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Abstract
In this study, we present the problem of shipping a single-product from a

single supply origin, through storage depots, to a single demand destination
by trucks, ships, etc. and aim to minimize the sum of ordering, inventory and
transportation costs over an infinite time horizon. We formulate the problem
consisting of power-of-two (PoT ), stationary and nested replenishment policies
for the multistage inventory-distribution system. We then present the cost
structure analysis for this serially distributed storage depot problem (SDSDP )
and develop a heuristic method to obtain satisfactory results. On average, the
average cost deviations between our proposed heuristic and LINGO software
are within 1.2%.
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1 Introduction

The serially distributed storage depot problem underPoT policy (SDSDP PoT )
is investigated in this study. Maxwell and Muckstadt [10] and Jackson et al.
[6] assumed that a basic period times general integers or power-of-two integers
as the shipping frequencies for products. Love [9] and Muckstadt and Roundy
[11] analyzed the serial logistic systems, i.e. multistage production systems,
and introduced the concept of nested policies for more practical concerns. The
so-called stationary policy is the one where each facility receives a constant
ordering batch in equally spaced time. A nested policy is the one if storage
depot i orders, each of its successors would be triggered to place orders. Gupta
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[5] coped with a lot-size model in which the explicitly discrete and fixed trans-
portation cost is incurred due to the ordering quantity delivered by trucks
whether those are partial or fully loaded. Vroblefski et al. [16] is motivated
by serially distributed warehouse logistics at Western New York, a large paint
manufacturing company. The company avoids difficulties in tracking and cost
management, i.e. a warehouse receiving from several higher-echelon facilities
is excluded, and re-designs their logistic system as the streams of serial distri-
bution centers. They developed a cluster algorithm and a hypercube method
to decide the ordering quantity for each serially located warehouse with one or
multiple transportation freight rates, respectively. Speranza and Ukovich [15]
pointed out that most of the long distance shipments (international and over-
seas) fit in the single link case and the single link is an important building block
to approach more complex problems. Likewise, Bertazzi and Speranza [1] also
present the same single link problem and discuss about the worst-case perfor-
mance of the full load policy applied in the capacity of the vehicles. Romeijn
et al. [13] stated that a modern distribution network design model needed to
take a number of factors into consideration. Those factors include (1) location
and associated operating cost of distribution center; (2) total transportation
costs; (3) storage holding and replenishment costs at the distribution center
and retail outlets; (4) stockouts; (5) capacity concerns. Gallego and Özer [4]
provided a dynamic programming (DP ) formulation based on the idea of op-
timally allocating a given echelon-inventory level between the upstream stage
and the downstream serial system. Shang and Song [14] develop a closed-form
approximation for optimal base-stock levels for serial inventory systems. Ey-
nan and Kropp [2] and Rao [12] studied the single-stage (R, nT ) inventory
model, where T is the fixed reorder interval, n is a positive integer, and R
is the order-up-to base-stock level. Lately, Feng and Rao [3] studied an (R,
nT ) policy in a two-stage serial inventory system with stochastic demand. Lee
and Wen [8] discussed the issues about the SDSDP under the general-integer
inventory replenishment policy. This paper continues focusing on the SDSDP
with stationary, nested and PoT replenishment policies and differs from the
previous studies in two aspects: (1) although Vroblefski et al. [16] dealt with
the problems consisting of serially distributed warehouses, they set the base
lot size needed to be transported as a known parameter. However, most of the
previous literature as we cited above mention that PoT replenishment policies
consider the base lot size as a variable due to the practical implementation.
Here, we deal with the base lot size as a variable and put more emphasis on
developing analytical insights. For this purpose, we explore the cost-curve
structure for the mathematical model so that an efficient search heuristic can
be developed accordingly.(2) We do not employ the best integer approxima-
tion to the cost break mentioned in Vroblefski et al. [16] as our focused factor
because the role of the base lot size is different from that in the original paper.
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2 Problem Statement

Vroblefski et al. [16] consider a serial warehousing system designed for shipping
only one product from a single supply source to a single retailer or customer
destination, which is arranged in the order of {n, (n − 1), . . . , 1} where n
is denoted as the number of warehouses. This serial system is represented as
shown in Figure 1.

Figure 1: The serial inventory-distribution system

Two-level or multi-level transportation cost problem means that one or
multiple common shipment discount volumes occur in all of warehouses, re-
spectively. The SDSDP PoT also takes two-level and multi-level cases for
each storage depot into account. Assumptions made in the SDSDP PoT are
as follows: (1) shortages are not allowed; (2) transportation and replenish-
ment occur instantaneously, right after an order is placed; (3) the planning
horizon is infinite; (4) the unit transportation cost for each storage depot is
assumed to be nonincreasing over the quantity shipped; and (5) the trans-
portation discount quantity occurs at the same transportation volume for all
storage depots. Accordingly, a mathematical model presents the above system
under both PoT policy and two-level transportation cost condition denoted as
P2,TL, which is described as follows:

P2,TL:

Minimize

n∑
i=1

Kiλ

qi
+

n∑
i=1

hiqi

2
+

n∑
i=1

λ
{
P

′
i1yi1 + Pi0

}
(1)

subject to

yi1 ∈ {0, 1} ∀i = 1, 2, . . . , n, (1a)



258 Fang-Chuan Lee and Ue-Pyng Wen

yi1b − qi ≤ 0 ∀i = 1, 2, . . . , n, (1b)

qi > 0 ∀i = 1, 2, . . . , n, (1c)

qi = 2αiqL ∀i = 1, 2, . . . , n, (1d)

αi ≥ 0, integer ∀i = 1, 2, . . . , n, (1e)

qi ≥ qi−1 ∀i = 2, 3, . . . , n. (1f)

Another case, the mathematical model of multi-level transportation cost
with PoT policy can be presented below and denoted as P2,ML:

P2,ML :

Minimize
n∑

i=1

Kiλ

qi
+

n∑
i=1

hiqi

2
+

n∑
i=1

λ

{
m∑

j=1

P
′
ijyij + Pi0

}
(1′)

subject to

yij ∈ {0, 1} ∀i = 1, 2, . . . , n and j = 1, 2, . . . , m, (1a′)

yijbj − qi ≤ 0 ∀i = 1, 2, . . . , n and j = 1, 2, . . . , m, (1b′)

with the constraints (1c), (1d), (1e), and (1f).

The corresponding parameters are organized as follows:
i= an index of the storage depot, i = 1, 2, . . . , n.

Ki= a fixed ordering cost per order charged for each storage depot i,
i = 1, 2, . . . , n.

λ= a known, external, continuous and constant demand rate for a
single product at the #1 storage depot.

hi= the echelon inventory holding cost per unit time at each storage
depot i, i = 1, 2, . . . , n.

Pi0= the unit transportation cost for dispatching a single consignment
product from storage depot (i + 1) to the next successive storage
depot i while the reorder or shipped quantities for each storage
depot qi is less than some transportation volume in which the
transportation price discount occurs, denoted as b, i = 1, 2, . . . , n.
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Pi1= the unit transportation cost when qi is greater than or equal to b.
Pi0 and Pi1 would result in yi1 = 0 and yi1 = 1, respectively,
i = 1, 2, . . . , n.

P
′
i1= (Pi1 − Pi0) < 0 and denote it as the transportation cost difference

in two-level cases, i = 1, 2, . . . , n.
qL= the base lot size which is one of our decision variables.
2αi= ki (= 1, 2, 4, 8, . . . for αi = 0, 1, 2, . . . ), is one of our decision

variables.
j= an index of the different transportation cost breakpoints and .

j = 0, 1, 2, . . . ., m.
bj= the transportation cost breakpoint, j = 0, 1, 2, . . . , m.

where b0 = 0 and bm+1 = ∞.
Pij= the unit transportation cost, i = 1, 2, . . . , n and j = 0, 1, 2, . . . ., m.

Note that bj < bk and Pij > Pik, ∀k > j.
P

′
ij = (Pij − Pij−1) < 0 and denote it as the transportation cost

difference in multi-level cases, i = 1, 2, . . . , n and j = 0, 1, 2, . . . ., m.
The objective of this paper is to investigate the problems of P2,TL and P2,ML

by proposing a simple and efficient heuristic approach.

3 The Cost-Curve Structure Analysis

Lee and Yao [7] discussed the cost-curve structure on the joint replenishment
problem. In this section, we attempt to illustrate the cost-curve properties for
the SDSDP PoT . In order to solve mathematical models, we plot the curves
to investigate the cost functions. We denote those curves as “cost-curves”
and analyze on their basic structure such that we could further develop our
heuristic approach. Because of constraint (1d), we must consider the positive
PoT integer ki and the base lot-size qL simultaneously for each storage depot
i. The objective function values from the models P2,TL and P2,ML are denoted
as TC2,TL and TC2,ML, respectively. Here, we first discuss some theoretical
results to provide insights into the TC2,TL and TC2,ML functions in terms of
the cost-curve properties.

3.1 Some Insights into Two-Level Transportation Cost
Problems

We conducted an analysis by going through some examples. A numerical exam-
ple of two-level transportation costs that Vroblefski et al. [16] used to illustrate
their viewpoints is summarized in Table 1. Other parameters included in this
example are the external demand at #1 storage depot, λ = 5000 units/year,
and the ordering quantities at which the transportation cost break, b = 500
units.
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Table 1. A summary of the parameter settings listed by Vroblefski et al.[16]

Storage depot i 1 2 3 4
Ordering Cost($/order) K1= 75 K2=19 K3= 150 K4= 80
Holding Cost($/unit/year) h1= 10 h2= 5 h3= 3 h4= 5
The Unit Transportation P10= 0.25 P20= 0.2 P30= 0.1 P40= 0.2
Cost ($/unit) P11= 0.2 P21= 0.075 P31= 0.075 P41= 0.175

For a storage depot i, its ordering and inventory costs, defined as TCi(ki, qL):

TCi(ki, qL) =
Kiλ

kiqL
+

hikiqL

2
. (2)

According to the above equation, the cost-curve of each storage depot can
be represented in two-dimensional axes, which are qL and TCi(ki, qL). The
TC2(k2, qL) is given in Figure 2.

Figure 2: The ordering and inventory cost function of #2 storage depot

For any given value of qL, we can obtain the PoT positive integer ki so as

to minimize eq. (2). We denote it as TCi(qL), the minimal cost function with
respect to qL for the storage depot i.
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TCi(qL) = min
ki

{TCi(ki, qL)} (3)

Remark 3.1 The TCi(qL) function is piece-wise convex with respect to qL.

For the TCi(qL) function, we denote a point at which two curves join as
a junction point (JP ), δir , where r = 1, 2, 3, . . . is the JP counter for each
storage depot i. The JP in the storage depot i plays an important role, because
it leads to a change in the curve on its right-hand side, that is ki = 2αi , to the
ki = 2(αi+1), next and successive curve on its left-hand side. To be precise, the
location of JP on the qL-axis can be computed as follows:

δir(ki) = (
1

ki
)

√
Kiλ

hi
(4)

On the other hand, by setting the first-order derivation with respect to
qL from eq. (2) as zero, we acquire the conventional EOQ formula times a
reciprocal of a PoT positive integer. For each strictly convex curve, there
exists only one minimal cost point (MCP ), denoted as θiu, for i = 1, 2, . . . , n
and u = 1, 2, 3, . . . is the MCP counter.

θiu(ki) = (
1

ki
)

√
2Kiλ

hi
(5)

In addition, the transportation cost is added into eq. (2) as follows:

TTCi(ki, qL) =
Kiλ

kiqL
+

hikiqL

2
+ λ{P ′

i1yi1 + Pi0}. (6)

Denote TTCi as total cost for each storage depot i. Figure 3 demonstrates
that each depicted ki curve is convex but decreasing and discontinuous at a
certain point called the PoT transportation-cost breakpoint (PoT − TCB),
defined as ρkij for ki = 2αi, αi = 0, 1, 2, . . .∀i and j = 1, 2, 3, . . .m. In the
cases of P2,TL, m = 1. Notice that all storage depots have the same values of
ρkij .
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ρkij =
bj

ki
(7)

Figure 3: The total cost function of #2 storage depot

It is of interest that some changes would happen to JP between two curves
because of the incorporation of transportation cost. We define those points
as ξiv where v = 1, 2, 3, . . . is the new JP counter for all i. Concerning the
positions where the JPs are located, we suggest one remark be taken into
considerations. Some notations should be defined in advance:

Č2αi : the corresponding curve with (ki = 2αi ).
Č2(αi+1): the corresponding curve with ( ki = 2(αi+1)).
Č2αi ,sg0 : the first segment of Č2αi separated by ρ2αi1 .
Č2αi ,sg1 : the second segment of Č2αi separated by ρ2αi1 .
Č2(αi+1),sg0: the first segment of Č2(αi+1) separated by ρ2(αi+1)1 .

Č2(αi+1),sg1: the second segment of Č2(αi+1) separated by ρ2(αi+1)1 .

Remark 3.2 There are three intersecting conditions for Č2αi and Č2(αi+1):
(1) Č2αi ,sg0 intersects Č2(αi+1),sg0 at the point ξiv = (1/2αi)

√
Kiλ/hi. (Simi-

lar solution is also obtained in eq. (4).) We need to check if ξiv ∈ (0, ρ2(αi+1)1 ).
If ξiv is in the interval, we keep it; otherwise, ignore it.

(2) Č2αi ,sg0 intersects Č2αi ,sg1 at the point
.

ξiv =

{
λ(Pi0 − Pi1) +

√
λ [λ(Pi0 − Pi1)2 + hiKi]

}
hiki

. (8)
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We need to check if ξiv ∈ [ρ2(αi+1)1 , ρ2αi1 ). If ξiv is in the interval, we
keep it; otherwise, ignore it.

(3) Č2αi ,sg1 intersects Č2(αi+1),sg1 at the point ξiv = (1/2αi)
√

Kiλ/hi. We
need to check if ξiv ∈ [ ρ2αi1 ,∞). If ξiv is in the interval, we keep it; otherwise,
ignore it.

Figure 4: The criteria illustrated in Remark 3.2 are used for judging the posi-
tion of the JP
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Figure 5 shows total cost-curve structure of this two-level demonstrated
problem. All kinds of points that we define here are going to be the funda-
mental elements of our proposed heuristic approach.

Figure 5: The cost structure of the demonstrated example with two-level trans-
portation costs

3.2 Some Insights into Multi-Level Transportation Cost
Problems

In this section, we extend the results obtained from the problem with two-level
(a single breakpoint) transportation costs to that with multi-level and more
complicated transportation costs.

We have discussed cases involving only one breakpoint in the previous
section. Now we are concerned with the conditions with 2, 3, . . . , or m break-
points. We adopt cases with two breakpoints as an example, while maintaining
the parameters in Table 1 with minor modification. We need to have the ex-
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tra parameters Pi2 and b2 (if we set b1 to be equal to b) for the newly added
1 breakpoint. Continuing the previous example of #2 storage depot, we set
P22 = 0.045 and b2 = 1, 000. The corresponding cost-curve function for #2
storage depot is shown in Figure 6 below:

Figure 6: A demonstrated example for determining segments under the multi-
level transportation cost condition

The determination process for the JP , ξiv, as stated in Remark 3.3, can be
adopted to multi-level problems.
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Remark 3.3 Sort 2m breakpoints that are related to curves Č2αi and
Č2(αi+1) in ascending order and check the individual interval. If indices js of
two segments are the same when they are considered at the same time (for
instance, Č2αi ,sg0 vs. Č2(αi+1),sg0), then the JP can be computed by eq. (4);
otherwise, by the following formula:

ξiv =

{
λ(PiČ2αi ,sgx

− PiČ
2(αi+1),sgy

) +

√
λ

[
λ(PiČ2αi ,sgx

− PiČ
2(αi+1),sgy

)2 + hiKi

]}
/hiki,

(9)

where x, y ∈ j (= 0, 1, 2, . . . , m) and x �= y. Note that we need to further
check if ξiv belongs to the interval. All the consecutive points can be determined
by utilizing the same method, for each storage depot.

Except setting P22 = 0.045 and b2 = 1, 000, we also add the new parameters
P12 = 0.1, P32 = 0.06 and P42 = 0.15 to forming a problem P2,ML with
three-level transportation costs. The cost-curve structure of that problem is
presented in Figure 7. All different kinds of points we discussed in this section
are the foundation for the heuristic approach.

Figure 7: The cost structure of the demonstrated example with three-level
transportation costs
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4 A Proposed Heuristic Approach

Recall that our proposed heuristic method is based on searching the previous
defined points, including the JP , MCP and PoT − TCB. Then, the steps of
the heuristic for determining the best solution to problem P2,TL is as follows:

Step 1: Compute JPs by eq. (4) or (8) and MCPs by eq. (5),
for each storage depot. Employ eq. (7) to get PoT − TCBs.

Step 2: Sort each kind of the searched points in descending order.
We define those searched points as vc, where c = 1, 2, 3, . . .
is a counter for the searched points.

Step 3: As each searched interval means the region where two
adjacent points JPs (δir or ξiv ) are located, find the
searched point vc(δir or ξiv, MCPs and PoT − TCBs)
in each interval and record their corresponding ki-values,
where i = 1, 2, . . . , n. The first searched point, vc, is the point
with the largest value of qL and its ki-values,denoted as Kc,
are expressed as a 1 × n unit vector with (1, 1, 1, . . . , 1)
at the beginning of the search process. The 1st element
in the vector Kc means the ki-value that minimizes TTCi(ki, qL)
at the searched point for #1 storage depot, and the 2nd element
in the vector Kc means the ki-value that minimizes TTCi(ki, qL)
at the searched point for #2 storage depot, etc.

Step 4: Once the vc is chosen, record its related storage depot i and
ki-value. As the searched point is selected from JPs (ξiv ),
ki-value has to be changed from ki to 2ki for a certain storage
depot i. After deciding each ki-value for all storage depots,
we must check ki values again from storage depot 1 to n
for meeting the constraint (1f) and save them into Kc.

Step 5: Pick out the best or minimum value of TC2,TL and set it as TC∗
2,TL.

Select the best solution (K∗
c , v∗

c )=argmin
c

{
TC∗

2,TL(Kc, vc)
}
.

This search procedure can also be applied to solving multi-level problems
with the change of the process of obtaining JPs to equations (4) or (9).

4.1 An Illustrative Example

The search procedure of solving problem P2,TL with the data in Table 1 is
illustrated step by step:
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Step 1: The JPs, MCPs and PoT − TCBs are computed and
summarized as shown in Tables 2 to 4, respectively.
Each result in the Tables 2 and 3 means the different
kinds of searched points obtained from different ki-values .
at different storage depots

Step 2: Two adjacent points JPs in each searched interval are selected
from Tables 2(a) and 2(b) as shown in the 1st column of Table 5.
Gather and sort searched points from Tables 2, 3 and 4
in descending order as presented in the 2nd column of Table 5.

Step 3: The first searched point is 707.11, and it is chosen from MCPs
in Table 3 with the storage depot i = 3 and k3 = 1. Since they
have not had any searched point so far in the storage depots
1, 2, and 4, k1 = 1, k2 = 1, and k4 = 1, therefore,
K1 = (1, 1, 1, 1) at v1 = 707.11.

Step 4: Next searched point is v2 = 500. It appears at JPs ( δ31) in
Table 2(a), k3 = 1, JPs( ξ31) in Table 2(b), k3 = 1 and
at PoT − TCBs in Table 4, ki = 1 ∀i. Hence, K2 = (1, 1, 1, 1)
at v2 = 500. But that point is chosen from JPs ( ξ31) at a
certain storage depot, #3, we need to change k3-value from
1 to 2 before searching the next searched point v3.Accordingly,
v3 = 400 is selected from MCPs, we now have (1, 1, 2, 1)
due to k4 = 1. Because of the constraint (1f), we need to change
k4-value from 1 to 2 such that K3 = (1, 1, 2, 2). The adjacent
and next searched point v4 = 353.55 is selected from MCPs
with k3 = 2 such that K4 = (1, 1, 2, 2). v5 appears at JP (ξ21 ),

i.e. 311.08 with i = 2 and k2 = 1, and its ki-values are
K5 = (1, 1, 2, 2). Before finding v6, we must change k2-value
from 1 to 2 such that (1, 2, 2, 2). Next JP ( ξ41) point, i.e. 308.95,
K6 = (1, 2, 2, 2) meets the constraint (1f) although k4 = 1 is
obtained from Table 2(b). Similarly, k4-value needs to be 2 before
keeping on the search process.

Step 5: Based on our proposed heuristic, we can obtain the best solution,
v∗

c = 250 (the base lot-size q∗L = 250), four PoT positive integer
k∗

i -values (1, 2, 2, 2) and an ultimate total average cost of
TC∗

2,TL= $11,365, to this numerical example as shown in Table 5.
Hence, the PoT replenishment policy ( q∗1, q∗2, q∗3, q∗4)
would be of the quantities (250, 500, 500, 500).

Table 2. The JPs for the model P2,TL

(a) JPs (δir )
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Storage depot i 1 2 3 4
ki = 1 193.65 137.84 500.00 282.84
ki = 2 96.82 68.92 250.00 141.42
ki = 4 48.41 34.46 125.00 70.71
ki = 8 24.21 17.23 62.50 35.36
ki = 16 12.10 8.62 31.25 17.68
ki = 32 6.05 4.31 15.63 8.84

(b) JPs (ξiv )

Storage depot i 1 2 3 4
ki = 1 193.65 311.08 500.00 308.95
ki = 2 96.82 155.54 250.00 154.47
ki = 4 48.41 77.77 125.00 77.24
ki = 8 24.21 38.88 62.50 38.62
ki = 16 12.10 19.44 31.25 19.31
ki = 32 6.05 9.72 15.63 9.65

Table 3. The MCPs for the model P2,TL

Storage depot i 1 2 3 4
ki = 1 273.86 194.94 707.11 400.00
ki = 2 136.93 97.47 353.55 200.00
ki = 4 68.47 48.73 176.78 100.00
ki = 8 34.23 24.37 88.39 50.00
ki = 16 17.12 12.18 44.19 25.00
ki = 32 8.56 6.09 22.10 12.50

Table 4. The PoT − TCBs for the model P2,TL

ki = 1, ∀i ρ11 = 500
ki = 2, ∀i ρ21 = 250
ki = 4, ∀i ρ41 = 125
ki = 8, ∀i ρ81 = 62.5
ki = 16, ∀i ρ16,1 = 31.25
ki = 32, ∀i ρ32,1 = 15.625

Table 5. The detailed search procedure of solving the model P2,TL
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A searched interval vc k1 k2 k3 k4 TC2,TL

[500,∞) 707.11 1 1 1 1 13, 047.75
500 1 1 1 1 11, 615.00

1 1 2 1
[311.08, 500) 400 1 1 2 2 12, 312.50

353.55 1 1 2 2 11, 935.78
311.08 1 1 2 2 11, 680.99

1 2 2 2
[308.95, 311.08) 308.95 1 2 2 2 11, 664.74

1 2 2 2
[282.84, 308.95) 282.84 1 2 2 2 11, 578.69
[250, 282.84) 273.86 1 2 2 2 11, 560.65

250 1 2 2 2 11, 365.00
1 2 4 2

[193.65, 250) 200 1 2 4 4 11, 987.50
194.94 1 2 4 4 11, 966.89
193.65 1 2 4 4 12, 201.30

2 2 4 4
[155.54, 193.65) 176.78 2 2 4 4 11, 935.78

155.54 2 2 4 4 11, 680.99
2 4 4 4

[154.47, 155.54) 154.47 2 4 4 4 11, 664.74
2 4 4 4

[141.42, 154.47) 141.42 2 4 4 4 11, 578.69
[137.84, 141.42) 137.84 2 4 4 4 11, 563.67

136.93 2 4 4 4 11, 560.65
125 2 4 4 4 11, 365.00

4.2 Computational and Comparative Results

To generate data randomly, we refer to the experiments in Vroblefski et al.
[16]. Levels of factors, including EOQ turnover level, transportation cost
break turnover level, transportation cost differentials, and relative measure of
transportation to ordering and holding costs, are our referencing bases in both
two-level and multi-level experiments. We randomly generate 360 instances (36
combinations and each combination has 10 examples) in two-level experiment
and another 360 examples in multi-level experiment. We try to compare the re-
sults of our heuristic with those of the LINGO software in terms of average run
times and average cost deviations. In two-level and multi-level experiments,
we use a computer P4 − 1.8GHz, 512MB RAM to run both experiments.
A comparison of average run times in both two-level and multi-level cases is
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demonstrated in Table 6. From these experimental results, we can conclude
that the proposed heuristic methods can solve the problems very efficiently
and within 1.006 CPU seconds. Tables 7 and 8 present average cost devi-
ations, the percentage of the term (TC2,TL(Heuristic)−TC2,TL (LINGO))/
TC2,TL (LINGO) and (TC2,ML(Heuristic) − TC2,ML (LINGO))/ TC2,ML

(LINGO), in both two-level and multi-level experiments. In general, the
heuristic method performed satisfactorily, yielding solution within 3% of the
optimal cost. In particular, the two-level cases performed very well, yielding
solution within 0.66%. Besides, we found that the cost deviations tend to
enlarge in both two-level and multi-level experiments in EOQ turnover level
factor. Finally, Table 8 shows that on average, the average cost deviations
between our proposed heuristic and LINGO software are within 1.2%.

Table 6. Comparative results of average run time

(a) two-level experiments

n m LINGO Heuristic
(storage depots) (breakpoints) (seconds) (seconds)

5 1 15.278 49.252
10 1 0.088 0.468

(b) multi-level experiments

n m LINGO Heuristic
(storage depots) (breakpoints) (seconds) (seconds)

5 5 26.328 0.104
5 10 92.764 0.154
10 5 111.389 0.619
10 10 342.403 1.006

Table 7. The average cost deviations of each level

(a) two-level experiments
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Variable Level n = 5, n = 10,
m = 1 m = 1

EOQ turnover level [5, 10] 0.046% 0.016%
[20, 30] 0.037% 0.022%
[5, 40] 0.660% 0.545%

Transportation cost break [5, 7] 0.348% 0.131%
turnover level [9, 11] 0.164% 0.258%
Transportation cost [0.1, 0.3] 0.365% 0.142%
differential [0.4, 0.6] 0.110% 0.244%

[0.7, 0.9] 0.292% 0.193%
Transportation / ordering [0.2, 0.3] 0.333% 0.212%
and holding costs [0.7, 0.8] 0.185% 0.173%

(b) multi-level experiments
Variable Level n = 5, n = 5, n = 10, n = 10,

m = 5 m = 10 m = 5 m = 10
EOQ turnover level [5, 10] 0.092% 0.565% 0.050% 0.115%

[20, 30] 0.496% 0.583% 0.330% 0.383%
[5, 40] 0.901% 0.905% 2.960% 2.559%

Transportation cost break [5, 7] 0.571% 0.837% 1.336% 1.050%
turnover level [9, 11] 0.422% 0.531% 0.891% 0.989%
Transportation cost [0.1, 0.3] 0.424% 0.953% 1.059% 0.930%
differential [0.4, 0.6] 0.656% 0.716% 1.056% 0.736%

[0.7, 0.9] 0.409% 0.384% 1.224% 1.392%
Transportation / ordering [0.2, 0.3] 0.415% 0.500% 0.987% 0.914%
and holding costs [0.7, 0.8] 0.579% 0.868% 1.239% 1.124%

Table 8. The average cost deviations of each generated example
n m Average TC Deviation

(storage depots) (breakpoints)
5 1 0.248%
5 5 0.497%
5 10 0.684%
10 1 0.194%
10 5 1.113%
10 10 1.019%

5 Concluding Remarks

Based on the comprehensive analysis on cost properties of the serial distributed
storage depot problem under PoT policy, we first solve the sort of problems



Heuristic approach for solving serially distributed storage depots 273

with multiple storage depots and a single transportation cost breakpoint, then
demonstrate the performance of the heuristic method with those of LINGO
package. Next, we expand the problems to multiple storage depots and multi-
level differential transportation costs. The results obtained from computa-
tional experience show that the proposed heuristic method is efficient and
reliable in solving practical inventory-distribution problems.

The contributions of this paper are in two aspects. First, this study con-
siders about more complicated problems than those enunciated in Vroblefski
et al. [16]. Also, our study presents several important results on the cost
structures of the single link problems under PoT policy. For instance, we have
discussed the properties of both the junction points and the breakpoints that
are the crucial searched elements. Second, we develop a new search heuristic
and obtain the satisfactory outcomes efficiently. The proposed heuristic is the
first solution approach in the literature to solve the problems analyzing those
with cost-curve properties.
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