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Abstract

We consider an optimization problem in thermoelectric cooling. The
maximum achievable cooling temperature in thermoelectric cooling is,
among other things, affected by the Seebeck coefficient profile of the
inhomogeneous materials. Mathematically, the maximum cooling tem-
perature is a non-linear functional of the Seebeck coefficient function.
In this study, we solve this optimization problem exactly.

Mathematics Subject Classification: 65K10

Keywords: Optimization, Constrained nonlinear functional optimization

1 Introduction

In 1822 Thomas Seebeck [6] observed that if two different metals kept at

different temperatures were joined, a current would flow. In 1834 Jean Peltier

[4] discovered that there is a heating or cooling effect when electric current

passes through two conductors. It was not until 1851 that William Thomson

(Lord Kelvin) [8] drew the connection between the Seebeck and Peltier effects,
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which was the first significant contribution to the understanding of thermo-

electric phenomena. He predicted and subsequently observed experimentally

that in the presence of a temperature gradient, a single conductor with current

flow, will have reversible heating and cooling. With these principles of ther-

moelectrics in mind and the rapid developments of semiconductor materials

in the late 1950’s, thermoelectric cooling has become a viable technology in

microelectronics with applications in many areas including flight vehicles and

military equipments.

In thermoelectric cooling using inhomogeneous materials, the maximum

achievable cooling temperature is mathematically given by [1]:

ΔTmax

T
=

1

2
ZT

∫ L

0
S(x)

∫ x

0
S(x′)dx′dx∫ L

0

∫ x

0
S2(x′)dx′dx

(1)

where L is the length of the thermoelectric cooling element, and ZT is the

dimensionless “figure of merit” [5] which puts a limit on the maximum achiev-

able cooling temperature when a single stage of uniform material is used. Since

1990s, nanostructured materials have drawn a lot of attention because they can

achieve ZT values up to 2.4 at room temperature [7], [3], [9]. In a parallel di-

rection, a much larger cooling temperature beyond that of uniform materials

can be achieved by using graded thermoelectric materials

In equation (1), x is the length coordinate along the thermoelectric cooling

element, and function S(x) is the Seebeck coefficient profile of the inhomoge-

neous element. The Seebeck coefficient of a material can be varied by changing

the level of doping. In semiconductor production, doping refers to the process

of intentionally introducing impurities into an extremely pure semiconductor

in order to change its electrical properties.

Without loss of generality, we take L = 1, or equivalently we normalize all

lengths by introducing x̃ =
x

L
and using the dimensionless x̃ as the independent

variable. We introduce functional F [S(x)] as

F [S(x)] ≡

∫ 1

0
S(x)

∫ x

0
S(x′)dx′dx∫ 1

0

∫ x

0
S2(x′)dx′dx

(2)

In terms of functional F [S(x)], the maximum achievable cooling temperature

has the form
ΔTmax

T
=

1

2
ZTF [S(x)] (3)
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In the expression of F [S(x)] defined in (2), the Seebeck coefficient profile S(x)

is not allowed to be any arbitrary positive function. Due to the limitations in

manufacturing, an acceptable Seebeck coefficient profile S(x) must be between

S1 and S2 (S2 > S1). Mathematically, S(x) is restricted by

S1 ≤ S(x) ≤ S2, for all x in [0, 1] (4)

The goal of the current study is to find an acceptable Seebeck coefficient profile

that will yield the largest maximum achievable cooling temperature. From

a mathematical point of view, that is, to optimize functional F [S(x)] with

respect to function S(x) subject to constraint (4).

2 Exact solution of the constrained optimiza-

tion problem

To optimize functional F [S(x)] defined in (2) subject to constraint S1 ≤
S(x) ≤ S2, we rewrite the integral in the numerator and the integral in the

denominator of F [S(x)], respectively, as

∫ 1

0
S(x)

∫ x

0
S(x′)dx′dx =

∫ 1

0

∫ x

0
S(x)S(x′)dx′dx

=
1

2

(∫ 1

0

∫ x

0
S(x)S(x′)dx′dx +

∫ 1

0

∫ x

0
S(x)S(x′)dx′dx

)

=
1

2

(∫ 1

0

∫ x

0
S(x)S(x′)dx′dx +

∫ 1

0

∫ 1

x′
S(x)S(x′)dxdx′

)

=
1

2

∫ 1

0

∫ 1

0
S(x)S(x′)dx′dx

=
1

2

(∫ 1

0
S(x)dx

)2

(5)

∫ 1

0

∫ x

0
S2(x′)dx′dx =

∫ 1

0
S2(x′)

∫ 1

x′
dxdx′

=
∫ 1

0
S2(x)(1 − x)dx (6)

Thus, the optimization problem becomes

arg max
S1≤S(x)≤S2

F [S(x)] (7)
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where

F [S(x)] ≡ 1

2

(∫ 1

0
S(x)dx

)2

∫ 1

0
S2(x)(1 − x)dx

(8)

In [2], based on intuitions, a Seebeck coefficient profile was guessed as the solu-

tion of optimization problem (7). The conjectured optimal Seebeck coefficient

profile is given by [2]

Q(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S1, 0 ≤ x ≤ x1

q

1 − x
, x1 ≤ x ≤ x2

S2, x2 ≤ x ≤ 1

(9)

where q, x1 and x2 are given by

q ≡ S1

2

x1 ≡ 1 − q

S1
=

1

2

x2 ≡ 1 − q

S2
= 1 − S1

2S2
(10)

Below, we will show rigorously that the conjectured optimal Seebeck coefficient

profile Q(x) is indeed the exact solution of the optimization problem (7). That

is,

Q(x) = arg max
S1≤S(x)≤S2

F [S(x)] (11)

To proceed, we do it in two steps:

• Step 1: we calculate the value of functional F [Q(x)] and at the same

time derive two properties of function Q(x).

• Step 2: we use the two properties derived in Step 1 to prove that Q(x) is

indeed the exact solution of problem (7). Mathematically, we will show

F [S(x)] ≤ F [Q(x)] (12)

for all functions S(x) satisfying S1 ≤ S(x) ≤ S2.
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Step 1: The integral in the numerator and the integral in the denominator of

F [Q(x)] are respectively∫ 1

0
Q(x)dx =

∫ x1

0
S1dx +

∫ x2

x1

q

1 − x
dx +

∫ 1

x2

S2dx

= S1x1 − q ln
(

1 − x2

1 − x1

)
+ S2(1 − x2)

= S1

(
1 − q

S1

)
− q ln

⎛
⎜⎜⎝

1 −
(
1 − q

S2

)

1 −
(
1 − q

S1

)
⎞
⎟⎟⎠+ S2

q

S2

= S1 + q ln
(

S2

S1

)

= q
(
2 + ln

(
S2

S1

))
(13)

∫ 1

0
Q2(x)(1 − x)dx

=
∫ x1

0
S2

1(1 − x)dx +
∫ x2

x1

(
q

1 − x

)
(1 − x)dx +

∫ 1

x2

S2
2(1 − x)dx

=
S2

1

2

(
1 − (1 − x1)

2
)
− q2 ln

(
1 − x2

1 − x1

)
+

S2
2

2
(1 − x2)

2

=
S2

1

2

(
1 − q2

S2
1

)
+ q2 ln

(
S2

S1

)
+

S2
2

2

q2

S2
2

=
S2

1

2
+ q2 ln

(
S2

S1

)

= q2
(
2 + ln

(
S2

S1

))
(14)

Substituting (13) and (14) into (8) yields

F [Q(x)] ≡ 1

2

(∫ 1

0
Q(x)dx

)2

∫ 1

0
Q2(x)(1 − x)dx

=
1

2

q2
(
2 + ln

(
S2

S1

))2

q2
(
2 + ln

(
S2

S1

)) =
1

2

(
2 + ln

(
S2

S1

))
(15)

Multiplying by the denominator
∫ 1
0 Q2(x)(1 − x)dx, we obtain

(
2 + ln

(
S2

S1

))∫ 1

0
Q(x)2(1 − x)dx −

(∫ 1

0
Q(x)dx

)2

= 0 (16)
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Properties (13) and (16) will play a key role in Step 2 below.

Step 2: In this step we shall show

F [S(x)] ≡ 1

2

(∫ 1

0
S(x)dx

)2

∫ 1

0
S2(x)(1 − x)dx

≤ 1

2

(
2 + ln

(
S2

S1

))
(17)

for all functions S(x) satisfying S1 ≤ S(x) ≤ S2. For mathematical conve-

nience, we write S(x) as Q(x) plus perturbation:

S(x) = Q(x) + P (x) (18)

Constraint S1 ≤ S(x) ≤ S2 on function S(x) implies the constraint below on

function P (x).

⎧⎪⎨
⎪⎩

0 ≤ P (x) ≤ S2 − S1, 0 ≤ x ≤ x1

−(S2 − S1) ≤ P (x) ≤ 0, x2 ≤ x ≤ 1
(19)

Note that condition (19) is a consequence of condition (4) but (19) is not

equivalent to (4). More specifically, (19) is weaker than (4). To prove (17), we

only need to show that

G[P (x)] ≡
(
2 + ln

(
S2

S1

)) ∫ 1

0
(Q(x) + P (x))2 (1 − x)dx

−
(∫ 1

0
Q(x) + P (x)dx

)2

≥ 0 (20)

for all functions P (x) constrained by condition (19). Expanding the squares

in (20) and using property (16), we have

G[P (x)] =
(
2 + ln

(
S2

S1

))(
2
∫ 1

0
Q(x)(1 − x)P (x)dx +

∫ 1

0
P 2(x)(1 − x)dx

)

−2
∫ 1

0
Q(x)dx

∫ 1

0
P (x)dx −

(∫ 1

0
P (x)dx

)2

(21)

To further simplify G[P (x)], we write Q(x)(1 − x) as

Q(x)(1 − x) = Q(x)(1 − x) − q + q (22)

Substituting (22) into (21) and using property (13) of Q(x), we arrive at

G[P (x)]
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=
(
2 + ln

(
S2

S1

))(
2
∫ 1

0
(Q(x)(1 − x) − q)P (x)dx +

∫ 1

0
P 2(x)(1 − x)dx

)

−
(∫ 1

0
P (x)dx

)2

(23)

It is straightforward to verify that Q(x)(1 − x) − q satisfies

Q(x)(1 − x) − q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S1(1 − x) − q ≥ 0, 0 ≤ x ≤ x1

0, x1 ≤ x ≤ x2

S2(1 − x) − q ≤ 0, x2 ≤ x ≤ 1

(24)

Combining result (24) and constraint (19) yields

(Q(x)(1 − x) − q)P (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≥ 0, 0 ≤ x ≤ x1

0, x1 ≤ x ≤ x2

≥ 0, x2 ≤ x ≤ 1

(25)

Using result (25) and the fact that −S2 ≤ P (x) ≤ 0 for x ∈ [x2, 1], we write

the first term in (23) as

2
∫ 1

0
(Q(x)(1 − x) − q) P (x)dx +

∫ 1

0
P 2(x)(1 − x)dx

≥
∫ 1

x2

(S2(1 − x) − q) P (x)dx +
∫ 1

0
P 2(x)(1 − x)dx

=
∫ 1

x2

(
q

S2

− (1 − x)
)

S2(−P (x))dx +
∫ 1

0
P 2(x)(1 − x)dx

≥
∫ 1

x2

(
q

S2

− (1 − x)
)

P 2(x)dx +
∫ 1

0
P 2(x)(1 − x)dx

=
∫ x2

0
(1 − x)P 2(x)dx +

∫ 1

x2

q

S2
P 2(x)dx (26)

Let us introduce a new function:

R(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

1 − x
, 0 ≤ x ≤ x2

S2

q
, x2 ≤ x ≤ 1

(27)

We notice that R(x) is a positive function in [0, 1], and satisfies

∫ 1

0
R(x)dx =

∫ x2

0

1

1 − x
dx +

∫ 1

x2

S2

q
dx
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= − ln(1 − x2) +
S2

q
(1 − x2)

= 1 + ln(2) + ln
(

S2

S1

)
(28)

Combining (23) and (26), and expressing the result in terms of function R(x),

we are led to

G[P (x)] ≥
(
2 + ln

(
S2

S1

))∫ 1

0

P 2(x)

R(x)
−
(∫ 1

0
P (x)dx

)2

(29)

To finish the proof, we apply the Cauchy-Schwartz inequality to
(∫ 1

0 P (x)dx
)2

:

(∫ 1

0
P (x)dx

)2

=

⎛
⎝∫ 1

0

√
R(x) · P (x)√

R(x)
dx

⎞
⎠

2

≤
(∫ 1

0
R(x)dx

)
·
(∫ 1

0

P 2(x)

R(x)
dx

)

=
(
1 + ln(2) + ln

(
S2

S1

))
·
(∫ 1

0

P 2(x)

R(x)
dx

)
(30)

Finally, substituting (30) into (29), we conclude

G[P (x)] ≥ (1 − ln(2))
∫ 1

0

P 2(x)

R(x)
dx ≥ 0 (31)

for all functions P (x) constrained by condition (19). It follows immediately

that function Q(x) is indeed the optimal Seebeck coefficient profile for maxi-

mizing the cooling temperature.

3 Conclusions

In thermoelectric cooling, the maximum achievable cooling temperature is

expressed as a nonlinear functional of the Seebeck coefficient profile of the

inhomogeneous materials used. One challenge in thermoelectric cooling appli-

cations is to design an optimal Seebeck coefficient profile so that the cooling

temperature is maximized. In manufacturing, the Seebeck coefficient is varied

by changing the level of doping on a piece of semi-conductor material. The

range of the Seebeck coefficient is limited so the Seebeck coefficient profile is

constrained between two values. In the study presented, we solved exactly this

constrained optimization problem arised in thermoelectric cooling. Specifically,
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we proved rigorously that a previously conjectured optimal Seebeck coefficient

profile is indeed the exact solution of the optimization problem. The methods

and techniques employed in the current study may also be useful for other

constrained functional optimization problem.
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