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Abstract 

 In blending problems there are typically specification constraints that limit 

the content of various properties of the blend that it acquires from the ingredients 

to certain maximum or minimum percentages of the total blend.  For sake of 

linearity, these constraints are commonly included in the problem in a way that 

precludes direct sensitivity analysis with respect to changes in these percentages.  

This note shows that the sensitivity analysis with respect to changes in the target 

specification percentages can be derived from the ordinary sensitivity analysis 

with minimum additional effort; and that common LP codes can be slightly 

modified to facilitate sensitivity analysis of blending percentages.  
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Through its history, one of the most frequently cited application examples of 

linear programming has been the so-called “blending,” problem in which 

various ingredients (inputs) are mixed into one or more blends (outputs) to 

satisfy some objective [1].  Blending problems, among other types of 

constraints, may include the “specification” constraints.  These constraints limit 

certain properties (such as moisture) of the blend, which it inherits from the 

ingredients, to certain minimum or maximum percentages of the total.  Most 

common LP software output does not allow direct sensitivity analysis of the 

target percentages. The purpose of this note is to show how simplex-based LP 

software may be slightly modified to enable direct and full sensitivity analysis 

of these target percentages.    

A typical such constraint, say the kth constraint of the problem, may be 

written generally as: 
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where sj is the percentage of the property in question contained in ingredient  j, 

and  Si  is the subset of  all ingredients which may be used in blend i.  By selecting 

appropriate zeros and ones for sj, Eq (1) can also model a common type of  
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specification constraint—one which limits the percentage of a certain subset of 

ingredients in the blend.   Since this form is not linear and thus unsuitable to linear 

programming it is equivalently included in the LP as:   
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However this transformation recasts the sensitivity with respect to the 

RHS of Eq (1) into the sensitivity with respect to several technological constraints 

in Eq (2). This more difficult form of sensitivity has been studied extensively as 

part of LP theory.  See for instance Simonnard [2, p. 145].  However, the 

theoretical results concerning the technological constraints have not been applied 

to the sensitivity analysis of target percentages; nor they have been implemented 

in the most commonly used LP software.  Yet in many blending and mixing 

problems this parameter, p may be set as a matter of management policy and thus 

effect of adopting different policies on the optimal LP value may be quite a 

valuable guide.  

The optimal dual price for the modified constraint, say dk, gives the rate of 

change in the objective function as the right hand side (RHS) of (2) is perturbed 

within the range in which the optimal basis and thus dk does not change (allowable 

range).  Let rz ΔΔ /  denote this rate, where z is the objective function value and r 

is the RHS of (2) (currently zero); and −+ ΔΔ rr and  denote the allowable increase  
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and decrease in the RHS respectively.   Although dk gives some useful sensitivity 

information pertaining to the current optimal solution, it does not directly answer 

the more legitimate question of the behavior of the optimal solution for changes in 

the parameter p, the RHS of (1). The linear form (2) with a RHS of Δr is   
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which, in turn, means that changing the RHS of Eq (2)  by Δr is equivalent to 

changing  the RHS of (1)  by ./ ∑
∈
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Suppose that the optimal solution to the blending problem, with Eq. (2) and its 

sensitivity analysis information is available from a standard LP program. 

Although  kdrz =ΔΔ /  is constant in the allowable interval; pz ΔΔ /  may not be 

constant, that is z(p) may be non-linear in p. The behavior of the optimal solution 

vector and the objective function value, as p changes can be estimated by simply 

evaluating the quantity j

i

k
S
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j
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 at the current optimal solution .o
j

x However, this  
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would only be approximate, because as the RHS of Eq (2) changes within the 

allowable range, while the optimal basis and dk stay constant, the optimal xj and 

thus pz ΔΔ / may not.  The quality of this approximation depends on the magnitude 

of the change in the quantity ∑
∈ i

j
Sj
x . While in some cases this change might be 

small and can be ignored, in others it might be considerable enough to 

significantly distort the sensitivity results with respect to parameter, p.  

The standard LP solution with Eq (2) however, can be used to perform a 

full and exact sensitivity analysis of the solution for changes in the parameter, p. 

Let  )( rΔx  be the vector of solution values as a function of the change in the RHS 

of (2), vector b the original right hand sides of the LP with Eq (2), and B the 

current optimal basis.  We have: 
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where uk is the kth unit vector.  In (6), the term, kuB 1− traces out the kth column of 

the optimal basis inverse.  Let us denote the elements of this column by βjk.  

Therefore, we have: ,)( ∑
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rx β  where iS  is the subset of Si 

corresponding to the currently basic vectors.  With this information the exact 

limits of p, pp
+− ΔΔ and are obtained as: 
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Also the exact rate of change in the objective function value, as the RHS of        

Eq. (1) changes, may be written as: .)(// ∑∑
∈
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express this rate in terms of rp ΔΔ thanrather , we can solve 
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j rxpr β for Δr and substitute in above to give:  
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which is the average rate of change in z, as p changes by an amount Δp.  The 

optimal value of the LP as p changes by pΔ  within the allowable range, can be 

obtained by multiplying (8) through by pΔ and simplifying 
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 In Eq (9), when 1∑ =Δ
jk

p β , )( pz Δ becomes undefined.  However this 

troublesome situation does not occur, because 01 >∑Δ− jkp β  .
+− Δ≤Δ≤Δ∀ pp p  To 

prove this, assume that 0<∑ jkβ .  As pΔ  changes in the negative direction from 0, 

it reaches )0(≤Δ−
p before it becomes ∑ ,/1 kjβ that is to say ./1 ∑>Δ−

kjp β  This is 

easily shown by substituting )/( jkr
o
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are non-positive.  Furthermore, since ppjk Δ≤Δ< −∑β/1  we have 01 ∑ >Δ−
jk

p β . 

A similar argument holds for the case 0>∑ jkβ . 

It is also straightforward to examine the functional behavior of )( pz Δ as p 

changes in the allowable range.  The first “derivative” of )( pz Δ is 
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  and thus has the same sign as dk. Thus )( pz Δ is–non-decreasing 

if dk ≥ 0; non-increasing otherwise. The “second derivative” is  
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which implies that if 0=∑ jkβ , then  )( pz Δ  is linear in the allowable interval; also 

since ∑ o
jx and ∑Δ− kjp β1 are both non-negative, )( pz Δ is convex if dk    and ∑ jkβ  

have the same sign, concave otherwise.   

The above suggests that standard LP software packages can be modified 

slightly to enable users to conduct exact sensitivity analyses of specification-type 

constraints. All that is required, possibly as a user selectable option, is to report 

the ∑ jkβ quantities corresponding to those constraints that the user has coded as 

“specification-type” during input. 
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