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SUMMARY: In this paper we propose two KAP(key
agreement protocols) using multivariate equations. As
the enciphering functions we select the multivariate
functions of high degree on non-commutative ring H
over finite field Fg. Two enciphering functions are
dightly different from the enciphering function
previously proposed by the present author. In proposed
systems we can adopt not only the quaternion ring but
also the non-associative octonion ring as the basic ring.
Common keys are generated by using the enciphering
functions. Proposed systems are immune from the
Grobner bases attacks because obtaining parameters of
the enciphering functions to be secret keys arrives at
solving the multivariate algebraic equations, that is, one
of NP complete problems .Our protocols are also thought
to be immune from the differential attacks because of the
equations of high degree.

We can construct our system on the some non-
commutative rings, for example quaternion ring, matrix
ring or octonion ring.
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1. Introduction

In this paper we propose two KAP(key agreement
protocols) using multivariate equations which have
dightly different enciphering functions from the
enciphering function of previously proposed KAP by the
present auther[10].

Since Diffie and Hellman proposed the concept of
KAP and the public key cryptosystem (PKC) in 1976[1],
various KAP and PKC were proposed.

Typical examples of KAP are amost based on the
discrete logarithm problem over finite fields. Typical
examples of PKC are classified as follows.

1) RSA cryptosystem[2] based on factoring problem ,
2) ElGama cryptosystem[3] based on the discrete
logarithm problem over finite fields,

3) the dliptic curve cryptosystem[4] based on the
discrete logarithm problem on the elliptic curve[5],[6],

4) multivariate public key cryptosystem (MPKC)[7],
and so on.

It is said that the problem of factoring large integers,
the problem of solving discrete logarithms and the
problem of computing dlliptic curve discrete logarithms

are efficiently solved in a polynomia time by the
guantum computers.

It is thought that MPKC is immune from the attack of
quantum computers. But MPKC proposed until now
amost adopts multivariate quadratic equations because
of avoiding the explosion of key length.

In the current paper, we propose two KAP using
multivariate equations on non-commutative ring H over
finite fields Fq without the explosion of key length. We
choose the quaternion[8] ring as the non-commutative
ring. The security of these systems is based on the
computational difficulty to solve the multivariate
algebraic equations of high degree.

To break these cryptosystems it is thought that we
probably need to solve the multivariate algebraic
equations of high degree that is equa to solving the NP
complete problem. Then it is thought that our systems
are immune from the attacks by quantum computers.

In the next section, we define multiplication on
quaternion ring over Fq.

In section3 we begin with generating the first
multivariate function of high degree on the quaternion
ring as the enciphering function. We construct the KAP
by the first enciphering function.

In sectiond we generate the second multivariate
function of high degree on the quaternion ring. This
multivariate function is dightly different from one in
section 3. We construct second KAP using the second
enciphering function by the same way in section3.

In these systems we can adopt not only the quaternion
ring but also the non-associative octonion ring as the
basic ring. In the last section, we provide concluding
remarks.

2. The multiplication on quaternion ring

Let g be an odd prime. Let H be the quaternion ring
over thefinitefield Fq asfollows;

H={(avan.a2.85)| & €Fq (i=0,1,2,3)}. N

In case of sdlecting the quaternion ring or octonion
ring as the non-commutative ring, the modulus g needs
to be more than 2 to keep non-commutative.

Here we define the product AB of A=(aya;,ayas) and
B=(bg,by,b,,b35) on quaternion ring H over Fq  such that



AB = (a,b, - ab, -a,b, - a,b, mod q,

00
a,b, +ab, +a,b, - a,b, mod q,

a,b, —ab, +a,b, +a,b, mod q,

e

a b, + ab, - a,b, + a,b, mod q

where
AB €H.

3. Proposition of thefirst KAP
3.1 Thefirst enciphering function F(Xj,..,Xq)

Let mand d be positive integers .

Let S, be system parameters such that

S=[gdm . (€)

As secret keys SK; ,we choose arbitrary parameters

AjEH (i=1,.mj=1,..,d)that is,

Ko=[Ay] (i=1,..m;j=1,..,d). 4

We define the multivariate function F(Xy,..,Xy) of high
degree as the enciphering function such that

m d
F(Xl,--,Xd)=i21[_H1Xinj]- (5)
-1 -

We determine the values of m and d later so that the
number of variables(i.e secret keys) is nearly equal to the
number of equations .

Although we adopt the quaternion ring as the basic
ring H, we can discuss in the same way on the matrix
ring or the octonion[8] ring.

3.2 Theedement expression of F(Xy,..,Xq)

Let (fo,f1,f2,f3) be the element expression of F(Xy,..,.Xq) -
From (3), f; (j=0...,3) isgiven asfollows;

F(X1,... Xa)=(fo,f1,f2,f3), (6)

fj = X fjea stloao.xl;gew.xoo@b.xdg,&’?’modq @)
Qaq..en

with the coefficients fjew e €Fq to be published, where
Xi =i Xi1, Xip, X;3)eH,
Xijj € Fq,(i=1,.,d; j=0,.,3).
e {01}(i=1...d;j=0,.,3) which satisfy g¢t+..+e3 =1
(i=1,..,d).
Then the number n of fiew.es IS
n=4( 4%=4""1, (8)
Let { fiew.e=} be the set that includes all fjguw.u.
3.3 Construction of thefirst KAP

Let's describe the procedure that user U and user V

obtain the common keys by using F(Xg,..,.X5) and

T(Xy,..,Xqg) asfollows.

1) The set of system parameters S;=[q,d,m] is published
by the system center which istrusted third party(TTP).

2) User U chooses randomly parameters A; € H
(i=1,..mj=1,..,d).
The secret key of user U is

Ki=[A] (i=1,..m;j=1,..,d).
3) User U generates F(Xy,..,Xg) such that

m d
F(X1.m Xg)= X [ 1T X jAjl 9)
i=1 j=1
4) User U calculates the set of coefficients {fien.e=}
from (9) which consists of n parametersin Fq .
5) Let PK; bethe public key of user U such that

PKJ_:{ f] 610-813}- (10)

Beforehand user U publishes PK; which consists of n
parametersin Fq.

6) User V chooses randomly parameters B &H
(i=1,..m;j=1,..d).

7) UserV generates T(Xg,..,Xq) such that

m d
T(X 1 Xd)zizl[.nlijij]- (11)
=1 j =

8) Let (to,1,t5,t3) be the element expression of T(Xy,..,Xg).
From (11) user V calculates the set of coefficients

{tjen.es} Which consists of n parametersin Fq .
t (j=0,..,3) is given such that

T (X1,-,Xa )= (to,t1,t2,ta), (12)
where

= Xt jeo..&3X10€]D--X13a3--xdoem--xd3ed3 modq  (13)
€093

with the coefficients tjew es €Fa, Where
g; €{0,1} which satisfy

€ot..+te3=1 (|=1,,d)

Then the number 1’ of fien.es SN =4(4%=4""
Let { tjew.es} bethe set that includes all tjguw.u.
9) UserV sends{ tjewes} touseru.
10) User V calculates common keys KvO and Kvl as
follows.
Let KvO be

KvO= (KVOo, KVO]_, KV02, KVOg)

F(Bj1., Big )
1
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Then Kv0;(j=0,1,2,3) are obtained from (7) such that

M,Oj:

m
X X fig, aid vy ™ v Pmodg
1=165-8p (15)

where
(Vijo:Vij1.Vij2 Vija)= By, (i= 1,..,m;j=1,..,d),
e; £{0,1}(i=1,..,d;j=0,..,3) which satisfy
8ot ... te3=1(i=1,.,d).
Next let Kv1 be

Kvl=(Kvl,Kvl,Kvl,, Kvls)
m
2 F(LBir. Big - 1)Bid 4

i =1
m m —

= X X [1- Il Ay BjlAg Big
i=lr =1 j=1
m m d

= X X I Ay Bj (17)
i=1r =1j =1

Then Kvl(j=0,1,2,3) are obtained from (7) and (16)
such that

K\A.j =

m ‘ 1
r e e Py ®mog (18)

i=1€4-Rg

with the coefficients f* jew.gx €Fa,
where

(Vijo.VijuVij2,Vija)= Byj, (i=1,..,m;j=1,..,d).
g; €{0,1}(i=1,..,d;j=0,..,3) which satisfy
€ot...+te3=1 (|:1,,d)

11) User U calculates common keys KuO and Kul as
follows.

Let KuO be
Ku0= (Ku0o,Ku04,Ku0,,Ku0s)
m
= 2 T(lL.Ajp.. Ajg —1)Ajg (19
i=1
m m d -1
= X Y [1- 11 By AjjlBg Ajg
i=lr =1 j=1
m m d
- X X T By Ajj . (20)
i=1lr =1j =1

Ku0,(j=0,1,2,3) are obtained from (13) and (19) such
that

KLDJ' =

m
3 tiee et uis B ug™®. uge™®mod g (21)

i=184-84

with the coefficientst'jew.en €Fa,
where
(Uijo,Uijn,Uij2,Uija)= Ay ,(1I=1,..,m;j=1,..,d),

e; €{0,1}(i=1,..,d;j=0,..,3) which satisfy
€ot...tes=1 (|= 1,,d)
Next let Kul be

Kul=(Kuly,Kuly,Kul, Kuls)
m

2 T (Aj1.. Aig)
1

[
1

d
I AjByl
b A B (22)

Il
M3
M3
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Kul;(j=0,1,2,3) are obtained from (13) such that
KLELJ =

m
2 X oo U U Un - Ug o modg
i=16,-85 JQa.

(23)
where

(Usjo, Uij, Uij, Uijz)= Ay ,(i= 1,..,m;j=1,..,d),
e; €{0,1}(i=1,..,d;j=0,..,3) which satisfy
€ot...tes=1 (|= 1,,d)

From (14) ,(20)and (17),(22) we can confirm that

Ku0=KvO0, (24)
and
Kul=kv1. (25)

The common key of user U and user V is[KuO,Kul] or
[KvO,Kv1].

3.4 Verification of the strength of thefirst KAP

Let's examine the strength of the first KAP. The
strength of the first KAP depends on the strength of the
multivariate functions described in section 3.1 In other
words, we mention the difficulty to obtain A; (i=1,..,m;
j=1..d) from the set of coefficients {fjewes } Of
F(Xy,..,Xg) to be the public keys .



34.1 Multivariate algebraic equations from
F(xlv'-yxd)

Let Aij be
Aij: (AiJOaAijlvAij21Aij3) €H ,(i= 1!"1m:j: 1!!d) (26)

From (5) al fiew.es havetheform such that
fie..e.

m
. . A b b
= Njibyb,, At ™ Ara ™ - Ago 2 Agg 2 mod g (27)
i1
(j=0..3)

with the coefficients hji o bas EFQ
where b {0,1}(i=1...,d;j=0,..,3) which satisfy

bot .. +ba=1 (i=1,..,d).

From (27) we obtain n(=4"") multivariate algebraic
equations over Fq where Ay, (i=1,..,.m;j=1,..,d;r=0,..3)
are the variablesi.e. unknown numbers.

3.4.2 Cryptanalysisusing Gr 6bner bases

It is said that the Grdbner bases attacks is efficient
for solving multivariate algebraic equations .We
calculate the complexity G[9] to obtain the Grébner
bases for our multivariate algebraic equations on
quaternion ring so that we confirm immunity of our KAP
to the Grobner bases attack .

We describe in case of d=4 and g=0(10"%) as samples
of lower degree equations.
s.degree of equations=d=4.

n :the number of equations =4(4%=1024.

We select m so that the number of variables(i.e secret
keys) isnearly equal ton, that is ,asd=4,

m= (4 4%)/(4d) 7=64

where ;7 means the largest integer less than or the
integer equal to *.

z :the number of variables =4dm=1024

Oeg=St1=5

G=0((Gurey)")=0(2'% ) is more than 2% which is the
standard for safety where w=2.39.

So our KAPisimmune from the Grobner bases attacks
and is immune from the differential attacks because of
the equations of high degreein (27).

It is thought that the polynomial-time algorithm to
break our first KAP does not exist probably.

3.5 Thesizeof thekeysof thefirst KAP

We consider the size of the system parameter q . We
choose g=0(2") so that the size of the space of Kul and
Ku2 is more than O(2%).

In the case of d=4 , the size of PK; and 3K; is 11kbits ,

11kbits each.
4. Proposition of the second KAP
4.1 The second enciphering function

Let mand d be positive integers .

Let S, be system parameters such that

S=[qdm . (28)

As secret keys K, ,we choose arbitrary parameters
A= (a0 ainaizaiz) EH (i=1,..,m),

K=[A](i=1,...m) (29)

We define the multlvarlate function F(X) of high
degree such that

m
F(X) = _zl(aiOXO’ailxliaiZXZ 8% (30)
where .

X = (Xg, X1, X,,X%X43 )e H
Xi € Fq,(i = 0,, 3)
We determine the value of m later so that the number

of variables(i.e secret keys) is nearly equal to the number
of equations.

Although we adopt the quaternion ring as the basic
ring H, we can discuss in the same way on the matrix
ring or the octonion ring.

4.2 Theeement expression of F(X)

Let (fo,f1,f2,f3) be the element expression of F(X) . From
(30), f;(j=0...,3) isgiven asfollows;

FO)=(fofu.fafa), (31)

e, el, e2, €3

fi= X fie.esX0 X1 %27 x3

modq  (32)
eo+..+e3=d

with the coefficients fieoeieres €Fq to be published ,
where

e(i=0,..,3) are non-negative integers which satisfy

et..+e;=d.

Then the number n of figeiees 1S

n=4( Hg) . (33
Let { fieoenees} be the set that includes all figereves.
4.3 Construction of the second KAP
Let's describe the procedure that user U and user V
obtain the common keys using F(X) asfollows.
1) The set of system parameters S,=[q,d,m] is published
by the system center which is trusted third party(TTP).
4) User U chooses  randomly

A=(a0,ai1,8i2,a3) €H (i=1,..,m).
The secret key of user U is

parameters



K=[A] (i=1,...m).
5) User U generates F(X) such that
m
F(X)= _Zl(aiOXO:ailxl|ai2X2vai3X3)d -(34)
I=

6) From (34) user U calculates the set of coefficients
{fievere2es} Which consists of n parametersin Fq .
7) Let PK, bethe public key of user U such that

PK={fieoere0e3} - (35)

Beforehand user U publishes PK, which consists of n
parametersin Fq.
8 User V  chooses randomly
B,=(bio,bi1,biz,bi3) EH (i=1,..,m).
7) User V generates T(X) such that

parameters

m
T(X)=% (bio X0 . bi1x1,bi2x2 bigxz)?. (36)
1=
8) Let (to,t1,tr,t3) be the element expression of T(X). From
(36) user V calculates the set of coefficients {tjeoereres}
which consists of n parametersin Fq .
t; (j=0...,3) is given such that

T (x )= (tO!tlth!tB): (37)
where
ti= X tjea..egmeoxlelxzezxses modg  (38)
eo+..+e3=d

e(i=0,..,3) are non-negative integers which satisfy
et..+e;=d.

Then the number N’ of feoeeres 1SN =4(sHq).
Let { timenees } e the set that includes all tigereves.
11) UserV sends {tjeoeieves } touser U.
12) User V calculates common keys Kv as follows.
Let Kv be

Kv=(Kvg,Kv,Kv,,Kvs)

F(brg.br1.br2,br3)
1

I
M3

r

m m
X (3i0bro  ai1br1.aizbr 2. aigbr3) 1. (39)

r=1j=1

Then Ky;(j=0,1,2,3) are obtained such that
KVj =
m

z z

fie. a0 ™20 3® mod g
r=1 e+.+e3=d

(40)

where
e(i=0,..,3) are non-negative integers which satisfy
et.+e;=d.

11) User U calculates common keys Ku asfollows.
Let Ku be
Ku= (KUo,Kul,KUZ,KU3)

m
= > T(arg.ar1.ar2.2r3)
r=1

m
2L Zl(bioaro'bilarlvbizarzrbi3ar3)d 1 (41)
=1i=

Ku;(j=0,1,2,3) are obtained such that

KUj =

m

)y 2
r=1 eo+. .+%:d

where
e(i=0,..,3) are non-negative integers which satisfy
et..+e;=d.

tig. o0 a1 aas"mod ()

From (39) and (41) we can confirm that
Ku=Kv. 43)
The common key of user U and user V is[Ku] or [KV].
4.4 Verification of the strength of the second KAP

Let's examine the strength of the second KAP. The
strength of the second KAP depends on the strength of
the multivariate functions described in section 4.1. In
other words, we mention the difficulty to obtain A
(i=1,..,m) from the set of coefficients { figeieres} Of F(X)
to be the public keys.

4.4.1 Multivariate algebraic equationsfrom F(X)
Let A be
A=(apainapas) €H,(i=1,..m).

From (30) al fieseiezes have the form such that
f ] eO elez e3

m

- Z hji1C0C10203 aiOCO ailclaizczaigcfi (44)
i=1

(j=0,,3)

with the coefficients hji ccicocs EFQ
where ¢(i=0,..,3) are non-negative integers which
satisfy

Cot ... +ca=d.
From (44) we obtain n multivariate algebraic equations

over Fqwhereg;, (i=1,..,m;r=0,..3) arethe variablesi.e.
unknown numbers.



4.4.2 Cryptanalysisusing Gr ébner bases

It is said that the Grobner bases attacks is efficient
for solving multivariate algebraic equations .We
calculate the complexity G[9] to obtain the Grébner
bases for our multivariate algebraic equations on
quaternion ring so that we confirm immunity of our
second KAP to the Grobner bases attack .

We describe in case of d=6 and g=0(10%) as samples
of lower degree equations.
s:degree of equations=d=6.

n :the number of equations =4(,H4 )=336.

We sdlect m so that the number of variables(i.e secret
keys) isnearly equal ton, that is,

m= - n/4,=84,

where #; means the largest integer less than or the
integer equal to *.

Z :the number of variables =4m=336

Oeg=st1=7

G=0((Gare)")=0(2"° ) is more than 2% which is the
standard for safety where w=2.39.

So the second KAP isimmune from the Grébner bases
attacks and is immune from the differential attacks
because of the equations of high degreein (44).

It is thought that the polynomial-time algorithm to
break the second KAP does not exist probably.

4.5 Thesize of the keys of the second KAP

We consider the size of the system parameter q . We
choose g=0(2%) so that the size of the space of Ku or Kv
is more than O(2%).

In the case of d=6 , the size of PK, and K, is 7kbits ,
Tkbits each.

5. Conclusion

We proposed two KAP using multivariate functions
on non-commutative quaternion ring over Fgq. It is a
computationally difficult problem to obtain the secret
keys from the public keys because the problem is one of
NP complete problems. In order to ensure the safety, the
size of q is to be more than 10 bits in the first KAP and
to be more than 20 bitsin the second KAP.

We can construct two KAP on the other non-
commutative ring ,for example matrix ring or octonion
ring.
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