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Abstract
This paper identifies a specific contents-based strategy for problem

solving based on analytical geometry procedures. Here, an appropriate
methodology for putting the strategy into practice, will be exposed.
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1 Introduction

Problem solving plays a crucial role in the learning of mathematics. Typically
the process of problem solving combines knowledge and heuristics with specific
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strategies for collecting, organizing and treating information, making use of
different representations, mathematical models and conversions from one lan-
guage to another and establishing relationships between the learned contents.
The research papers [1, 4, 6], reveal several aspects of problem solving present
in different teaching-learning strategies which are of a general nature and focus
on the study of the logical-economic forms of thinking, without attempting to
express the specificities of the processes in their relationship with a certain
content. The research carried out on the use of specific content-dependent
strategies as an approach to problem solving is yet in its beginning.

Each disciplinary field has its own characteristics, the uniqueness of which
means that their treatment requires particular demonstrative procedures, ways
of thinking and problem solving processes that involve the specific contents
of each particular field. To deal with a specific problem it is therefore often
necessary to break down the barrier of general strategies and turn to particular
strategies.

2 Preliminary Notes

We could mention the studies carried out by P. Ruesga and J. M. Sigarreta
[5, 8, 9] which present a clear preference for specific strategies for problem
solving according to specific contents. Many of the determining factors of
problem solving skills are related to cognitive processes [2, 7]. It is obvious
that to be successful in the solving of mathematical problems a student must
be able to understand and interpret the mathematical relationships involved;
but, an effective resolution of the problem is also dependent upon the student’s
knowledge of specific situations, ie of its contents and the way the student orga-
nizes his/her knowledge for that particular situation and the specific strategies
corresponding to those contents. Authors such as Hinsley, Hayes and Simon
have provided evidence to show that those who are competent in the solving
of mathematical problems have a wide knowledge of problems type and the
specific strategies required to solve them. The choice of a specific strategy for
solving problems according to its specific contents is not incompatible with the
general strategies. On the contrary, specific strategies arise naturally within
any general strategy.

3 Main Results

Problem solving is a process of reasoning and, as such, consists of deduction’s
sequences in which, for some cases, the focus is either on the data, or on the
initial conditions or in the causes, and the aim is the founding of solutions,
final conditions or effects. In other cases, the reasoning deductions are made
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from the conclusions to the hypothesis.
The two types of routes intermingle continually such that whoever is reason-

ing is not necessarily consciously of doing so. Following this path, the person
solving the problem brings in concepts and methods which, rightly or wrongly,
he/she links with the problem through such resources as analogy and devises
various problem solving processes. The strategy which we describe brings out
the importance of various steps that take place when one is trying to solve a
problem using the tools of Analytical Geometry. However, the bi-directionality
with which the reasoning processes occur explains why the various stages that
are highlighted in the strategy do not constitute a temporal sequence. Even
though they may be different, some stages may occur together on more than
one occasion. The characteristics of this specific field of knowledge involve the
creation of an appropriate system of representation that does however depend
on the nature of the problem: on the type of relationships which it expresses
or on the geometric figures that it evokes or states, and that may be conceived
from the start of the process or after an initial review stage and recognition
of the conditions expressed in the problem. The proposed strategy consists of
five actions. These are:

• Identification: The analysis of the relationships and of the data which
the problem expresses serves to determine whether the problem can be
approached using the tools of analytical geometry.

• Selection of a system of coordinates : In this step, the choice of the system
of coordinates will be made according to the conditions of the problem.
It may be rectangular, oblique or polar.

• Representation: The essential part of this step is always to place the fig-
ure, without losing generality, in the simplest position, so as to facilitate
the calculations performed later.

• Assignment of literal coordinates to the related elements : The most im-
portant part of this step is to assign the coordinates to the elements of
the figure in the most general way possible, making sure that the lowest
possible number of variables is introduced in order to facilitate calcula-
tions.

• Choice of elements as ordered pairs and/or vectors: In this action it is
essential to make a correct interpretation of the problem and to analyze
the contents related to it having in view the choice of the necessary means
to solve it. It is all about making a good choice.

Some of the given examples involve known properties covered in mid-level
courses using metric geometry. Others, were originally devised to be solved
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by applying other contents. In the given solutions, the various stages of the
described strategy are identified.

Problem 1: Prove that for any triangle ABC, |BC|2 = |AC|2 + |AB|2 −AC ·
AB · cos(α), where α is the angle formed by the sides AC and AB.

Solution: The property that has to be proved is metric and envolves relation-
ships relating line segment measurements. Cartesian coordinates of the points
involved, offers a possibility of converting these measurements in algebraic cal-
culations (Identification), being in this case vertices of a triangle to which the
generic labels A, B and C are assigned. The representation of any triangle
in a coordinated system simplifies the calculations when one of the vertices is
represented in the origin of the coordinates, another on the X axis and the
third in a generic position (choice of a coordinate system and representation
of the figure on this system). Accordingly, one vertex, say A is represented by
(0, 0). We relabel this vertex by O. Another, say C, has coordinates (b, 0),
and the third point, B, has generic plane coordinates (c, d). Now, the data
provided is the angle α of sides AB and AC, It is therefore more economic to
relate the coordinates of B to the distance |AB|, which we denote by a, and α.
The coordinates of B are therefore (a · cos(α); a · sen(α)) (assignment of literal
coordinates to the related elements and choice of the elements as ordered pairs
and/or vectors). This representation makes possible to calculate the measure-
ment of sides AC and AB by means of simplified general expressions: b and a
respectively. The numeric expression obtained for the distances between points
through their cartesian coordinates provides, immediately, the result.
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Figure 1: Cartesian representation of ABC.

|BC| =
√

(a · cos(α) − b)2 + (a · sin(α))2,

|BC|2 = (a)2 + (b)2 − 2a · b · cos(α),

|BC|2 = |AC|2 + |AB|2 − AC · AB · cos(α).

Problem 2: Prove that three times the distance from the barycentre of a
triangle to a straight line that does not intersect the sides of the triangle is
equal to the sum of the distances from the vertices to that straight line.
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Solution: The knowledge of the subject should tell us that if we know the
cartesian coordinates A(x1; y1), B(x2; y2) and C(x3; y3) of the vertices of the
triangle, the corresponding cartesian coordinates of its barycentre are given
by G(x1+x2+x3

3
; y1+y2+y3

3
) (identification and choice of elements as ordered pairs

and/or vectors). Assuming this labeling (assignment of literal coordinates to
related elements) let us look for a convenient reference system: undoubtedly the
most convenient way of measuring the distances from points to straight lines is
obtained when the straight line is one of the coordinate axis say, the X axis. Let
assume, without lost of generality, the X axis as the straight line mentioned in
the text (choice of a system of coordinates). The distance from the barycentre
to the X axis is therefore given by its y-coordinate (representation).
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Figure 2: Cartesian representation.

Within this representation, we need only to prove that three times the y-
coordinate of the barycentre equals the sum of the distances from each of the
vertices to the X axis, and this is exactly the sum d of the y-coordinates of
the three points, d = y1 + y2 + y3. Since the distance from the barycentre to
the same straight line y = 0 is given by d1 = y1+y2+y3

3
, d = 3d1, which is what

we set out to prove.

Problem 3: A square and an equilateral triangle are inscribed in a circum-
ference of unitary radius and one of the vertices of the triangle coincides with
one of the vertices of the square. Find the common area to the triangle and
to the square.

Solution: The geometric figures mentioned in the body of the problem are
regular ones. Furthermore, a circumference C of radius 1 can be expressed
by an analytical equation in a cartesian system, (identification) which has a
simplified form when the origin of the coordinate system coincides with its
centre. This choice for the representation of C provides further information
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Figure 3: Cartesian representation.

regarding the points of intersection with the coordinated axes. If, in addition,
we make use of the perpendicularity of the coordinated axes to represent the
diagonals of the square, the common vertex A be (−1, 0) and the X-axis to
be a symmetry axis for the given configuration, which does not mean any
loss of generality, we have choosen a system of coordinates that as we shall
see will reveal the solution of the problem is a quite simplified way, (choice
of a coordinate system and representation of the figure on the system). In
Figure 3 we illustrate the configuration obtained , using the chosen system of
coordinates where some important points are indicated (choice of the elements
as ordered pairs and/or vectors).

Due to the symmetry of the figure, the area A� that we are asked to cal-
culate is given by: A� = 2(AAGB −AHIB). As the circumference has a unitary
radius and it has its centre in the origin of the coordinates, its equation is
x2 + y2 = 1. As the X-axis bisects the angle EAF the equation of the straight
line going through A and F is y =

√
3

3
x +

√
3

3
, besides the equation of the

straight line going through B and C is, y = x + 1. From these two equa-
tions we can calculate the coordinates of the points G, F and H which are:
G = (2 −√

3;
√

3 − 1), F = (1
2
;
√

3
2

) and H = (1
2
; 1

2
). Accordingly, A� = 8

√
3−9
4

.

Problem 4: Let ABC be a triangle, G its barycentre and P any point of the
plane. Prove that: 3|PG|2 = |AP |2 + |BP |2 + |CP |2 − 1/3(|AB|2 + |BC|2 +
|AC|)2.

Solution: As seen in Problem 2, the assignment of generic cartesian coordi-
nates to the vertices of the triangle provides a relation for the cartesian co-
ordinates of the barycentre (identification, choice of elements as ordered pairs
and assignation of literal coordinates to the related elements). Let us choose
a rectangular coordinate system taking the vertex A to be the origin of the
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system, the x-axis the axis defined by the points A and B oriented from A to
B. The y axis be ortogonal to X- axis and oriented in a way that the triangle
ABC belongs to the upper closed half-plane, see Figure 3,(choice of a system
of coordinates and representation of the figure on the system of coordinates).
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Figure 4: Cartesian representation.

In accordance to the chosen system A has coordinates (0, 0), B = (a, 0) for
some positive real a, C(b, c) for some positive reals b and c. Let us denoteby
x and y the coordinates of P , i.e P = (x, y). Accordingly,, G = (a+b

3
, c

3
).

Now,
3|GP )2 = 3((x − a+b

3
)2 + (y − c

3
)2)

3|PG|2 = |AP |2 + |BP |2 + (CP |2 − 1
3
(|AB|2 + |BC|2 + |AC|2),

which is what we set out to prove.

Problem 5: A young man found a piece of paper on which was written
a description of the position of a pirate’s treasure on a desert island. The
description was as follows: On the island there is a palm tree, a cedar tree and
a gallows; walk from the gallows to the palm tree, counting your steps, and
when you reach the palm tree turn 90o to the right, count the same number of
steps and knock in a stake. Go back to the gallows, walk to the cedar counting
your steps and when you reach the cedar turn 90o to the left, count the same
number of steps and knock in another stake. The treasure is in the centre of
the line determined by the two stakes. When he reached the island the cedar
and the palm tree were there but the gallows had disappeared over the course
of time. How could he find the treasure in the absence of the gallows?

Solution: Making an initial examination of the problem, the only visible items
we have are the cedar and the palm tree. It therefore appears that the problem
will have to be solved using these two points of reference, which we shall call
C and P . Reasoning regressively, if we knew the location of the stakes the
problem would be solved. Let us imagine that they have cartesian coordinates
E1 = (x1, y1) and E2 = (x2, y2) in a fixed rectangular coordinate system. In
order to determine the value of these coordinates, two pieces of information
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Figure 5: Cartesian representation.

are needed, but we have them: the respective 90o turns and the equal dis-
tances from the gallows to the palm tree and to the cedar tree, respectively.
The coordinates of these points could be written as a function of the coor-
dinates of the unknown point (location of the gallows) and which designate
by H = (x, y). Another relevant piece of information have is the direction of
the turns. (Identification, choice of elements as ordered pairs and assignment
of literal coordinates to the related elements). The most natural and simpli-
fied rectangular cartesian system appears to be the one which takes as one of
its axes, for example the ”x” axis, the straight line CP , and the ”y” axis as
the perpendicular bisector of the line segment determined by those two points
(choice of a system of coordinates) and we assign, with no loss of generality,
the cartesian coordinates (−1; 0) for C and (1; 0) for P . After covering the
distances from the gallows to the palm tree and the cedar respectively, we can
represent the points occupied by the stakes, (representation of the figure in the
system of coordinates):

If the coordinates of the points E1 and E2 were determined, the solution of
the problem is found. Since

−→
HP =

−→
OP − −→

OH = (1 − x,−y),
−→
HC = −−→

OH +−→
OC = (−1 − x,−y) and

−−→
PE1 = −−→

OP +
−−→
OE1 = (−1 + x1, y1). Besides, the

scalar product of
−→
HP and

−−→
PE1 is equal to zero and so (1−x)(x1−1)−yy1 = 0.

Taking in account that |HP | = |PE1|, one gets (1− x)2 + y2 = (x1 − 1)2 + y2
1.

Solving this system of two equations, we obtain two points, one of which meets
the conditions of the problem and so E1 = (1 − y, x − 1). Similarly, we get
E2 = (y−1,−x−1). Accordingly, the mid point of the line segment determined
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by E1 and E2 has coordinates (0;−1). To find the treasure, it is only necessary
to walk from the point of the perpendicular bisector of the segment formed by
the cedar and the palm tree, one unit in the negative orientation given to the
y-axis.
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