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SUMMARY: In this paper we propose two KAP(key 

agreement protocols) using multivariate equations. As 
the enciphering functions we select the multivariate 
functions of high degree on non-commutative ring H 
over finite field Fq. Two enciphering functions are 
slightly different from the enciphering function 
previously proposed by the present author. In proposed  
systems we can adopt not only the quaternion ring but 
also the non-associative octonion ring as the basic ring. 
Common keys are generated by using the enciphering 
functions. Proposed systems are immune from the 
Gröbner bases attacks because obtaining parameters of 
the enciphering functions to be secret keys arrives at 
solving the multivariate algebraic equations, that is, one 
of NP complete problems .Our protocols are also thought 
to be immune from the differential attacks because of the 
equations of high degree. 

We can construct our system on the some non-
commutative rings, for example quaternion ring, matrix 
ring or octonion ring. 
. 
key words: key agreement protocol, multivariate 
equations, Gröbner bases, NP complete problems, non-
commutative ring 
 

1. Introduction 

In this paper we propose two KAP(key agreement 
protocols) using multivariate equations which have 
slightly different enciphering functions from the 
enciphering function of previously proposed KAP by the 
present auther[10]. 

 Since Diffie and Hellman proposed the concept of 
KAP and the public key cryptosystem (PKC) in 1976[1], 
various KAP and PKC were proposed.  
  Typical examples of KAP are almost based on the 
discrete logarithm problem over finite fields. Typical 
examples of PKC are classified as follows. 
1)  RSA cryptosystem[2] based on factoring problem ,    
2) ElGamal cryptosystem[3] based on the discrete 
logarithm problem over finite fields , 
3) the elliptic curve cryptosystem[4] based on the 
discrete logarithm problem on the elliptic curve[5],[6],  
4)  multivariate public key cryptosystem (MPKC)[7], 
and so on.  
   It is said that the problem of factoring large integers, 
the problem of solving discrete logarithms and the 
problem of computing elliptic curve discrete logarithms 

are efficiently solved in a polynomial time by the 
quantum computers. 

It is thought that MPKC is immune from the attack of 
quantum computers. But MPKC proposed until now 
almost adopts multivariate quadratic equations because 
of avoiding the explosion of key length. 

In the current paper, we propose two KAP using 
multivariate equations on non-commutative ring H over 
finite fields Fq without the explosion of key length. We 
choose the quaternion[8] ring as the non-commutative 
ring. The security of these systems is based on the 
computational difficulty to solve the multivariate 
algebraic equations of high degree. 
 To break these cryptosystems it is thought that we  

probably need to solve the multivariate algebraic 
equations of high degree that is equal to solving the NP 
complete problem. Then it is thought that our systems 
are immune from the attacks by quantum computers.  
  In the next section, we define multiplication on 
quaternion ring over Fq. 
In section3 we begin with generating the first 

multivariate function of high degree on the quaternion 
ring as the enciphering function. We construct the KAP 
by the first enciphering function. 
In section4 we generate the second multivariate 

function of high degree on the quaternion ring. This 
multivariate function is slightly different from one in 
section 3. We construct second KAP using the second 
enciphering function by the same way in section3. 
In these systems we can adopt not only the quaternion 

ring but also the non-associative octonion ring as the 
basic ring. In the last section, we provide concluding 
remarks.  
 

2. The multiplication on quaternion ring 

Let q be an odd prime. Let H be the quaternion ring 
over the finite field Fq as follows; 
 
H={(a0,a1,a2,a3)| ai∈Fq (i=0,1,2,3)}.             (1) 

 
In case of selecting the quaternion ring or octonion 

ring as the non-commutative ring, the modulus q needs 
to be more than 2 to keep non-commutative. 

Here we define the product AB of A=(a0,a1,a2,a3) and 
B=(b0,b1,b2,b3) on quaternion ring H over Fq  such that  
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                                          (2) 
 
where  
  A,B ∈H . 
 

3. Proposition of the first KAP   

3.1 The first enciphering function F(X1,..,Xd) 

Let m and d be positive integers .  
Let S1 be system parameters such that  
S1=[q,d,m]   .                             (3) 
As secret keys SK1 ,we choose arbitrary parameters  
Aij∈H (i=1,..,m;j=1,..,d),that is, 
SK1=[Aij](i=1,..,m;j=1,..,d).                   (4) 
We define the multivariate function F(X1,..,Xd) of high 

degree as the enciphering function such that  
                                            
 

(5) 
 

We determine the values of m and d later so that the 
number of variables(i.e secret keys) is nearly equal to the 
number of equations . 

Although we adopt the quaternion ring as the basic 
ring H, we can discuss in the same way on the matrix 
ring or the octonion[8] ring. 

3.2  The element expression of F(X1,..,Xd) 

Let (f0,f1,f2,f3) be the element expression of F(X1,..,Xd ) . 
From (3), fj (j=0,..,3) is given as follows;  
 

  F(X1,..,Xd)=(f0,f1,f2,f3),                       (6) 
 

(7) 
 
with the coefficients fje10..ed3 ∊Fq to be published , where  
 
 
 

 
eij ∈{0,1}(i=1,..,d;j=0,..,3) which satisfy ei0+..+ei3 =1 
(i=1,..,d). 
Then the number n of fje10..ed3  is  
 
 n=4( 4d)=4d+1.                             (8) 

  
Let { fje10..ed3 } be the set that includes all fje10..ed3 . 

3.3 Construction of the first KAP 

Let's describe the procedure that user U and user V 

obtain the common keys by using F(X1,..,Xd) and 
T(X1,..,Xd) as follows. 
1) The set of system parameters S1=[q,d,m] is published 

by the system center which is trusted third party(TTP).  
                      

2) User U chooses randomly parameters Aij ∈ H 
(i=1,..,m;j=1,..,d). 

   The secret key of user U is  
 
SK1=[Aij] (i=1,..,m;j=1,..,d). 
                 

3) User U generates F(X1,..,Xd)  such that 
 
                                          (9) 
 
4)  User U calculates the set of coefficients {fje10..ed3 } 
from (9) which consists of n parameters in Fq . 
5) Let PK1 be the public key of user U such that 

 
    PK1={ fje10..ed3 }.                      (10) 

 
Beforehand user U publishes PK1 which consists of n 
parameters in Fq. 

6) User V chooses randomly parameters Bij ∈ H 
(i=1,..,m;j=1,..,d). 

7)  User V generates T(X1,..,Xd) such that 
                                          

(11) 
 

8) Let (t0,t1,t2,t3) be the element expression of T(X1,..,Xd). 
From (11) user V calculates the set of coefficients 
{tje10..ed3} which consists of n parameters in Fq . 

 tj (j=0,..,3) is given such that  
   

T (X1,..,Xd )=(t0,t1,t2,t3),                      (12) 
where 

 
(13) 
 
 

with the coefficients tje10..ed3 ∊Fq , where  
eij ∈{0,1} which satisfy  
 
ei0+..+ei3 =1. (i=1,..,d). 
 
Then the number n’ of tje10..ed3  is n’=4( 4d)=4d+1.   

 Let { tje10..ed3 } be the set that includes all tje10..ed3 . 
9) User V sends { tje10..ed3 } to user U . 
10) User V calculates common keys Kv0 and Kv1 as 

follows. 
Let Kv0 be  
 
Kv0=(Kv00,Kv01,Kv02,Kv03) 
 
 
 
                                        (14) 
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Then Kv0j(j=0,1,2,3) are obtained from (7) such that 
 
 

 
 
(15) 

 
where 
 
(vij0,vij1,vij2,vij3)=Bij,(i=1,..,m;j=1,..,d), 
 
eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 
 
 ei0+…+ei3=1 (i=1,..,d). 

 
Next let Kv1 be  
 
Kv1=(Kv10,Kv11,Kv12,Kv13) 
 
                                         (16) 
 
                                         
 
 

(17) 
 
Then Kv1j(j=0,1,2,3) are obtained from (7) and (16) 

such that 
 

 
(18) 

 
 

with the coefficients f’ je10..ed3 ∊Fq, 
where 
 
(vij0,vij1,vij2,vij3)=Bij,(i=1,..,m;j=1,..,d). 
 
eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 
 
 ei0+…+ei3=1 (i=1,..,d). 
 

11)  User U calculates common keys Ku0 and Ku1 as 
follows. 
Let Ku0 be  
Ku0=(Ku00,Ku01,Ku02,Ku03) 

 
                                        (19) 
 
                                        
 
 

 (20) 
 

 
Ku0j(j=0,1,2,3) are obtained from (13) and (19) such 

that 

 
 
(21) 

 
 
with the coefficients t’je10..ed3 ∊Fq, 
where 
(uij0,uij1,uij2,uij3)=Aij ,(i=1,..,m;j=1,..,d), 
 
eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 
 
 ei0+…+ei3=1 (i=1,..,d). 

 
Next let Ku1 be  
 
Ku1=(Ku10,Ku11,Ku12,Ku13) 

 
 
 
                                         

(22) 
 
Ku1j(j=0,1,2,3) are obtained from (13) such that 

 
 
 

 
 
(23) 

where 
 
(uij0,uij1,uij2,uij3)=Aij ,(i=1,..,m;j=1,..,d), 
 
eij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 
 
 ei0+…+ei3=1 (i=1,..,d). 
 
From (14) ,(20)and (17),(22) we can confirm that 
 

Ku0=Kv0,                                 (24) 
and 
Ku1=kv1.                                  (25)            
 
 The common key of user U and user V is [Ku0,Ku1] or 
[Kv0,Kv1]. 

3.4 Verification of the strength of the first KAP  

Let's examine the strength of the first KAP. The 
strength of the first KAP depends on the strength of the 
multivariate functions described in section 3.1  In other 
words, we mention the difficulty to obtain Aij

 (i=1,..,m; 
j=1,..,d) from the set of coefficients {fje10..ed3 } of 
F(X1,..,Xd) to be the public keys .  
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3.4.1 Multivariate algebraic equations from 
F(X1,..,Xd ) 

Let Aij be 
 

 Aij=(Aij0,Aij1,Aij2,Aij3) ∈H,(i=1,..,m:j=1,..,d).    (26) 
 
From (5) all  fje10..ed3  have the form such that 
 
                                        
                                         (27) 

 
 
 

with the coefficients hji,b10..bd3∈Fq  
where bij∈{0,1}(i=1,..,d;j=0,..,3) which satisfy 
 
 bi0+…+bi3=1 (i=1,..,d). 
 

From (27) we obtain n(=4d+1) multivariate algebraic 
equations over Fq where Aijr  (i=1,..,m;j=1,..,d;r=0,..3) 
are the variables i.e. unknown numbers. 
 
3.4.2 Cryptanalysis using Gröbner bases 
 

It is said that the Gröbner bases attacks is efficient 
for solving multivariate algebraic equations .We 
calculate the complexity G[9] to obtain the Gröbner 
bases for our multivariate algebraic equations on 
quaternion ring so that we confirm immunity of our KAP 
to the Gröbner bases attack . 

We describe in case of d=4 and q=O(1010) as samples 
of lower degree equations. 
s:degree of equations =d=4. 
n :the number of equations =4(4d)=1024. 
We select m so that the number of variables(i.e secret 
keys) is nearly equal to n , that is ,as d=4 , 
m=┎(4*4d)/(4d)┒=64, 
where ┎*┒ means the largest integer less than or the 
integer equal to *. 
z :the number of variables =4dm=1024 
dreg =s+1=5 
G=O((nGdreg)w)=O(2102 ) is more than 280  which is the 
standard for safety where w=2.39. 
 So our KAP is immune from the Gröbner bases attacks 
and is immune from the differential attacks because of 
the equations of high degree in (27). 

It is thought that the polynomial-time algorithm to 
break our first KAP does not exist probably.  
 

3.5  The size of the keys of the first KAP 

We consider the size of the system parameter q . We 
choose q=O(210) so that the size of the space of Ku1 and 
Ku2 is more than O(280). 
In the case of d=4 , the size of PK1 and SK1 is 11kbits , 

11kbits each. 
 
4.  Proposition of the second KAP 

4.1 The second enciphering function  

Let m and d be positive integers .  
Let S2 be system parameters such that  
S2=[q,d,m]   .                            (28) 
As secret keys SK2 ,we choose arbitrary parameters 

Aj=(ai0,ai1,ai2,ai3)∈H (i=1,..,m), 
SK2=[Aj](i=1,..,m)       .                  (29) 
We define the multivariate function F(X) of high 

degree such that  
                                            
 

(30) 
 

where 
 
 
 
 
We determine the value of m later so that the number 

of variables(i.e secret keys) is nearly equal to the number 
of equations . 

Although we adopt the quaternion ring as the basic 
ring H, we can discuss in the same way on the matrix 
ring or the octonion ring. 

4.2  The element expression of F(X) 

Let (f0,f1,f2,f3) be the element expression of F(X ) . From 
(30), fj (j=0,..,3) is given as follows;  
 

  F(X)=(f0,f1,f2,f3),                          (31) 
 

(32) 
 
with the coefficients fje0e1e2e3 ∊Fq to be published , 

where  
ei(i=0,..,3) are non-negative integers which satisfy 
e0+..+e3 =d. 
Then the number n of fje0e1e2e3  is  
 
 n=4( 4Hd)    .                           (33) 

  
Let { fje0e1e2e3 } be the set that includes all fje0e1e2e3 . 

4.3 Construction of the second KAP 

Let's describe the procedure that user U and user V 
obtain the common keys using F(X) as follows. 
1) The set of system parameters S2=[q,d,m] is published 

by the system center which is trusted third party(TTP).  
                      

4) User U chooses randomly parameters 
Aj=(ai0,ai1,ai2,ai3)∈H (i=1,..,m). 

   The secret key of user U is  
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SK2=[Ai] (i=1,..,m). 
                

5) User U generates F(X)  such that 
 
                                         (34) 
 
6)  From (34) user U calculates the set of coefficients 
{fje0e1e2e3 } which consists of n parameters in Fq . 
7) Let PK2 be the public key of user U such that 

 
    PK2={fje0e1e2e3}.                     (35) 

 
Beforehand user U publishes PK2 which consists of n 
parameters in Fq. 

8) User V chooses randomly parameters 
Bi=(bi0,bi1,bi2,bi3)∈H (i=1,..,m). 

7)  User V generates T(X) such that 
                                          

(36) 
 

8) Let (t0,t1,t2,t3) be the element expression of T(X). From 
(36) user V calculates the set of coefficients {tje0e1e2e3 } 
which consists of n parameters in Fq . 

 tj (j=0,..,3) is given such that  
   

T (X )=(t0,t1,t2,t3),                          (37) 
where 
 

(38) 
 

 
ei(i=0,..,3) are non-negative integers which satisfy 
e0+..+e3 =d. 
 
Then the number n’ of tje0e1e2e3   is n’=4(4Hd ).    

 Let { tje0e1e2e3 } be the set that includes all tje0e1e2e3. 
11) User V sends {tje0e1e2e3 } to user U . 
12) User V calculates common keys Kv as follows. 
Let Kv be  
 
Kv=(Kv0,Kv1,Kv2,Kv3) 
 
 
 
                                        (39) 
 
 
Then Kvj(j=0,1,2,3) are obtained such that 
 

 
 
 
(40) 

 
where 

ei(i=0,..,3) are non-negative integers which satisfy 
e0+..+e3 =d. 

11)  User U calculates common keys Ku as follows. 
Let Ku be  
Ku=(Ku0,Ku1,Ku2,Ku3) 

 
  
                                       

 (41) 
 

Kuj(j=0,1,2,3) are obtained such that 
 
 
 
 

(42) 
 
 

where 
ei(i=0,..,3) are non-negative integers which satisfy 
e0+..+e3 =d. 

 
From (39) and (41) we can confirm that 
 

Ku=Kv.                                   (43) 
 
The common key of user U and user V is [Ku] or [Kv]. 

4.4 Verification of the strength of the second KAP  

Let's examine the strength of the second KAP. The 
strength of the second KAP depends on the strength of 
the multivariate functions described in section 4.1.  In 
other words, we mention the difficulty to obtain Ai

 

(i=1,..,m) from the set of coefficients { fje0e1e2e3 } of F(X) 
to be the public keys .  

4.4.1 Multivariate algebraic equations from F(X ) 

Let Aj be 
 

 Aj=(ai0,ai1,ai2,ai3) ∈H,(i=1,..,m).             
 
From (30) all fje0e1e2e3 have the form such that 
                                        

 
                                         (44) 

 
 
 

with the coefficients hji,c0c1c2c3∈Fq  
where ci(i=0,..,3) are non-negative integers which 

satisfy 
 
 c0+…+c3=d. 
 

From (44) we obtain n multivariate algebraic equations 
over Fq where air  (i=1,..,m;r=0,..3) are the variables i.e. 
unknown numbers. 
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4.4.2 Cryptanalysis using Gröbner bases 
 

It is said that the Gröbner bases attacks is efficient 
for solving multivariate algebraic equations .We 
calculate the complexity G[9] to obtain the Gröbner 
bases for our multivariate algebraic equations on 
quaternion ring so that we confirm immunity of our 
second KAP to the Gröbner bases attack . 

We describe in case of d=6 and q=O(1020) as samples 
of lower degree equations. 
s:degree of equations =d=6. 
n :the number of equations =4(4Hd )=336. 
We select m so that the number of variables(i.e secret 
keys) is nearly equal to n , that is,  
m=┎ n/4┒=84, 
where ┎*┒ means the largest integer less than or the 
integer equal to *. 
z :the number of variables =4m=336 
dreg =s+1=7 
G=O((nGdreg)w)=O(2110 ) is more than 280  which is the 
standard for safety where w=2.39. 
 So the second KAP is immune from the Gröbner bases 
attacks and is immune from the differential attacks 
because of the equations of high degree in (44). 

It is thought that the polynomial-time algorithm to 
break the second KAP does not exist probably.  
 

4.5 The size of the keys of the second KAP 

We consider the size of the system parameter q . We 
choose q=O(220) so that the size of the space of Ku or Kv 
is more than O(280). 
In the case of d=6 , the size of PK2 and SK2 is 7kbits , 
7kbits each.  
 

5. Conclusion 

We proposed two KAP using multivariate functions 
on non-commutative quaternion ring over Fq. It is a 
computationally difficult problem to obtain the secret 
keys from the public keys because the problem is one of 
NP complete problems. In order to ensure the safety, the 
size of q is to be more than 10 bits in the first KAP and 
to be more than 20 bits in the second KAP. 

We can construct two KAP on the other non-
commutative ring ,for example matrix ring or octonion 
ring. 
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