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DOA estimation for uncorrelated and coherent signals
with centre-symmetric circular array
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Abstract: A new direction of arrival (DOA) estimation method for the centre-symmetric circular

array is proposed to cope with the scenario where both uncorrelated signals and pairs of coherent

signals are presented. By constructing a centre-symmetric array manifold and exploiting its

properties, coherent signals in pairs can be decorrelated and then estimated without the

interference of uncorrelated signals, while the uncorrelated signals are estimated by utilizing the

uniqueness condition of array manifold. The two-stage estimation method is simple but effective.

It does not need beamspace transform and is performed directly in element space. It has higher

estimation precision. Simulation results demonstrate the effectiveness and efficiency of the

proposed method.
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0 Introduction

Direction of arrival (DOA) estimation of
multiple narrowband sources is a major research
Many high-

resolution DOA estimation methods have been

issue in array signal processing.
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developed over the years. Compared with the
rectilinear array, the circular array has many
merits, such as 360° azimuthal coverage, almost
invariant directional pattern and constant azimuthal
resolution, and has received more and more

[1]

attention'". However, the circular array manifold
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does not have the Vandermonde form. Some useful
techniques based on the rectilinear array cannot be
applied directly, which makes DOA estimation for
the circular array more complex especially when
the signals are highly correlated or coherent due to
multi-path propagation. The dominant method for
the circular array is through the phase mode
excitation technique, which employs beamspace
rebuild a

Vandermonde form. Based on this technique, some

transform  to manifold with the
computationally efficient methods for the circular
array have been proposed. Ref. [ 2] proposes real
beamspace MUSIC with reduced computation and
enhanced performance, and furthermore a novel
closed-form algorithm of ESPRIT to pair the 2-D
angle automatically. To combat the multi-path
propagation, Refs. [ 3, 4] extend the spatial
smoothing to the circular array and further analyze
the effects of imperfections, such as mutual
coupling, transform error, and directional sensor.

Ref. [ 5]

procedure in root-MUSIC and realizes a lower

employs a unitary transformation

estimation variance. However, these methods
generally work properly only with a large number
of sensors. Because the beamspace transform error
caused by a small number of sensors may degrade
the estimation performance. Ref. [ 6] presents a
qualitative and quantitative analysis of such error
and then introduces an improved method, which
first synthesizes the dominant term of the error and
then removes it in an alternate manner. Array
interpolation is a technique that can map arrays of
any geometry to a particular array geometry. The
circular array, as an example, can also be mapped
to a virtual uniform linear array through this
technique. However, it needs to split the entire
azimuthal range into several sectors and processes
each  sector leave

separately,  which may

unavoidable mapping error and cause significant
DOA bias!"*,

method is directly performed in element space to

In Ref. [ 9], a spatial averaging

improve DOA performance of uncorrelated signals

for the centre-symmetric circular array. In this

paper, we furthermore propose a simple but
effective DOA estimation method for this kind of
circular array to cope with the scenario in which
uncorrelated signals and pairs of coherent signals
coexist, It is a two-stage method. By constructing
a centre-symmetric array manifold and exploiting
its properties, the uncorrelated signals and
coherent signals can be estimated in element space
separately. Theoretical analysis and simulation
results both demonstrate that the two-stage

method has higher precision.

1 Formulation of the problem

Consider K narrowband far-field uncorrelated
signal sources impinging upon a centre-symmetric
circular array with M = 2N omni-directional
sensors as configured in Fig. 1. Assume that some
source undergoes multi-path propagations and may
Define the

number of such sources as P, and the total number

impinge from two different paths.

of received signals is K+ P. Assume all signals are
coming from distinct directions. Arrange the
output of each sensor as follows
x(t) — I:»Tl (t) Pl y]‘;\](f) s TN (t) 9 s INHF1 (f):IT —
P2 K
D1 27a0) 5. (D + D) a@) s () +n) =

k=1 [=1 k=P+1

As () +A;s,() +n) (D

Fig. 1 Uniform circular array geometry

where a (y) = [a1 (¥)s s an (¥)s am (¥) s ++es
ani1 (P 1T is the steering vector from direction y=
0,$) with a,, (¥) =exp{(G2mr/A) cos(0—a,, ) sin($) },
0 is the azimuth angle, ¢ is the elevation angle, q,
is the angle between the mth and 1st sensor, r is

the array radius, A is the wavelength, g, is the
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complex fading coefficient of the /th path of the £th
source, [=1,2, pp=[puso 1" Av="[a(yu,
alye) ], Az-:[Alpl sttt 9APPP:| s A, :[a()’pﬂ )y,
aly) ], So (D =[s1 (D)=, sp () ]", and 5, (1) =
[spi1 () sy sk (1) ]T. The power of s, (¢) is o.
The entries of signal vector s.(¢), s,(¢), and noise
vector n(t) are all zero mean wide-sense stationary
random processes and are uncorrelated to each
other.
From Eq. (1), we define the array covariance
matrix as
R, = E{x(O)x"()} =ARAF +
ARA! +aI  (2)
where R =E{s.(0)s" (1)}, R,=E{s, (Dsl' (1)},
and I is an M X M identity matrix. Due to the
assumption of uncorrelatedness, we have R, =

dlag{df [l 9(7%9} and Ru:diag{d%fl [ ’(7%< }

2 DOA estimation

The DOA estimation proceeds in two different
stages, which exploit two different properties of
array manifold respectively. The first property is
that any collection of steering vectors from the
array manifold should be linearly independent,
which is generally considered as a precondition for
unique localization of narrowband sources''™. This
means that any linear combination of steering
vectors can not result in a new steering vector.

Since ARAF +ARAH in Eq. (2) is only of
rank K, only K

corresponding to the first K maximal eigenvalues

eigenvectors e;, ***, eg

span the signal subspace when performing
eigendecomposition on R., which is also spanned
by Aipi,s++sAppp and a(ypi1), =+, a(yx) jointly.
The rest exi1, ***» ey span the noise subspace.
Exploiting the property that the signal subspace is
orthogonal to the noise subspace, we have
| efAups |2 =00 i =K+ 1owsMs k= 1,0, P
3
=0, =K+1,M; k=P+1,--,K

€Y

| el'a(y)

Then define a function as

M
p =1/ lella(y |? (5)

iZKh
Since no linear combination of steering vectors

can result in a new steering vector, no angles but
Yp+1s*» ¥k make p; (y) form peaks, from which
we can obtain the DOAs of uncorrelated signals as
long as K<M.
The second property is that the structure of
a, (y) =
af-m(y). We have a(y)=Ja* (). Then
JARAD"J=JA;R,(JA, )" =ARA (6)

where J is an M X M anti-diagonal matrix.

a(y) is centre-symmetric”, i e.

Exploiting this property, we define a new
matrix as

R=R,—JR'J =ARA!'—JARAD" J=

P
ZA/@G% (pept’ — pi piOAL =
k=1

.
DIARL A =
k=1

[A),*,Ap |BLKdiag{R, ,***sRp } A}, Ap |1
D)
in which only components of coherent signals
remain. Since R, = o} (pupt’ — pipi) is a skew-
symmetric matrix, whose eigenvalues always come
in pairs &£y, its rank is two in general. Then R has
the rank of 2P, which means that we can perform
eigendecomposition directly on R and then find the
peaks of p, (y) to estimate the DOAs of coherent
signals as long as 2P<<M

M
P =1/ > lullaly) |? (8)

k=2P+1

where wu,, **, uy are the eigenvectors of R

corresponding to the eigenvalues whose absolute
values are in descending order.

Compared with the averaging method in Ref.

[9], this two-stage method has more dimension of

dimension  for the

noise  subspace.  The

uncorrelated and coherent signals is M — K and
M—2P respectively, while it is M— K—P for the
averaging method. Therefore, when computing
from limited snapshots, the DOA estimates for
uncorrelated signals are more accurate by this two-
general.  Moreover, the

stage method in
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subtraction operation in Eq. (7) eliminates the
components of uncorrelated signals and noises,
reduces their effects and then improves the
performance of coherent signals in low SNR.
However, some powers of coherent signals are also
lost during the process, which may make the
improvement less obvious than that by the
averaging method as SNR increases with limited

snapshots.
3 Simulation experiments and discussion

Since the averaging method in Ref. [ 9] can
also resolve pairs of coherent signals, here we
select it and the forward-backward spatial
smoothing method in Ref. [4] for comparison. A
uniform circular array with »=0. 82 is selected as
the centre-symmetric circular array. For simplicity,
assume that the elevation angle is $=90° and the
number of signals is known which can also be
obtained by Ref. [11]. Here the signals and noises
are selected to be zero mean complex Gaussian
processes. The input SNR of the kth source is
defined as 10logy, (67 /62). Assume that ¢} =+ =¢%
and ¢2 = 1. The average root mean square error
(RMSE) of the DOA estimates from 200 Monte

Carlo runs is used as the performance index

200 1

D270 — )7/ (200D) (9

n=1 k=1

RMSE =

where 0, () is the estimate of @, for the nth run,
and I is the number of all the uncorrelated or all
Note that the RMSE is

calculated for uncorrelated and coherent signals

the coherent signals.

respectively, because they are estimated at two
different stages.
The first  experiment

uncorrelated signals from 50°,170°, 330°, 255° and

two pairs of coherent signals when the number of

considers  four

array sensors is M = 12. One pair of coherent
signals come from 80°,210° with fading coefficient
exp{j143.05°}, 0.9exp {j218.46°} and the other
from 130°, 290° with exp { j83.21%},
0. 8exp{j174. 95°} maximum
mode order is selected to be five in Ref. [4]. The

respectively. The

MUSIC spectra at two different stages by the new
method are first shown in Fig. 2 for one run with
SNR=0 dB and 500 snapshots, from which we can
see that the sharp peaks have been formed at the
correct DOAs. The RMSE of the DOA estimates
versus input SNR is shown in Fig.3 with 500
These

estimates of uncorrelated signals by the new

snapshots. figures illustrate that the
method are more accurate than those by the
method in Ref, [ 9] and the case is also for the
coherent signals at low SNR, which is coincident
with the analysis in Section 2. Since Ref. [4] is
based on the phase mode excitation technique and
needs a large number of sensors to work properly,

it has the worst performance.

0 A R R
0 50 80100 130150170 210 255 290 330360
angle / (°)

Fig. 2 MUSIC spectra for uncorrelated signals

(solid line) and coherent signals (dotted line)
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Fig.3 RMSE versus input SNR for uncorrelated signals (+)

and coherent signals (o) with 500 snapshots

The second experiment considers the same
scenario as the first one except that there are fewer
sensors with M = 10. The RMSE of the DOA
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estimates versus input SNR is shown in Fig. 4 with
500 snapshots. The methods in Refs. [4, 9] have
both failed to estimate the DOAs correctly in such
a scenario, while the new method still has better
performance. The RMSE of the DOA estimates
versus the number of snapshots is shown in Fig. 5
with SNR = 0 dB, which illustrates that the
estimates are more accurate as the number of

snapshots increases.
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Fig. 4 RMSE versus input SNR for uncorrelated signals (-+)
and coherent signals (o) with 500 snapshots

Y —

—+—new
18 B
1.6}
14}
12t
0
210}

50.8-

0.6
0.4}

0.2 . . . . . ;
100 200 300 400 500 600 700 800 900 1000
number of snapshots

Fig. 5 RMSE versus number of snapshots for uncorrelated

signals () and coherent signals (o) with SNR=0 dB

4 Conclusion

In this paper, we propose a two-stage DOA
estimation method in element space for the centre-
symmetric circular array when both uncorrelated
signals and pairs of coherent signals are presented.
Simulation results validate the effectiveness of this
method and illustrate that the new method has

higher estimation precision especially at low SNR

and small number of sensors. However, a

disadvantage of the new method is that it only

resolves coherent signals in pairs.
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