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Abstract

This paper presents an analytical model for the joint determination
of optimal production, corrective maintenance and capacity expansion
policies for a repairable production system subject to random failures.
The production system have to make decisions regarding production
and maintenance, as well as investment in capacity expansion in order to
minimize costs of investment, production, maintenance, inventories and
backlogs in an uncertain environment. The introduction of corrective
maintenance strategy in the proposed model improves the availability
of the machines and hence reduces the total incurred cost compared to
available models. The control variables are the random stopping times
at which to purchase a new capacity, the production and corrective
maintenance rates before and after capacity purchase. The objective is

1Corresponding author. e-mail: jean-pierre.kenne@estmtl.ca



196 F.I. Dehayem N. et al.

to minimize production, capacity investment, inventories, backlogs and
maintenance costs over an infinite planning horizon. Optimality condi-
tions are given and numerical methods are used to solve them and to
determine the control policy. A Numerical example and sensitive anal-
yses are presented to illustrate the usefulness of the proposed approach.

Keywords: Optimal Control, Numerical Methods, Production Planning,
Capacity Management, Maintenance Control, Manufacturing Systems

1 Introduction

This paper models and illustrates an optimal policy for a manufacturing sys-
tem with a simultaneous control of capacity expansion, production and cor-
rective maintenance strategies. As demand increases, new machines must be
purchased at given epoch (or stopping time) while production and preventive
maintenance are well planned before and after the stopping time at which to
purchase a new capacity. The system under study, described in [16], consists
of a firm that must satisfy a given demand rate for its product over time to
minimize its discounted cost of investment and inventory/shortage. The firm
has an existing machine that is failure-prone with given rates of breakdowns
and repairs. At a given time, due to demand fluctuations, the demand for the
firm’s product is higher than the average production capacity of the existing
machine. However, the firm has some initial inventory of its products to absorb
the excess demand for a few initial periods. Such a firm may have to increase
its production capacity at some future time. For this purpose, the firm has an
option to purchase a new machine, identical to the existing machine, at a given
fixed cost, in order to double its average production capacity. This assumes
that the firm has sufficient repair capacity to handle two machines event when
they are both broken down during some time interval. The purpose of this
paper is to extend the model presented in [16] by controlling both production
with capacity expansion and corrective maintenance in order to reduce the
overall incurred cost.

The objective of this work is, for the aforementioned purpose, to find the
optimal policy which integrates simultaneously capacity management strategy,
production and maintenance control for a flexible manufacturing system with
a wafer demand trend approximated in this paper by a multiple steps staircase
structure of the demand rate. The demand rate is assumed constant in the pro-
posed model for a given planning horizon. For the considered manufacturing
system, this assumption is motivated by the fact that the rate of change in the
machines states is much larger than the rate at which the demand rate change
significantly. In a more general context, capacity expansion, results of capacity
purchase, can be done by machines, manpower and technology acquisitions or
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by using subcontracting to hedge against sudden demand jumps.

In this work, we focus only on capacity expansion by machine purchase.
There have been some attempts to deal with the problem of capacity expan-
sion by machines purchase under uncertainty. An extensive survey of early
work of stochastic capacity expansion problems is provided in [13]. Models
that appeared after [13] are presented in [5] where it is noted that when the
time is a continuous variable rather than a discrete one, the capacity expan-
sion problem may be formulated as an optimal control problem. For a single
product with a stochastic demand process, [6] used an investment rate function
as the control variable to regulate the expansion rate. For multiple products
with deterministic demand rates, [16] and [15] studied machine capacity ex-
pansion when machines can break down randomly. They proposed a capacity
planning using the mean available production capacity for a multiple identi-
cal machines system. When breakdowns and repairs happen sufficiently fast,
they showed that the cost of their expansion plan asymptotically converges to
the optimal cost. Unfortunately, as breakdowns increase (failures occurrence
become fast), the system availability decreases. Although, there is a great
literature based on the using of maintenance to increase production system
availability. We refer the reader to [2] and [9] for preventive maintenance and
to [4, 9, 10] and references therein, for corrective maintenance. None of those
studies, based on production and maintenance planning, examined the case
in which capacity expansion is considered. They assumed that the average
machines capacity is sufficient to satisfy demand of produced parts in the con-
sidered horizon. In stochastic environment, while the system average capacity
remains the same with possible demand jumps, the backlogs can increase, pos-
sibly without bounds, and hence increasing the overall incurred cost. In this
paper, we propose to improve the capacity of the manufacturing system by
capacity expansion and by controlling the machines repair rates.

An important question that arises is to know if the contribution of the
approach proposed herein in terms of total cost reduction is significant com-
pared to a fixed repair rate situation as in [16]. The theory presented in this
paper answers this question in the affirmative under reasonable assumptions
(demand rates of various products are constants, the machines are completely
flexible, etc). This theory is based on the fact that the structure of the con-
trol policy (production, capacity expansion and machine repair rates) can be
obtained by using the fact that the value function is the unique solution to
the associated Hamilton-Jacobi-Bellaman (HJB) equations. We first used a
numerical approach to determine an approximate value function, instead of
the true value function, to construct the control policy. Under certain appro-
priate conditions, the control policy constructed is asymptotically optimal as
the difference between the true value function goes to zero (see [10] for de-
tails). Finally, we presented a numerical example and a sensitive analysis that
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illustrate the usefulness of the proposed approach.
The paper is organized as follows: In the next section, we state the model of

the problem under consideration. In section 3, we present the HJB equations
and show in section 4 that a numerical scheme can provide an approximation
of the value function. Then in section 5, we present a numerical example and
a sensitive analysis to illustrate the contribution of the paper. The paper is
finally concluded in section 6.

2 Problem statement

The system under study consists of n machines producing one part type. The
machines capacities are assumed herein to be described by a finite state Markov
chain. After the investment in new capacity, the enhanced capacity process
is represented by another finite state Markov process having a larger average
capacity. The stochastic nature of the system is due to the machines that are
subject to random breakdowns and repairs. At any given time, the system is in
state k1(t) ∈ {1, 2, ..., m1} before capacity purchase and k2(t) ∈ {1, 2, ..., m1 +
m2} if there is additional new capacity purchase m2 at time t = 0 with m1

describing the existing maximum capacity. Each of the process k1(t), before
capacity expansion, and k2(t), after the capacity expansion, is a Markov chain
with state at time t describing the number of operational machines, called here
capacity process of the system at time t.

Let {F1(t)} and {F2(t)} denoted the filtration generated by k1(s) and ,
k2(s) ,0 ≤ s < t respectively, i.e. {F1(t)} = σ{k1(s), s ≤ t)} and {F2(t)} =
σ{k2(s), s ≤ t)}, 0 ≤ s ≤ t. We can describe the dynamics of the system by
jump processes corresponding to the discrete states of the machines generated
by a continuous time and discrete states Markov process k1(t) or k2(t) with
values in M1 = {1, 2, ..., m1} or M2 = {1, 2, ..., m2}. For any {F1(t)}-Markov
τ ≥ 0, the state of the system can then be described by a new process k(t) as
follows:

k(t) =

⎧⎪⎨
⎪⎩

k1(t) if t < τ
and k(τ) = k2(0) := k1(τ) + m2

k2(t) if t ≥ τ
(1)

where τ is the purchase time of additional capacity at a cost K. Note that
0 ≤ τ ≤ ∞ and τ = 0 means not to purchase additional capacity.

Each machine in the system is either up or down and the system is either
down k(t) = 0 or up k(t) �= 0) having a maximum of k(t) �= 0 units of capacity
available at time t. The total production rate at each instant is limited by the
capacity of the operational machines. Hence, at time t, the production rate
depends on the machines states and thus is subject to sudden changes due to
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the dynamics of the stochastic process k(t). The production constraint is then
defined by:

p.u(t) ≤ k(t) (2)

where p = (p1, p2, ..., pn) is the vector of processing times of the part type
on the machine Mi, with i = 1, ..., m1) (before capacity expansion) or i =
1, ..., m1 + m2 (after capacity expansion); and u = (u1, ..., un) is the vector of
the corresponding production rates (0 ≤ uk ≤ Umax

k ).
To increase the system availability, we considered that the transition rate

from a failure mode to operation mode is a control variable, called here ur(t).
Thus, by controlling ur(t), one acts on the mean time to repair. The system
capacity is then described by a finite state Markov chain that depends on the
corrective maintenance policy. The transition rates matrix in such a situation
is given by:

Qm(ur) = {qm
αβ} (3)

with qm
αβ(ur) ≥ 0 if α �= β and qm

αα(ur) = −∑
β �=α qm

αβ(ur). where qm
αβ(ur)

describes the transition rate of the system from mode α to mode β, with
m = 1 before capacity expansion and m = 2 after capacity expansion.

For a production rate u(t) ∈ IRn, the surplus (x(t) ∈ IRn), of the manufac-
turing system under consideration (corresponding to inventory if positive or
to backlog if negative) is described by the following equation:

ẋ(t) = u(t) − z x(0) = x (4)

where z ∈ IRn denotes the constant demand rate and x the initial surplus
level.

For any capacity k(t) ∈ M = M1 or M2, let

U rk(t) = {urk, U
min
rk ≤ urk ≤ Umax

rk }
U k(t) = {uk(t) = (u1, u2, ..., un) ≥ 0, p1u1 + p2u2 + ... + p3u3 ≤ k(t)}

with uk ≤ Umax
k

The set of admissible decisions at state k(t) is defined by:

Γr(k) =

{
(τ, uk(t), urk(t)) = ((τ, u1, urk), (τ, u2, urk(t)), ..., (τ, un, urk(t)))
uk(t) ∈ bmUk(t), U

min
rk ≤ urk ≤ Umax

rk , 0 ≤ uk(t) ≤ Umax
k

}
(5)

The control policy at state k(t) is (τ, u(.), ur(.)) and Umin
rk , Umax

rk , Umax
k , are

minimum repair, maximum repair and maximum production rates respectively.
Such a policy states that the decisions variables are production rate u(.), repair
rate ur(.) and time of additional capacity purchase τ ≥ 0.
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The objective of the control problem is to minimize the following discounted
function:

J(x, k, τ, u(.), ur(.)) = E
{∫ ∞

0
e−ρtG(x(t), u(t), ur(t))dt + Ke−ρτ

}
(6)

where x(0) = x; k(0) = k;

G(x, u, ur) = c+
1 x+

1 + c−1 x−
1 + crur is the instantaneous cost, c+

1 ≥ 0, c−1 ≥
0, cr ≥ 0 are incurred costs per unit produced parts for inventory, backlog
and corrective maintenance respectively. In addition x+ = max{0, x}, x− =
max{−x, 0}.

The considered stochastic optimal control problem is to find an admissible
control (τ, u(.), ur(.)) that minimizes J(.) given by equation (6) and subject
to equations (1)-(5). This problem is formulated in the next section as a
dynamic stochastic optimization problem with a stopping time at which to
purchase new capacity, corrective maintenance and production rates over time
before and after the acquisition of the new capacity as decision variables.

3 Optimality Conditions

Let v(x, k) denote the value function or minimum expected discounted cost if
there is no capacity purchase (τ = +∞):

v(x, k) = inf
(∞,u(.),ur(.)∈Γr(k))

J(x, k, τ, u(.), ur(.)), ∀k ∈ M1 (7)

Let us define
h(x) = c+

1 x+
1 + c−1 x−

1

c(ur) = crur

and
J1(x, k, τ, u(.), ur(.)) = J(x, k,∞, u(.), ur(.))

J1(x, k, τ, u(.), ur(.)) = E
{∫ ∞

0
e−ρtG(x(t), u(t), ur(t))dt

}

Using the previous notation,J1(.) can be rewritten as follows:

J1(x, k, τ, u(.), ur(.)) = E
{∫ ∞

0
e−ρt{h(x(t)) + c(ur(t))}dt, x(0) = x; k(0) = k

}

The value function v(x, k) in the case where there is no need to purchase
a new capacity is given by the following equation:

v(x, k) = min
u∈U k,ur∈U rk

J1(x, k, τ, u(.), ur(.)) = inf
u(.)

inf
ur(.)

J1(x, k, τ, u(.), ur(.))

(8)
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It is shown in [4] and in [10] that such a value function satisfies the set of
Hamilton-Jacobi-Bellman equations given by the following expression:

ρv(x, k) = min
u∈U k,ur∈U rk

{(u − z)vx(x, k) + Q1(ur)v(x, .)(k) + c(ur)} + h(x)

∀x ∈ IRn, k ∈ M1

That is :

ρv(x, k) = min
u∈U k,ur∈U rk

{(u − z)vx(x, k) + Q1(ur)v(x, .)(k) + G(x, u, ur)}

∀x ∈ IRn, k ∈ M1

where vx(x, k) is the gradient ∂
∂xv(x, k)

Let va(x, k) denote the value function or minimum expected discounted
cost if there is a capacity purchase at initial time (τ = 0).

va(x, k + m2) = inf
(0,u(.),ur(.)∈Γr(k)

J1(x, k, τ, u(.), ur(.)), k ∈ M1 (9)

From the definition of the process k(t), see equation (1), it follows that:

va(x, k + m2) ≥ v(x, k), k ∈ M1

Let Ja0(.) be the cost function when there is capacity purchase at cost
K = 0 and define the corresponding value function as follows:

va0(x, k) = min
(τ,u(.),ur(.))∈Γr(k)

Ja0(x, k, τ, u(.), ur(.))

with

Ja0(x, k, τ, u(.), ur(.)) = E
{∫ ∞

0
e−ρt{h(x(t)) + c(ur(t))}dt

}

This value function corresponds to the one of the control of production and
corrective maintenance rates presented in [10] in the context of multiple identi-
cal machines manufacturing systems. The value function va0(x, k) satisfies the
set of Hamilton-Jacobi-Bellman equations given by the following expression:

ρva0(x, k) = inf
u∈U k,ur∈U rk

{(u−z)(va0)x(x, k)+Q1(ur)va0(x, .)(k)+G(x, u, ur)}

∀x ∈ IRn, k ∈ M1

with (va0)x(x, k), the gradient ∂
∂xva0(x, k)
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From equation 9, we have

va(x, k + m2) = inf
(0,u(.),ur(.)∈Γr(k)

J1(x, k, 0, u(.), ur(.)), k ∈ M1

and
va(x, k) = inf

(0,u(.),ur(.)∈Γr(k)
J1(x, k, 0, u(.), ur(.)), k ∈ M2

= inf
(0,u(.),ur(.)∈Γr(k)

E
{∫ ∞

0
e−ρtG(x(t), u(t), ur(t))dt + Ke−ρτ

}

Thus,

va(x, k) = inf
(0,u(.),ur(.)∈Γr(k)

E
{∫ ∞

0
e−ρtG(x(t), u(t), ur(t))dt

}
+ K

= inf
(0,u(.),ur(.)∈Γr(k)

Ja0(x(t), k(t), 0, u(.), ur(t))dt + K

Hence,
va(x, k) = (va)τ=0(x, k) + K

We then have :

ρva(x, k) = inf
u∈U k,ur∈U rk

{(u−z)(va)x(x, k)+Q1(ur)va(x, .)(k)+c(ur)+h(x)}+K

∀x ∈ IRn, k ∈ M2

Since we are interested in optimal purchase time, optimal production and
corrective maintenance rates, we write the HJB equations as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min{min
u∈U k,ur∈U rk

{(u − z)vx(x, k) + G(x, u, ur)} + Q1(ur)v(x, k)

−ρv(x, .)(k), va(x, k + m2) − v(x, k)}} = 0 k ∈ M1

min
u∈U k,ur∈U rk

{(u − z)(va)x(x, k) + G(x, u, ur)} + Q2(ur)va(x, .)(k)

−ρ(va(x, k) − K) = 0, k ∈ M2

(10)

The optimal control policy (τ ∗, u∗, u∗
r) denotes a minimizer over of the

right hand side of equation 10. This policy corresponds to the value func-
tion described by equations (7) and (9). Then, when the value functions are
available, an optimal control policy can be obtained as in (10). However, an
analytical solution of (10) is almost impossible to obtain. In the next section,
we construct a near optimal control policy through numerical methods. It is
by now well known that an approximation of the corresponding control policy
or near optimal control policy can be obtained by a small perturbation of the
true value function. This can be done by using numerical techniques which
provide a close form of the value function under reasonable assumptions.
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4 Numerical Approach

In this section, we develop the numerical method for solving the optimality
conditions presented in the previous section. This method is based on the
Kushner approach (see [12, 2, 10] for details). The main idea behind this
approach consists of using an approximation scheme for the gradient of the
value functions v(x, k) and va(x, k) . Let h denotes the length of the finite
difference interval of the variable x. Using h, v(x, k) is approximated by
vh(x, k) and vx(x, k) is approximated as in equation (11).

vx(x, k)(u − z) =

⎧⎨
⎩

1
h

(
vh(x + h, k) − vh(x, k)(u − z)

)
if u − z > 0

1
h

(
vh(x, k) − vh(x − h, k)(u − z)

)
otherwise

(11)

Using h, (va)x(x, k) is approximated as in equation (12).

(va)x(x, k)(u − z) =

⎧⎨
⎩

1
h

(
vh

a (x + h, k) − vh
a (x, k)(u − z)

)
if u − z > 0

1
h

(
vh

a (x, k) − vh
a(x − h, k)(u − z)

)
otherwise

(12)

With approximations given by equations (11) and (12) and after a couple of
manipulations, the HJB equations (10) can be rewritten as follows:

vh(x, k) = min
u∈U h

k

min
ur∈U h

rk

1

ρ + Qk1
h

(ur)
{(

(vh(x + h, k)P k
x(1)

+(vh(x − h, k)P k
x(2) + G(x, u, ur)

+
∑

k, �=k
q1
kk,(ur)v

h(x, k,)
}

k1 ∈ M1 (13)

vh
a(x, k) = min

u∈U h

k

min
ur∈U h

rk

1

ρ + Qk2
h

(ur)
{(

(vh
a (x + h, k)P k

x(1)

+(vh
a (x − h, k)P k

x(2) + G(x, u, ur)

+
∑

k, �=k
q2
kk,(ur)v

h
a(x, k,) + ρK

}
k1 ∈ M2 (14)

where (Uh
k , Uh

k,r) is the discrete feasible control space or the so-called control

grid and the other terms used in equations (13) and (14) are defined as follows:

Qki
h (ur) = |u − z

h
| + |qi

kiki
(ur)| i = 1, 2

P k
x(1) =

{ u−z
h

if u − z ≥ 0
0 otherwise
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P k
x(2) =

{ z−u
h

if u − z < 0
0 otherwise

The system of equations (13) and (14) can be interpreted as the infinite
horizon dynamic programming equation of a discrete-time, discrete-state deci-
sion process as in [2], [10], for capacity expansion, production and maintenance
planning problems. The obtained discrete event dynamic programming can be
solved using either policy improvement or successive approximation methods.

The next theorem shows that (vh(x, k) and (vh
a (x, k) are approximations

to (v(x, k) and (va(x, k)for small step size h.

4.1 THEOREM

Let (vh(x, k) and (vh
a(x, k) denote a solution to HJB equations (13) and (14).

Assume that there are constants Cg and Kg, Ca
g and Ka

g such that

0 ≤ (vh(x, k) ≤ Cg(1 + |x|Kg)

0 ≤ (vh
a(x, k) ≤ Ca

g (1 + |x|Ka
g )

then

lim
h→0

vh(x, k) = v(x, k)

lim
h→0

vh
a (x, k) = va(x, k)

PROOF: The proof of this theorem can be obtained by extending the one
presented in [17].

In this paper, we use the policy improvement technique, given by the follow-
ing algorithm, to obtain a solution of the approximating optimization problem.
Step 1: Initialisation
Choose δ ∈ IR+, set n := 1, (vh(x, k))n := 0, (vh

a (x, k))n := 0, ∀k ∈ M1,2, ∀x ∈
Gh

x

Step 2: Compute

(vh(x, k))n−1 := (vh(x, k))n ∀k ∈ M1, ∀x ∈ Gh
x

(vh
a(x, k))n−1 := (vh

a(x, k))n ∀k ∈ M2, ∀x ∈ Gh
x

Step 3: Compute the correspondent value function to obtain the control
policy:(τ, u(.), ur(.))
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Step 4: Test the convergence

c−
1 = min

x∈Gh

x

((vh(x, k))n − (vh(x, k))n−1)

c+
1 = max

x∈Gh

x

((vh(x, k))n − (vh(x, k))n−1)

c−
2 = min

x∈Gh

x

((vh
a(x, k))n − (vh

a(x, k))n−1)

c+
2 = max

x∈Gh

x

((vh
a(x, k))n − (vh

a(x, k))n−1)

cmin
1 =

ρ

1 − ρ
c−

1 , cmax
1 =

ρ

1 − ρ
c+

1

cmin
2 =

ρ

1 − ρ
c−

2 , cmax
2 =

ρ

1 − ρ
c+

2

If min(|cmax
1 − cmin

1 |, |cmax
2 − cmin

2 |) ≤ δ, then stop; else n := n + 1 and go to
step 2
If min(|cmax

1 − cmin
1 |, |cmax

2 − cmin
2 |) = |cmax

1 − cmin
1 |, then there is no capacity

expansion, else there is a capacity expansion.
with Gh

x, the state space grid related to the surplus x and a given value of
h. The boundary conditions presented in [17] are used here with the previous
algorithm to solve the optimality conditions given by equations (13) and (14).

5 Numerical example and sensitivity analysis

Let us consider a firm with a two states Markov process k1 ∈ M1 = {0, 1}
describing the capacity of the system before expansion. After capacity expan-
sion, a three states Markov process k2 ∈ M2 = {0, 1, 2} describes the capacity
of the system. The discrete dynamic programming equations (13) and (14)
give the equations (15) and (15) before capacity purchase:

vh(x, 0) = min
ur∈U r0

1

ρ + Q01
h (ur)

{(
(vh(x + h, 0)P 0

x(1)

+(vh(x − h, 0)P 0
x(2) + G(x, 0, ur) + q1

01(ur)v
h(x, 1)

}

vh(x, 1) =
1

ρ + Q11
h

min
u1∈U 1

{(
(vh(x + h, 1)P 1

x(1)

+(vh(x − h, 1)P 1
x(2) + G(x, u1, 0) + q1

10(ur)v
h(x, 0)

}

and equations (15) to (17) after capacity purchase:
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vh
a (x, 0) = min

ur∈U r0

1

ρ + Q02
h (ur)

{(
(vh

a (x + h, 0)P 0
x(1)

+(vh
a(x − h, 0)P 0

x(2) + G(x, 0, ur) + q2
01(ur)v

h
a(x, 1)

+q2
02(ur)v

h
a(x, 2) + ρK

}
(15)

vh
a(x, 1) = min

ur∈U r1

{ 1

ρ + Q12
h (ur)

min
u1∈U 1

{(
(vh

a (x + h, 1)P 1
x(1)

+(vh
a(x − h, 1)P 1

x(2) + G(x, u1, ur) + q2
10v

h
a (x, 0)

+q2
12(ur)v

h
a (x, 2) + ρK

}}
(16)

vh
a (x, 2) =

1

ρ + Q21
h (ur)

min
u2∈U 2

{(
(vh

a(x + h, 2)P 2
x(2)

+(vh
a(x − h, 2)P 2

x(2) + G(x, u2, 0) + q2
20v

h
a(x, 0)

+q2
21(ur)v

h
a(x, 1) + ρK

}
(17)

We use the following computational domain:

Gh
x = {x : −5 ≤ x ≤ 25, x(i) = −5 + (i − 1)h, i = 1, 2, ...}

Other parameters of the considered manufacturing system are given in table
(1)

Table 1: Parameters of the considered
manufacturing system

c+ c− cr Umax
2 Umax

1 z K ρ q1
10 q1min

01

1 15 100 0.2 0.4 0.12 50 000 0.001 0.05 0.4

h q1max
01 q2min

01 q2max
01 q2

02 q2
10 q2min

12 q2max
12 q2

20 q2
21

0.1 0.6 0.4 0.6 0 0.05 0.05 0.1 0 0.05

The policy iteration technique is used to solve the optimality conditions
related to equations ((15) to (17)). Obtained results are presented in figures
(1) and (2).

Figure 1 gives simultaneously the optimal purchase time (associated to
Xop ) and the production rate according to the initial inventory level. It is
interesting to note from figure 1 that if the initial inventory level is less than
Xop = −2.10, then the optimal purchasing time will be at initial production
time, meaning that τ = 0. Backlog values under Xop, corresponding to the
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initial inventory of the products used for the firm to absorb the excessive
demand for a few initial periods, as stated in section 1. Thus, the optimal
control policy suggest to purchase a new capacity when the initial surplus
(i.e., backlog if negative) is under Xop.
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Figure 1: Optimal production rate

After a purchase of a new capacity, the production rate of each machine (the
existing and the new machines) is set to its maximal value to satisfy unmet
demands (backlog) and to built the safety stock described by the threshold
value X∗. The production control policy obtained is an extension to the
so-called hedging point policy given that the previous behavior respect the
structure presented in [1] for production without maintenance and capacity
expansion. The obtained modified hedging point policy, characterized by the
switching trend illustrated by figure 1, is given by the following equation:

u(t, x, k) =

⎧⎪⎨
⎪⎩

Umax
2 if x ≤ Xop

Umax
1 if Xop < x < X∗

0 if x ≥ X∗
(18)

The corrective maintenance policy, plotted in figure 2, divides the compu-
tational domain Gh

x into two regions after capacity expansion (i.e., [−5,Xr2[
and [Xr1 , Xr2 [ ) and another two regions before capacity expansion (i.e., and
[Xr1 , X

∗
r[ and [X∗

r, 25])
with capacity expansion, if the stock level is under Xr2 and a failure occurs,

one have to repair the failed machine at the maximal repair rate qmax
23 while the
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Figure 2: Optimal repair rate

minimal repair rate qmin
23 is applied in [Xr1 , Xr2[. Without capacity expansion,

if the stock level is under X∗
r and a failure occurs, one have to repair the failed

machine at the maximal repair rate qmax
12 while the minimal repair rate qmin

12 is
applied in [X∗

r, 25]. The corrective maintenance policy, illustrated in figure 2,
is then summarized as in equation (19).

For this example, X∗
r = 0.20, Xr1 = −2, 10 and Xr2 = −3.60

ur(x, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qmax
23 if x ≤ Xr2

qmin
23 if Xr2 < x < Xr1

qmax
12 if Xr1 < x < X∗

qmin
12 if x ≥ X∗

(19)

The control policy described by equations (18)-(19) is completely defined
for given values of parameters in the case of two-identical machine as in the
example presented in this section.

5.1 Sensitivity analysis and comparative study

We performed a couple of experiments using the numerical example presented
previously. A set of analysis have then been considered to illustrate the sen-
sitivity of the obtained control policy with respect to capacity purchase, in-
ventory, backlog, maintenance costs and machines availability. The results
presented in table 2 illustrate four different situations used to show the vari-
ation of the production and new capacity purchasing parameters when the
purchase cost increase and when the repair rate is controlled or not.
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Table 2: Impact of the corrective maintenance policy
on purchase time and production policy

- K cr c− Xop X∗

Without control of machine repair rate 5 000 - 15 0 0.7
With control of machine repair rate 5 000 100 15 0.1 0.1
Without control of machine repair rate 80 000 - 15 -3.9 0.7
With control of machine repair rate 80 000 100 15 -4.6 0.4

Table 2 shows that controlling machines repair rates (corrective mainte-
nance) reduces the optimal purchase time and production threshold level. The
proposed joint optimization of capacity expansion, production and mainte-
nance activities significantly reduces the overall incurred cost compared to
separate optimization models as shown in figure 3.
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Overall incurred cost  K= 50 000; Cr = 25

No capacity management nor maintenance control
capacity management without maintenance control
 capacity management with maintenance control

Figure 3: Overall incurred cost

As one can observe from figure 3, there is a significant difference between
the system performances in three situations. Such situations are:
- Production planning with no capacity expansion and no corrective mainte-
nance as in [1]
- Production planning with capacity expansion and no corrective maintenance
as in [16]
- Production planning with capacity expansion and corrective maintenance as
in this paper for the control policy given by equation (18)-(19).
For a comparative purpose, we used the algorithm presented in section 4 to
solve the optimality conditions or HJB equations of the above three situations
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and to obtain results presented in figure 3. Through the observations made
from figure 3, it clearly appears that the proposed approach, based on a simul-
taneous control of capacity expansion, production and corrective maintenance
rates, provides interesting results in the context of manufacturing systems un-
der uncertainties, for given initial inventory levels.

For a m-identical machines manufacturing system producing one part type,
the capacity expansion, the production and corrective maintenance policies
could be defined by 2m + 1 parameters or input factors. The experimental
design approach, combined to simulation and analytical models could be used
to determine the effects of considered factors on the incurred costs and to
determine their optimal values. Details on experimental design and simulation
modeling could be find in [8] and references therein.

6 Conclusion

In this paper, we develop a capacity expansion model for one-product, multiple-
machine manufacturing systems with constant demand. We develop an effec-
tive solution approach to determine the optimal capacity purchase time, pro-
duction and maintenance decisions over time. The introduction of the main-
tenance planning increases the availability of the production system, which
guarantees the improvement of the system’s productivity. Through a compu-
tational study, we show the effectiveness of the proposed models in terms of
contribution in the control theory area and investigate the impact of capac-
ity cost, maintenance control and other important parameters on the control
policy.

In this work, we have only considered the model with a single capacity pur-
chase, constant demand, equipment purchase and capacity expansion, mainly
for simplicity, with-out loosing the generality of the proposal. An extension
of the proposed models could significantly reduce the overall incurred cost if
it incorporates models with any finite number of capacity purchases, stochas-
tic demand or capacity reduction. In addition to machine purchase, the use
of other resources, define as any part of the system that is not consumed or
transformed during the production process, for capacity expansion could be
considered.
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