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Abstract

Independent component analysis (ICA) is an unsupervised tech-
nique for blind source separation, and the ICA algorithms using non-
gaussianity as the measure of mutual independence have been also used
for projection pursuit or visualization of multivariate data for knowledge
discovery in databases (KDD). However, in real applications, it is often
the case that we fail to extract useful latent variables because they have
no connection with predefined criterion variables. This paper proposes
an enhanced technique of ICA, which extracts independent components
closely related to some external criteria. Preprocessing is performed by
using fuzzy regression-principal component analysis, which estimates
latent variables that have high correlation with the external criteria
considering local data structure.
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1 Introduction

Independent component analysis (ICA) [2, 11, 7] is an unsupervised technique
for blind source separation, in which the goal is to reconstruct mutually inde-
pendent signals. Linear ICA model uses higher order statistics than principal
component analysis (PCA) to reveal the intrinsic linear structure of data sets,
and the ICA algorithms using non-gaussianity as the measure of mutual in-
dependence have been also used for projection pursuit [10] or visualization of
multivariate data for knowledge discovery in databases (KDD). In real appli-
cations, however, it is often the case that the goal of the analysis is to represent
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the mutual relationship between the observed variables and some external cri-
terion variables, and we fail to extract useful latent variables because they
have no connection with predefined criterion variables.

When we have some external criteria, we should extract independent com-
ponents considering the effects of external variables. Yanai [17] proposed PCA
with external criteria that extracts latent variables uncorrelated to some exter-
nal criteria, in which the influences of external criteria are first removed from
a data matrix by using regression analysis. Honda and Ichihashi [4] proposed
a technique for extracting independent components uncorrelated to some ex-
ternal criteria, in which the influences of external criteria are first removed
from observed data by regression analysis before applying the ICA algorithm.
Another possible approach is to extract feature values that are closely related
to some external criteria. Regression-principal component analysis [13, 15] is
a technique for extracting latent variables that have high correlation with the
external criteria so as to keep the covariance structure between observed vari-
ables and the external criteria. So, regression-principal components are useful
for representing the intrinsic feature of multivariate data sets than conventional
principal components in the view point of prediction ability.

Linear ICA models are, however, often too simple for describing real-world
data, and several non-linear ICA approaches that were used in conjunction
with some suitable clustering algorithms have been proposed [9, 14]. Honda et
al. [5] proposed a local ICA model that uses Fuzzy c-Varieties (FCV) clustering
method [1] for extracting local independent components. The FCV algorithm
partitions an observed data set into linear fuzzy clusters based on the simi-
larities of mixing matrices, and can be regarded as local PCA [3], in which
linear model estimation is performed in conjunction with fuzzy clustering. So,
the FCV clustering is a simultaneous application of data partitioning and nor-
malization of the observed variables. In [4], an extended local ICA model
was proposed, in which preprocessing step was performed by a clustering al-
gorithm for estimating local principal components that were uncorrelated to
some external criteria.

This paper proposes an enhanced local ICA approach, in which the ob-
served variables are preprocessed by using fuzzy local regression-principal com-
ponent analysis [16] that is a hybrid technique of PCA, regression analysis and
fuzzy clustering. The new technique is applied to knowledge discovery from
POS transaction data with the goal of the analysis being to reveal the rela-
tionship between the number of customers and other elements.

The structure of this paper is as follows: Section 2 presents a brief review of
ICA and introduces the fuzzy local ICA that extracts independent components
considering membership degree of samples given in the preprocessing step by
fuzzy clustering. In section 3, a new technique that extracts local indepen-
dent components closely related to some external criteria is proposed. Several
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experimental results including the knowledge discovery from POS transaction
data are presented in Section 4. Section 5 contains the summary conclusions.

2 Fast ICA Algorithm and Local ICA Approaches

2.1 ICA Formulation and Fast ICA Algorithm

Denote that x = (x1, x2, · · · , xM)� is an M dimensional observed data vector
and s = (s1, s2, · · · , sN)� is an N dimensional source signal vector correspond-
ing to the observed data with N ≤ M , where � represents the transpose of
vector. When the elements of source signals (s1, s2, · · · , sN) are mutually sta-
tistically independent and have zero-means and unit-variances, the observed
data are assumed to be the linear mixtures of si as x = As, where unknown
M × N matrix A is called a mixing matrix. The goal of ICA is to estimate
source signals si, i = 1, · · · , N and mixing matrix A using only the observed
data x.

Some ICA algorithms perform a preprocessing step of whitening and spher-
ing before applying linear ICA. In the preprocessing step, observed data x
are transformed into linear combinations z = P�x such that their elements
zi?Ci = 1, · · · , N are mutually uncorrelated and all have unit variance, i.e.,
correlation matrix E{zz�} is equal to unit matrix IN . Usually, this transfor-
mation is performed by linear PCA. After the preprocessing, we have

z = P�x = P�As = Ws,

where W = P�A is an orthogonal matrix due to the assumption. Thus, the
problem of finding matrix A is reduced to a simpler problem of finding an
orthogonal matrix W , which gives reconstructed variables s as s = W�z.

One measure of the mutual dependence of reconstructed variables used in
ICA models is non-gaussianity. In order to measure the non-gaussianity of
distribution, we can use the fourth-order cumulant or kurtosis E{(w�z)4} −
3‖w‖4. For a gaussian random variable, kurtosis is zero; for densities peaked
at zero, it is positive, and for flatter densities, negative. Then the goal is to find
a linear combination that has maximal or minimal kurtosis, and the objective
function to be minimized or maximized is given as

Lica(w) = E{(w�z)4} − 3‖w‖4 + F (‖w‖2), (1)

where E{·} denotes sample mean. The third term denotes the constraint of w
such that ‖w‖2 = 1.

Hyvärinen and Oja [8] proposed the Fast ICA Algorithm that uses fixed-
point iteration. The procedure is represented as follows:

Step1 Take a random initial weight vector w(0) of norm 1. Let r = 1.
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Step2 Update w(r) using (2).

w(r) = E{z(w(r − 1)�z)3} − 3w(r − 1) (2)

Step3 Divide w(r) by its norm.

Step4 If |w(r)�w(r−1)| is enough close to 1, stop: otherwise return to Step2.

Vectors w(r) obtained by the algorithm constitute the columns of orthogonal
mixing matrix W . To estimate N independent components, we need to run
this algorithm N times. We can estimate the independent components one by
one by adding projection operation in the beginning of Step3.

2.2 Fuzzy Local ICA with FCV Clustering

Local ICA is a non-linear model, in which linear ICA models are estimated
by considering local structure of data sets. Honda et al. [5] enhanced the Fast
ICA algorithm to Fuzzy Fast ICA that can handle fuzziness in the iterative
algorithm by using the FCV clustering as preprocessing. In the FCV clustering,
data sets are partitioned into several linear shape clusters where each cluster
is represented by prototypical linear variety of dimension N(N < M) that
passes through a point vc and is spanned by linearly independent unit vectors
pc1, · · · , pcN . So, FCV-based approach is more useful for partitioning data
considering differences of mixing matrices than conventional local ICA such
as [9]. The objective function of FCV is composed of distances between data
points and prototypical linear varieties as follows:

Lfcv =
C∑

c=1

J∑
j=1

ucj

{
‖xj − vc‖2 −

N∑
k=1

|p�
ck(xj − vc)|2

}

+λ
C∑

c=1

J∑
j=1

ucj log ucj, (3)

where C and J are the number of clusters and observations, respectively. ucj

is the degree of membership of the jth data point to the cth cluster. In [5], the
memberships are fuzzified by using the entropy regularization technique [12]
instead of the weighting exponent used in the standard FCV algorithm [1].
The larger the λ, the fuzzier the membership assignments. Using a three-step
iterative algorithm, we can estimate the optimal fuzzy partition where each
prototype corresponds to local principal subspace. So, the FCV clustering can
be regarded as a technique for local PCA [3].

Before applying linear ICA in each cluster, the observed data x is nor-
malized to zc so that E{zcz

�
c } = IN is satisfied. Here E{·} means the
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membership-weighted average. In order to perform ICA in each fuzzy cluster,
the measure of non-gaussianity is also modified to fuzzy kurtosis as follows:

fuzzy kurtosis =

∑J
j=1 ucj(w

�
c zcj)

4∑J
j=1 ucj

− 3‖wc‖4.

Then, local independent components of each cluster are estimated by the Fast
ICA algorithm considering memberships of observed data.

3 Extraction of Independent Components Re-

lated to External Criteria

3.1 Preprocessing by Regression-Principal Component
Analysis

When we wish to derive the independent components that are relative to
some external criteria, we should perform the preprocessing so that the prin-
cipal components have high correlation with the external criteria. Regression-
principal component analysis [13, 15] is a technique for estimating latent vari-
ables which are useful for predicting external criteria (objective variables)
avoiding the problem of co-linearity.

Assume that we have J samples with I predictor variables and K response
variables which are denoted by x1, x2, · · · , xI and xI+1, xI+2, · · · , xI+K , respec-
tively.

(
X Y

)
=

⎛
⎜⎜⎝

x11 · · · xI1 x(I+1)1 · · · x(I+K)1
...

. . .
...

...
. . .

...
x1J · · · xIJ x(I+1)J · · · x(I+K)J

⎞
⎟⎟⎠ (∈ RJ×(I+K)). (4)

Here, X is a predictor matrix and Y is a response matrix, and each variable has
zero-mean. The goal of regression-principal component analysis is to estimate
the multiple regression models

xI+k = γk1z1 + γk2z2 + · · ·+ γkNzN + ek, (5)

where z1, z2, · · · , zN (N < I) are the latent variables (regression-principal com-
ponents) zi = l�x. The purpose is to obtain z so as to minimize the sum of
residual variances, i.e., we determine the coefficient vector l which maximize
the correlation ρk between the response variables xI+k and linear combinations
zi of predictor variables.

ρk = (l�rk)(l
�Sl)−1/2(tkk)

−1/2, (6)
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where S is the variance-covariance matrix of the predictor variables. rk is a
column of the covariance matrix R between the predictor variables and the
response variables, and tkk is a diagonal element of the variance-covariance
matrix of the response variables.

The optimal coefficient vector l is the solution of the maximization problem:

max
K∑

k=1

ρkm0k = l�Rm (7)

s.t. l�Sl = 1 (8)

m�m = 1 (9)

where the k-th element of m is given as mk = (tkk)
−1/2m0k, and the constraints

are considered in order to derive a unique solution. Here, the optimal l is
derived by solving the eigenvalue problem

S−1RR�l = λ2l. (10)

Then, we can derive the regression-principal components that are useful
for representing the intrinsic structure of the response variables, and the in-
dependent components closely related to external criteria are estimated from
the latent variables by using the Fast ICA algorithm.

3.2 Local ICA with Fuzzy Clustering and Regression-

Principal Component Analysis

In this subsection, an enhanced version of the local ICA model is proposed by
using a simultaneous application of fuzzy clustering, PCA and multiple regres-
sion analysis [16]. In order to perform not only regression-principal component
analysis but also fuzzy clustering, we consider the following C(c = 1, · · · , C)
local multiple regression models for xI+1, · · · , xI+K :

xI+k = γck1zc1 + γck2zc2 + · · · + γckNzcN + eck, (11)

where zc1, zc2, · · · , zcN (N < I) are local regression-principal components:

zci = lci1(x1 − vc1) + · · ·+ lciI(xI − vcI),

vck denotes the center of cluster c. The goal is to estimate the coefficients
lck1, · · · , lckI and fuzzy memberships ucj which maximize the fuzzy correlation
ρck between the response variables and linear combinations zci of predictor
variables.

ρck = (l�c rck)(l
�
c Sclc)

−1/2(tckk)
−1/2, (12)
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where

Sc = {scks}, (13)

scks =
J∑

j=1

ucj(xkj − vck)(xsj − vcs), (14)

rcks =
J∑

j=1

ucj(xkj − vck)(x(I+s)j − vc(I+s)), (15)

tcks =
J∑

j=1

ucj(x(I+k)j − vc(I+k))(x(I+s)j − vc(I+s)). (16)

The objectives are to maximize the weighted sum of fuzzy correlation coeffi-
cients:

C∑
c=1

K∑
k=1

ρckmc0k =
C∑

c=1

l�c Rcmc, (17)

where

mck = (tkk)
−1/2mc0k, (18)

Rc = {rcks}, (19)

and to minimize the within-group sum-of-squared-errors:

C∑
c=1

J∑
j=1

ucj||xj − vc||2. (20)

To estimate unique lc and mc, the parameters are derived under the fol-
lowing constraints:

l�c Sclc = 1, (21)

m�
c mc = 1, (22)

which imply that zci = l�c (x − vc), i = 1, · · · , N have unit variance and are
mutually orthogonal. By the Fuzzy c-Means clustering convention [1], mem-
berships are constrained as

C∑
c=1

ucj = 1, j = 1, 2, · · · , J, c = 1, 2, · · · , C. (23)

These objectives to be maximized and constraints can be represented by a
Lagrangian function as

L =
C∑

c=1

[
α

{
l�c Rcmc − 1

2
μl

c(l
�
c Sclc − 1) − 1

2
μm

c (m�
c mc − 1)

}
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−(1 − α)
J∑

j=1

ucj||xj − vc||2 − λ
J∑

j=1

ucj log ucj

]

−
J∑

j=1

νj(
C∑

c=1

ucj − 1), (24)

where α is a constant to define the tradeoff between regression-principal com-
ponent analysis and within-group sum-of-squared-errors. ucj, which takes the
value from interval [0, 1], is the membership of sample data j in cluster c. λ
in the entropy term is a weighting parameter to specify degree of fuzziness of
fuzzy clusters. μl

c, μm
c and νj are the Lagrangian multipliers. From the neces-

sary condition for the optimality, the optimal vci for i ∈ {1, 2, · · · , I} is given
as

vci =

∑J
j=1 ucjxij∑J

j=1 ucj

. (25)

We can obtain vci for i ∈ {I + 1, I + 2, · · · , I + K} in the same manner. From
∂L/∂lc = 0 and ∂L/∂mc = 0, we have

μc = μl
c = μm

c = l�c Rcmc, (26)

S−1
c RcR

�
c lc = (μc)

2lc, (27)

and zc is obtained from the eigenvector lc corresponding to the maximum
eigenvalue μ2

c,max of the eigenvalue problem of (27).

zc1 = l�c1(x
∗ − v∗

c), (28)

where x∗ = (x1, · · · , xI) and v∗
c = (vc1, · · · , vcI) and lc1 = lc(l

�
c Sclc)

−1/2. In the
same manner, we can obtain zc2, · · · , zcN from the eigenvectors corresponding
to the second · · · Nth eigenvalues. From ∂L/∂ucj = 0, the memberships to
clusters are obtained as

ucj =
exp(Acj)∑C

a=1 exp(Aaj)
, (29)

Aaj =
α

λ

{ I∑
i=1

K∑
k=1

(xij − vai)(x(I+k)j − va(I+k))laimak

−μa

I∑
i=1

K∑
k=1

(xij − vai)(xkj − vak)lailak − 1 − α

β

I+K∑
i=1

(xij − vai)
2.(30)

The algorithm is as follows [16]:

Step1 Randomly choose membership ucj, c = 1, · · · , C, j = 1, · · · , J from unit
interval [0,1] so that they satisfy the probabilistic constraint of (23) and
compute the cluster center vector vc by (25).
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Figure 1: Original source signals

Step2 Compute zi, i = 1, · · · , N by using eigenvalues from (27).

Step3 Update vc and ucj by (25) and (29).

Step4 If maxc,j |uNEW
cj − uOLD

cj | < ε then stop. Otherwise, go to Step2.

Once we get local regression-principal components and fuzzy membership
values, we can perform the Fuzzy Fast ICA algorithm in each cluster because
zc is a normalized observation that satisfies the condition of E{zcz

�
c } = IN .

Here, it must be noted that the proposed approach applies fuzzy linear ICA
after removing components uncorrelated with the external criteria from I pre-
dictor variables while the conventional ICA model perform dimension reduc-
tion by PCA in order to remove noise components from observed data. In this
sense, the independent components derived by the proposed ICA algorithm
are different from conventional ones when we perform dimension reduction of
observation.

4 Numerical Experiment

In this section, we show the characteristic features of the proposed method
through a numerical example with an artificial data followed by a real world
application to knowledge discovery from POS transaction data.
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Figure 2: Mixed signals

4.1 BSS of Artificially Mixed Speech Signals

The proposed method was applied to blind source separation (BSS) of speech
signals that were artificially mixed by a mixing matrix. Fig.1 and Fig.2
show the four speech signals s = (s1, s2, s3, s4)

� and four mixed signals x =
(x1, x2, x3, x4)

� are given by x = As, where the mixing matrix was set as

A =

⎛
⎜⎜⎜⎝

0.3 0.2 0.3 0.2
0.2 0.3 0.2 0.3
0.4 0.2 0.3 0.1
0.1 0.4 0.2 0.3

⎞
⎟⎟⎟⎠ . (31)

In this experiment, two of the original signals s1, s2 are given as the external

criteria (response variables) x5, x6 with the goal of the analysis being to extract
the independent components that are closely related to the external criteria,
i.e., I = 4, K = 2. Before the application of the algorithm, the signals were
normalized so that each signal has zero mean and unit variance.

First, two latent variables z1, z2 are extracted by regression-principal com-
ponent analysis. Fig.3 shows the derived signals. Because x3 and x4 are not
relevant to the external criteria, their influences were removed in the regression-
principal component analysis step, and the regression-principal components z1

and z2 are the mixture of x1 and x2. After that, z1 and z2 were transformed
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Figure 3: Regression-principal components
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Figure 4: Reconstructed signals

into the independent components shown in Fig.4 by applying the Fast ICA al-
gorithm. Because the regression-principal components are the latent variables
that are relative to the external criteria, the reconstructed signals are very
similar to the external signals of s1, s2. In order to show that the proposed
method is useful for extracting the independent components closely related
to some external criteria, an unrealistic situation was considered, where some
source signals to be reconstructed were known. In the next section, a real ap-
plication is presented, where the goal is to reveal intrinsic mutual relationships
from a database.

4.2 Knowledge Discovery from POS Transaction Data

Next, we applied the proposed method to knowledge discovery in a real world
database. The POS (Point-Of-Sales) transaction data set, which was used
in [4], was collected in 1996 at two supermarkets in Osaka and includes 327
sample data. In this experiment, we used 13 variables (M = I + K = 13):
national holiday, 7 days of the week, average temperature of the day, humidity,
precipitation and the numbers of customers in each supermarket. The items
of days of the week and national holyday are dummy variables. The goal of
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Table 1: Correlation coefficients between independent components and original
variables derived by local ICA with FCV

Correlation coefficient
Variable c = 1 c = 2

IC1 IC2 IC1 IC2

Holiday 0.03 -0.05 0.12 -0.36
Monday — — -0.08 -0.93
Tuesday 0.83 0.54 — —

Wednesday -0.12 -0.64 — —
Thursday — — -0.81 0.53

Friday 0.12 -0.50 — —
Saturday — — 0.89 0.40
Sunday 0.81 0.46 — —

Temperature 0.04 0.14 -0.04 0.01
Humidity -0.22 -0.01 -0.08 -0.30

Precipitation -0.14 -0.20 0.21 -0.23
Supermarket A 0.17 0.82 -0.15 0.74
Supermarket B 0.34 0.87 0.54 0.50

the analysis is to extract useful knowledge on mutual relation between the
numbers of customers and other elements by constructing the 2-D projections
of local independent components.

For the sake of comparison, we first applied the Fuzzy Fast ICA algo-
rithm that performs the FCV clustering as the preprocessing using all variables
(M = 13). The parameters were set as C = 2, N = 2, λ = 0.2. In the FCV
clustering stage, the data set was partitioned into two linear clusters. One
mainly consisted of Tues., Wed., Fri. and Sun., and the other included the re-
maining days. Table 1 shows the correlation coefficients between the original
variables and the independent components derived in each cluster. “ — ” in-
dicates that the crisp cluster based on the maximum membership assignments
did not include the day.

Fig.5 shows the projection onto the two-dimensional spaces spanned by the
two local independent components (IC1 and IC2). In the figure, the horizontal
and vertical axes were named based on the correlations between the indepen-
dent components and the number of customers. “A-busy” (“B-busy”) means
supermarket A (B) had many customers while supermarket B (A) did not
have large correlation with the independent component, and vice versa. Fig.5-
a shows the characteristic feature that is common to both the two supermarkets
while Fig.5-b reveals the respective characteristics of each supermarket. These
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Figure 5: 2-D plots of independent components derived by local ICA with
FCV

characteristic features are closely related to the average numbers of customers
for each day of the week shown in Table 2. However, the independent com-
ponents are not necessarily concerned with the number of customers. Indeed,
IC1 of the first cluster had no information on the number of customers.

Then, we applied the proposed method in order to extract local independent
components that are closely related to external criteria. The parameters were
set as C = 2, N = 2, λ = 0.1, α = 0.5. The numbers of customers were set as
the external criteria (K = 2) and independent components were extracted from
other variables (I = 11). Table 3 shows the correlation coefficients between
the independent components and the original variables. Fig.6 shows the 2-
D plots of the local independent components of each cluster. Because we
used the regression-principal components that are useful for predicting the
external criteria, the two independent components had high correlation with
the numbers of customers in both of the two clusters. IC1 represents the
characteristic feature of supermarket B while IC2 corresponds to supermarket
A in the first cluster. On the other hand, in the second cluster, IC1 reveals the
trend of supermarket B while IC2 shows the common feature. From the table,
we can see not only the mutual relation between the numbers of customers and
the day of the week but also the relation between the numbers of customers
and the meteorological elements. Here, we can derive an interesting feature on
the number of customers in supermarket A. Although the market had many
customers on Sat. and Sun., IC1 of the first cluster had high correlation not
with the days of the week but with humidity and precipitation whose averages
are shown in Table 4. So, it can be said that only supermarket A was severely
influenced by humidity and precipitation, and the market had many customers
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Table 2: Average numbers of customers for each day of week

Average numbers of customers
Day of week Supermarket A Supermarket B

Holiday 647.9 703.7
Monday 613.4 595.9
Tuesday 693.7 671.0

Wednesday 439.4 478.3
Thursday 827.6 652.0

Friday 592.0 562.1
Saturday 748.6 750.3
Sunday 720.8 759.9
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Figure 6: 2-D plots of independent components derived by proposed method

on Sat. and Sun. because we had little rain on the days as Table 4 indicates.

5 Conclusions

This paper proposed a technique for extracting independent components that
are closely related to some external criteria. In the local ICA model, not
only normalization of observation but also data partitioning are performed be-
fore application of linear ICA with fuzzy local regression-principal component
analysis that can be regarded as a simultaneous application of fuzzy clustering,
PCA and multiple regression analysis.

A potential future work is application to projection pursuit regression [6].
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Table 3: Correlation coefficients between independent components and original
variables derived by proposed method

Correlation coefficient
Variable c = 1 c = 2

IC1 IC2 IC1 IC2

Holiday -0.12 -0.31 -0.91 -0.01
Monday — — -0.53 0.31
Tuesday -0.25 -0.56 — —

Wednesday — — 0.42 0.82
Thursday -0.74 0.57 — —

Friday — — 0.45 -0.39
Saturday 0.40 0.11 — —
Sunday 0.57 -0.11 — —

Temperature 0.34 0.34 -0.02 0.49
Humidity 0.09 -0.33 0.22 -0.09

Precipitation -0.15 -0.31 0.25 -0.15
Supermarket A -0.19 0.43 -0.24 0.67
Supermarket B 0.58 0.07 -0.53 0.55

Although many ICA algorithms use the non-gaussianity as the measure of
mutual dependencies, the criterion is also used in projection pursuit for finding
interesting distribution for visualization purposes, and the low-dimensional
feature values are proved to be useful in prediction tasks. So, the proposed
method can be applied to the switching projection pursuit regression tasks, as
well.
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