] and [ 6, 6, | are divided into the same
number of subintervals, where n denotes the
number of the divisions within each interval. A,
and A, obtained by using IMM are shown in Tab. 3
for given 0, =0°, 0, =135°, 0, =270°. Tt can be
seen in Tab. 3 that the present solutions converge
and agree well with the results of Ref. [11]. In
fact, apart from the very small imaginary
components, all the first six A, =& +ip.. (=1,
«++,6), obtained by using IMM with n =40 are

converged up to the fourth significant figure.

4 Conclusions

For determining the singularity orders at the
plane V-notch tips, the governing differential
equations of linear elastic theory are transformed
into the eigenvalue problem of ODEs based on the
assumption of the asymptotic displacement field.
Then IMM is employed numerically to analyze the
eigenvalue problems of ODEs. As an application,
the values of the main singularity orders of plane
V-notch problems are achieved through solving the
ODEs from the notches. Finally, two examples are

given to show the application of the present

method for determining the singularity orders of

the plane V-notches.
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