
Applied Mathematical Sciences, Vol. 2, 2008, no. 7, 305 - 332

A Multi-Agent System Formalization

in Mobile Environments

Jianwen Chen

IBM Australia, Level 1, 55 Christie St
 St Leonards Sydney, NSW 2065, Australia

jchen@au1.ibm.com

Abstract

This paper models and formalizes a mobile logic programming multi-agent system
(MLPMAS) for mobile environments. Such a system consists of a number of agents
connected via wire or wireless communication channels. Agents communicate with
each other via passing answer sets obtained by updating the information received
from connected agents with their own private information. The interactions between
agents are also modeled in this formalization. Based on this model, knowledge based
transaction can be studied in such a mobile multi-agent system. In addition,
knowledge transaction is formally defined and modeled for these mobile multi-agent
systems.

1. Introduction

Comparing to stationary environments, mobile environments have a few specific
properties such as mobility and disconnection. The communication channels can be
wire or wireless in mobile environments. The features of mobile environment have
presented new challenges for researchers. We believe that research on multi-agent
system and knowledge transaction in mobile environments is critical because this will
help us to find a way to significantly improve current development of multi-agent
system and mobile system.

However, there seems to be a separation between multi-agent systems and the
intelligent agents community on one side, and the mobile system community on the
other side [10, 14, 19, 21]. So far no formalization and model has been presented for
multi-agent system in mobile environments and no study has been conducted for

306 Jianwen Chen

knowledge transaction in mobile multi-agent system. On mobile system community
side, currently the work in paper [3, 4, 13] has introduce calculus to describe the
movement of processes and devices in mobile ambient, and the work in [2, 6, 11] has
presented a number of Java packages, libraries, and frameworks to implement
functionalities for programming distributed and mobile systems. The approaches
above have following disadvantage: (1) They are not suitable for knowledge oriented
processing in mobile environments; (2) They have no declarative semantics. They are
low level algorithms for “how to do” and have no high level “what to do” intelligent
functionality. (3) The details of transaction can’t be specified. On multi-agent and
intelligent agent community side, a lot of framework/model have been developed for
problem solving, knowledge representation and reasoning such as stable
model/answer set, SMODEL, DLV and XSB model in paper [7, 15, 18]. These
models are knowledge oriented with declarative semantics, and their specification
language can specified the details of knowledge transaction, but these models are
only discussed and limited in stationary environments, and haven’t be extended to
mobile environments. The motivation of our work is to propose a new
framework/model with the following features: (1) It is knowledge based with
declarative semantics; (2) It can specify details of knowledge transaction; (3) It can
be used in mobile environments.

In this paper we present a formalism and definition for a mobile logic programming
multi-agent system (MLPMAS). Such a system is very useful for modeling decision-
problems in mobile environments, not just the solutions of the problem but also the
evolution of the beliefs of and the interactions between the agents in mobile
environments. With respect to previous work, we can characterize major features in
our approach as follows: (1) We use extending logic programs and answer set
semantics in our formalization so our model is knowledge oriented and has
declarative semantics inherited from logic programming; (2) It can specify details of
knowledge transaction. By using knowledge rules, input, output and knowledge base
itself can be specified; (3) Our model can be used to process knowledge transaction in
mobile environment.

The rest of this paper is organized as follows. In section 2 presents and formalizes a
mobile logic programming multi-agent system. Section 3 illustrates a study case to
demonstrate how to specify a MLPMAS system in a particular problem domain.
Section 4 formally defines and models the knowledge transaction in formalized
MLPMAS systems. Then, three case studies are presented to address how to process
a knowledge transaction in MLPMAS systems. Finally, section 5 summarizes the
work in this paper.

Multi-agent system formalization 307

2. A Mobile Logic Programming Multi-Agent System Formalization

As we discussed in our paper [5] that extended logic programming is a suitable tool
for knowledge representation and study in mobile environments. In this paper,
extended logic programming is employed as a mathematical tool to formalize a
mobile logic programming multi-agent system in mobile environments. The
definition and formalization of MLPMAS systems are based on a three-layer
environment model presented in Figure 1.1. In this model it is assumed that every
Mobile Host (MH) has its own Knowledge Base (KB) and Intelligent Agent (A11,
A12, A13, A21, A22, A23), and every MSS has a knowledge base and agent residing
on it. It is also assumed that MSS1 and MSS2 represent different MSSs in different
geographic areas. In the Home Server (HS) level, there is a knowledge base that
possesses a set of rules, and there is an agent residing on it. Every intelligent agent on
a MH will work on behalf of that MH, and all the agents in the same geographic area
(i.e. controlled by the same HS) will negotiate, communicate, and cooperate with
each other to achieve the goal for themselves and their systems.
A MLPMAS system is shown in Figure 1.2. A mobile logic programming multi-agent

system includes the three levels, MH, MSS and HS, with the local knowledge base
located on each level. The system consists of a set of agents in mobile environments.
The agent resides on the MH, MSS and HS levels respectively, connected through
communication channels. The agent on each level contains its own logic program
representing its local information and reasoning method. Agents use information

Figure 1.1: Environment model.

HS KB

MH

A11
KB

Goal

 MSS2 KB

MH

A12
KB

MH

A13
KB

MH

A21
KB

MH

A22
KB

MH

A23
KB

Goal

 MSS1 KB

308 Jianwen Chen

received from their incoming channels as input for their reasoning, where the
received information may be overridden by other concerns represented in their
programs. Agents produce output to their outgoing communication channels.

Definition 1: A mobile logic programming multi-agent system, or MLPMAS, is a pair

F = < >A C, , where A is a set of agents: A A A AMH MSS HS= ∪ ∪ , and C A A⊆ × is a
reflexive relation representing the communication channels between agents. For any
a a A1 2, ∈ , if < >∈a a C1 2, , then we say agents a1 and a2 have a communication
channel. For each agent a A∈ , there is an associated extended logic program
LocalKB(a), which represents agent a’s local knowledge base.

Example 1: Definition of the MLPMAS system above can be explained by Example
1, in which an investor agent resides on a MH, a group agent resides on a MSS, and a
fund manager agent resides on a HS. The investor agent manages the local knowledge
base and provides output to the group agent on behalf of the MH. The group agent
collects information from all involved investor agents, manages the local knowledge
base on the MSS and sends output to the fund manager agent. The fund manager
agent collects information from all involved group agents, does the investment

Figure 1.2: A mobile logic programming multi-agent system.

MH1
KB

Output

MH2
KB

Output

MH3
KB

Output

MSS2
Input
KB

Output

HS
Input

KB

Output

MSS1
Input

KB

Output

MH4: in sleep
KB

Output

Multi-agent system formalization 309

decision and manages the local knowledge base on the HS. The investor agent, group
agent and fund manager agent are represented by aMH, aMSS and aHS respectively.
Given a mobile logic programming multi-agent system F = < >A C, , with four mobile
hosts MH1, MH2, MH3 and MH4,, the investor agent resides on each MH:

A a a a aMH MH MH MH MH={ , , , }1 2 3 4
There are two mobile support stations MSS1 and MSS2, with a group agent residing
on each:

A a aMSS MSS MSS={ , }1 2
There is one home server HS, with a resident fund manager agent :

A aHS HS={ }
MH1 and MH2 are in the same geographic location as MSS1; MH3 and MH4 are in
the same geographic location as MSS2. There is a wireless communication channel
between the MHs and their MSS:

< >∈a a CMH MSS1 1, , < >∈a a CMH MSS2 1, ,
< >∈a a CMH MSS3 2, , < >∈a a CMH MSS4 2,

It is a wire communication channel between the MSS and the HS:
< >∈a a CMSS HS1 , , < >∈a a CMSS HS2 ,

It is assumed there is a communication channel between the MH and the HS as well:
< >∈a a CMH HS1 , , < >∈a a CMH HS2 , ,
< >∈a a CMH HS3 , , < >∈a a CMH HS4 ,

As mentioned earlier, each agent is associated with an extended logic program of its
local knowledge base. If there is no answer set, it means the local knowledge base is
not well designed. If there are multiple answer sets, each answer set represents a
possible knowledge state.

The input and output of agents are defined in an MLPMAS as follows.

Definition 2: Let F = < >A C, be a MLPMAS, where A A A AMH MSS HS= ∪ ∪ . At the
MH, MSS or HS level, for∀ ∈a A , we have two parts to the input: message input and
knowledge input, denoted by MessageInput a X(,) and KnowledgeInput a Y(,)
respectively. That is,

Input a MessageInput a X KnowledgeInput a Y() (,), (,)=< >
Here, X A Y A⊆ ⊆, , X, Y are subsets of A. Agent a collects message input from
agents in X, and collects knowledge input from agents in Y, where

∀ ∈b X , we have < >∈a b C, , or < >∈b a C, and
∀ ∈b Y' , we have < >∈a b C, ,' or < >∈b a C' , .

310 Jianwen Chen

I.e. there is a communication channel between agent a and agent b, and agent a and
agent b ' respectively.

Message input is the information that an agent sends to another agent for the purpose
of communication,. such as one agent informing another agent that it will move into
another MSS geographic area. This information will not cause any influence to the
other agent’s local knowledge base. However, knowledge input is the information
produced by the other agent’s local knowledge base, and will be taken into the
agent’s local knowledge base, i.e. the answer set of a logic program.

For∀ ∈a A , we have two parts to the output, message output and knowledge output,
denoted by MessageOutput a X(,) and KnowledgeOutput a Y(,) respectively. That is

Output a MessageOutput a X KnowledgeOutput a Y() (,), (,)=< >
here X A Y A⊆ ⊆, . Agent a sends message output to agents in X, and sends
knowledge output to agents in Y.

Message output is information output for communication purposes, this information
will not cause any influence to the other agent’s local knowledge base. While
knowledge output is the information that is produced by the agent’s local knowledge
base and will have an impact for the other agent’s knowledge base.

Definition 3: The knowledge input and output in MLPMAS systems are defined on
the MH level as follows:
There is no input for MHs at the MH level because this is the first level in MLPMAS
systems, i.e.

KnowledgeInput a YMH(,)=φ (1)

The knowledge output can be derived from the equation:

KnowledgeOutput a aMH MSS(,)
= an answer set of [() (,)]LocalKB a KnowledgeInput a YMH MH∪ (2)

I.e. knowledge output is an answer set of the program formed by the local logic
program of agent aMH with extension of knowledge input from Y for agent a MH .

LocalKB a() is an extended logic program as defined in Definition 1.
KnowledgeInput a Y(,) is a set of facts (beliefs). Note that
LocalKB a KnowledgeInput a YMH MH() (,)∪ is viewed as a new logic program while
fact e∈KnowledgeInput a Y(,) is treated as a rule e← .

Multi-agent system formalization 311

Definition 4: The knowledge input and output in MLPMAS systems on the MSS
level are defined as follows:
The knowledge input can be derived from the equation:

),),((
),(

FYa MSSMH

MSS

SaautputKnowledgeOcons
YanputKnowledgeI

MH

U
∈

= (3)

where cons(X) returns a maximal consistent subset of knowledge output from Y to
agent a MSS with respect to the select function SF.

SF is the selection function of the system. For knowledge
output, U

Yb
abutputKnowledgeO

∈
),(may be inconsistent. SF is introduced to solve such

inconsistency by taking proper preference in the domain. Note that SF is domain
dependent. It can be a special logic programming rule for a specific problem domain.

The knowledge output can be derived from the equation:

KnowledgeOutput a aMSS HS(,)
= an answer set of [() (,)]LocalKB a KnowledgeInput a YMSS MSS∪ (4)

I.e. knowledge output is an answer set of the program formed by the local logic
program of agent a MSS with extending of knowledge input of agent a MSS .

Definition 5: Knowledge input and output in MLPMAS systems on the HS level is
defined as follows:
The knowledge input can be derived from the equation:

),),((
),(

FYa HSMSS

HS

SaautputKnowledgeOcons
YanputKnowledgeI

MSS

U
∈

= (5)

I.e. knowledge input of aHS is the maximal consistent subset of knowledge output
from Y to agent aHS with respect to the select function SF.

The knowledge output can be derived from the equation:

KnowledgeOutput aHS()
= an answer set of [() (,)]LocalKB a KnowledgeInput a YHS HS∪ (6)

I.e. knowledge output is an answer set of the program formed by the local logic
program of agent aHS with extending of knowledge input of agent aHS .

312 Jianwen Chen

Example 2: (Example 1 continued). Given the same scenario described in Example 1.
To invest share1, MH1, MH2, MH3 and MH4 are involved investors. It is shown
how input and output are derived on the MSS level based on their definition above.

On the MSS level, the group agent has input from involved investor agents on behalf
of MH. Group agent a MSS1 on MSS1 has the input as below according to Definition 2:

Input a MessageInput a X KnowledgeInput a YMSS MSS MSS() (,), (,)1 1 1=< >
Here X={ , }a aMH MH1 2 is a subset of A, including all investor agents who have
message input for the group agent on MSS1. Y={ , }a aMH MH1 2 is a subset of A,
including all investor agents who have knowledge input for the agent on MSS1.

According to equation (3), knowledge input on MSS1 can be derived as below:

)),()((

),),((

),(

,, F1MSS2MH1MSS1MH

FY 1MSSMH

1MSS

SaautputKnowledgeOaautputKnowledgeOcons

Sa aautputKnowledgeOcons

YanputKnowledgeI

MH

∪=

=
∈

U

The group agent on MSS1 has message output and knowledge output according to
Definition 2:

Output a MessageOutput a X KnowledgeOutput a YMSS MSS MSS() (,), (,)1 1 1=< >
Here X={ }aHS , Y={ }aHS are subsets of A. The agent a MSS1sends message output to
the agent aHS in X and sends knowledge output to the agent aHS in Y.

The knowledge output can be derived from equation (4):

KnowledgeOutput a aMSS HS(,)1
= an answer set of [() (,)]LocalKB a KnowledgeInput a YMSS MSS1 1∪

Thus, an agent sends its full set of belief outputs over all outgoing communication
channels. On the other hand, an agent receives as input, the beliefs of all agents
connected to its incoming channels.

3. A Case Study for MLPMAS Systems

Study case 1 is presented to illustrate how to specify a MLPMAS system in a specific
problem domain based on the formalization above.

 Study Case 1: This case study is presented in a specific investment problem domain.
The MLPMAS system has shown in Figure 1.2. At the MH level, there are MH1,

Multi-agent system formalization 313

MH2, MH3 and MH4. MH1 and MH2 are in the cell of MSS1, MH3 and MH4 are in
the cell of MSS2. MSS1 and MSS2 are connected to the same HS. At the MH level,
each MH has a local knowledge base that includes a set of investment rules, and has
an investor agent residing on it. At the MSS level, a MSS has it’s own knowledge
base, and accepts the input from MHs and produces the output based on this input and
it’s own belief. The HS has it’s own local knowledge base. It accepts input from the
MSS level and makes the investment decision. For the initial status, it is assumed
that MH1 and MH2 are all alive when a transaction is processed in a MSS1 cell. In a
MSS2 cell, the MH3 is alive, while MH4 is in sleep at the moment the HS is
requesting the transaction information from all related MH agents. The HS will need
information from MH4 by the time it does the decision making. The logic
programming rules for local knowledge bases on MH, MSS, and HS is specified
when input and output of agents are discussed on every level. Note that, all the
equations and definitions quoted in this case study are those formalized in MLPMAS
systems in section 2 of this paper.

MH Level:
Local knowledge base at MH level:
The logic programming rules of local knowledge base on MH level are as follow.
The local knowledge base of MH1 has rules r1-r3 related to the share1 investment:

r holds profit share
r holds risk share
r holds t share

1 1
2 1
3 1

: (())
: (())
: (cos ())

←
←

¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local knowledge base of MH2 has rules r4-r6 related to the share1 investment:
r holds profit share
r holds risk share
r holds t share

4 1
5 1
6 1

: (())
: (())
: (cos ())

←
¬ ←
¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local knowledge base of MH3 has rules r7-r9 related to the share1 investment:
r holds profit share
r holds risk share
r holds t share

7 1
8 1
9 1

: (())
: (())
: (cos ())

←
¬ ←
¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local knowledge base of MH4 has rules r10-r12 related to the share1 investment:
r holds profit share
r holds risk share
r holds t share

10 1
11 1
12 1

: (())
: (())
: (cos ())

←
¬ ←
¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

Input at MH level:

314 Jianwen Chen

According to equation (2), there is no input for MHs at the MH level because this is
the first level in MLPMAS systems. We have

KnowledgeInput a YMH(,)=φ
i.e.

KnowledgeInput a MH()1 =φ , KnowledgeInput a MH()2 =φ ,
KnowledgeInput a MH()3 =φ , KnowledgeInput a MH()4 =φ

Output at MH level:
According to equation (2), we have

KnowledgeOutput a aMH MSS(,)
= an answer set of [() (,)]LocalKB a KnowledgeInput a YMH MH∪

= an answer set of [()]LocalKB a MH ∪φ
= an answer set of [()]LocalKB aMH

I.e. at the MH level, the knowledge output is an answer set of local knowledge base.
Based on rules r1-r9 of the local knowledge base of MHs, the knowledge outputs are
derived as below on MH1, MH2, MH3 and MH4.

KnowledgeOutput a aMH MSS(,)1 1 = { }profit share risk share t share(), (), cos ()1 1 1¬
i.e. it is high profit, high risk and low cost to invest share1 on MH1.

KnowledgeOutput a aMH MSS(,)2 1 ={ }profit share risk share t share(), (), cos ()1 1 1¬ ¬
i.e. it is high profit, low risk and low cost to invest share1 on MH2.

KnowledgeOutput a aMH MSS(,)3 2 ={ }profit share risk share t share(), (), cos ()1 1 1¬ ¬
i.e. it is high profit, low risk and low cost to invest share1 on MH3. MH4 is at sleep at
the moment the information is retrieved from it.

MSS level:
Local knowledge base at MSS level:
On MSS1, we have rule r13 related to this investment in its knowledge base:

}{r holds requested HS MHi holds slept MHi13: ((,)) (())info− ←
On MSS2, we have rule r14 similar to r13 related to this investment in its knowledge
base:

}{r holds requested HS MHi holds slept MHi14: ((,)) (())info− ←
Rules r13 and r14 denote that if MHi is in sleep at the time the HS agent requests
transaction information from MHs, HS will request information from MHi when HS
does the decision making for the transaction.

Multi-agent system formalization 315

Input at MSS level:
At MSS level, according to Definition 2 of MLPMAS systems, input of MSS1 agent
equals:

Input a MessageInput a X KnowledgeInput a YMSS MSS MSS() (,), (,)1 1 1=< >
where X={ , }a aMH MH1 2 is a subset of A, including all investor agents who have
message input for the group agent on MSS1. Y={ , }a aMH MH1 2 is a subset of A,
including all investor agents who have knowledge input for the group agent on
MSS1.

According to equation (3), knowledge input on MSS1 is as below:

))},(cos),(),({
)}(cos),(),(({

)),,()((

),),((

),(

,

F

F1MSS2MH1MSS1MH

FYa 1MSSMH

1MSS

S1sharet1sharerisk1shareprofit
1sharet1sharerisk1shareprofitcons

SaautputKnowledgeOaautputKnowledgeOcons

SaautputKnowledgeOcons

YanputKnowledgeI

MH

¬¬
∪¬=

∪=

=
∈

U

For agent a MSS1 , risk share()1 is a belief in output of a MH1 , while ¬risk share()1 is a
belief in output of a MH 2 , they are inconsistent. Here it is assumed that the selection
function SF takes the positive atom as the higher preference for investment risk, in
which case, risk share()1 will become the input of a MSS1 .

Therefore, the knowledge input of a MSS1 is:

KnowledgeInput a YMSS(),1 ={ }profit share risk share t share(), (), cos ()1 1 1¬

Without considering the selection function the knowledge input of a MSS1 will be
different:

KnowledgeInput a YMSS(),1 ={ }profit share t share(), cos ()1 1¬
The different knowledge input is derived by considering the selection function in a
specific problem domain, therefore a different answer set is derived for decision
making due to the selection function.

Input to MSS2 agent equals:

Input a MessageInput a X KnowledgeInput a YMSS MSS MSS() (,), (,)2 2 2=< >
where X={ , }a aMH MH3 4 is a subset of A, including all investor agents who have
message input for the group agent on MSS2. Y={ , }a aMH MH3 4 is a subset of A,

316 Jianwen Chen

including all investor agents who have knowledge input for the group agent on
MSS2.

The MH4 is at sleep at the moment, so knowledge input of MSS2 agent equals:

{ })(cos),(),(
),)}(cos),(),(({

)),()((

),),((

)(

,,

,

1sharet1sharerisk1shareprofit
S1sharet1sharerisk1shareprofitcons

SaautputKnowledgeOaautputKnowledgeOcons

SaautputKnowledgeOcons

YanputKnowledgeI

F

F2MSS4MH2MSS3MH

FYa 2MSSMH

2MSS

MH

¬¬=

∪¬¬=

∪=

=
∈

φ

U

Output at MSS level:

Based on Definition 2 of a MLPMAS system, there are two parts to the output of the
MSS, message output and knowledge output.
According to equation (4), the knowledge output can be derived:

KnowledgeOutput a aMSS HS(,)
= an answer set of [() (,)]LocalKB a KnowledgeInput a YMSS MSS∪

The knowledge output of MSS1is derived as below:
KnowledgeOutput a aMSS HS(,)1

={ }profit share risk share t share(), (), cos ()1 1 1¬
The knowledge output of MSS2 is derived as below:

KnowledgeOutput a aMSS HS(,)2
={ }profit share risk share t share requested HS MH(), (), cos (), (,)1 1 1 4¬ ¬ −info

A new belief, info-requested(HS, MH4), is added to the answer set on MSS2 because
of rule r14 in the local knowledge base of MSS2.

HS level:

Local knowledge base at HS level:
There are rules r15-r21 in the local knowledge base of HS.

Multi-agent system formalization 317

r holds invest share holds profit share holds risk share
holds t share holds get MHi res request MHi

r holds invest share holds risk share
r holds invest share holds t share
r holds risk share notholds risk share
r holds t share notholds t share
r holds invest share holds requested HS MHi

holds get MHi res

15 1 1 1
1

16 1 1
17 1 1
18 1 1
19 1 1
20 1

: (()) (()), (()),
(cos ()), ((), (()))

: (()) (())
: (()) (cos ())
: (()) (())
: (cos ()) (cos ())
: (()) ((,)),

((), (

← ¬
¬ − −

¬ ←
¬ ←
¬ ←
¬ ←
¬ ← −

¬ −

info info

info
info request MHi

r holds get MHi notholds get MHi
holds requested MHi holds timeout MHi

−
¬ − ← −

−

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

info
info info

info

())),
: (()) (()),

(()), (())
21

Rule r15 denotes that if it is high profit, low risk, low cost to invest share1, and the
HS gets requested information from every sleeping MHi, the decision to invest share1
will be made. Rules r16, r17 and r20 denote that if share1 is high risk or high cost on
any MHi, or information is not available from every sleeping MHi, then the HS will
make the decision that share1 will not be invested. Rules r18 and r19 denote that if
share1 hasn’t been specified to be high risk or high cost for any MHi, then it is
considered to be low risk or low cost. Rule r21 denotes that if the HS hasn’t got
requested information from sleeping MHi before time is out, then the HS will assume
no information is available from MHi.

Input at HS level:

On the HS level, based on Definition 2 of a MLPMAS system, input of an HS agent
equals:

Input a MessageInput a X KnowledgeInput a YHS HS HS() (,), (,)=< >
Where X={ , }a aMSS MSS1 2 is a subset of A, including all involved agents who have
message information input for the agent on the HS. Y={ , }a aMSS MSS1 2 is a subset of A,
including all involved agents who have knowledge input for the agent on the HS.

Based on equation (5), knowledge input of a HS agent equals:

318 Jianwen Chen

{ }),(),(cos),(),(
))},,(),(cos),(),({

)}(cos),(),(({
)),,(),((

),),((

)(,

4MHHSrequestedinfo1sharet1sharerisk1shareprofit
S4MHHSrequestedinfo1sharet1sharerisk1shareprofit

1sharet1sharerisk1shareprofitcons
SaautputKnowledgeOaautputKnowledgeOcons

S
a

aautputKnowledgeOcons

YanputKnowledgeI

F

FHS2MSSHS1MSS

F
YMSS

HSMSS

HS

−¬=

−¬¬
∪¬=

∪=

=
∈

U

risk share()1 is a belief of input on the HS with consideration of the selection
function.

Output at HS level:
Based on Definition 2 of a MLPMAS system, the output of a HS agent has two parts,
message output and knowledge output. The knowledge output is derived as below
according to equation (6):

KnowledgeOutput aHS()
= ∪ an answer set of [() (,)]LocalKB a KnowledgeInput a YHS HS

= ∪ ¬

−
= ¬ ¬

 an answer set of [() { (), (), cos (),
inf (,)}]

{ (), (), (), cos ()}

LocalKB a profit share risk share t share
o requested HS MH

invest share profit share risk shareq t share

HS 1 1 1
4

1 1 1

Where [() (,)]LocalKB a KnowledgeInput a YHS HS∪ |={ }¬invest share()1 .
The risk share()1 is a part of the knowledge input of the HS, and according to rule r10
of the knowledge base on the HS, it is known that share1 can not be invested if there
is a high risk to invest it. From the output of HS, the fund manager agent on HS
makes the decision that share1 won’t be invested. In this case, no matter what
information is received from MH4, HS will make the decision that share1 can’t be
invested, otherwise the information from MH4 will be considered as input to HS, and
the decision making will be made based on all inputs and the local knowledge base
itself. It is also shown that the selection function will impact the decision making. If
no selection function is used in this example, risk share()1 will not be part of the input
to the HS agent, therefore share1 may be invested.

After the HS has made the decision that share1 will not be invested, the transaction
decision will be sent to the MSS, and all involved MHs will be notified by broadcasts
from the MSS.

Multi-agent system formalization 319

4. Transaction Processing in MLPMAS Systems

4.1 Defining Knowledge Transaction in MLPMAS Systems

Based on Definition 1 of a MLPMAS system presented above, A Mobile Logic
Programming Multi-Agent System (MLPMAS) is a pair F = < >A C, , where A is a set
of agents: A A A AMH MSS HS= ∪ ∪ , and C A A⊆ × is a reflexive relation representing
the communication channels between agents. Recall the formalization in our paper
[5]: the knowledge transaction model on domain D is defined as a pair
=∑ (, ())R I D in mobile environments, where R is a set of generic knowledge

transaction rules, and I D() is a finite set of initial facts and rules with respect to the
problem domain D. Thus knowledge transaction can be defined in mobile logic
programming multi-agent systems as follows:

Definition 6: In mobile logic programming multi-agent systems, the knowledge
transaction can be defined as T A C R I D=< >, , , () , where A is a set of agents:
A A A AMH MSS HS= ∪ ∪ , C A A⊆ × is a reflexive relation representing the

communication channels between agents, R is a set of generic knowledge transaction
processing rules, and I D() is a finite set of initial facts and rules with respect to
problem domain D.

4.2 Transaction Processing Language in Mobile Environments

In our paper [5], a language ℒ is formalized to process knowledge based transaction
in mobile environments. Firstly recall the syntax of language ℒ as follows. A
language ℒ contains variables of three sorts: situation variable s, fluent variable f, and
action variable a. It has one predicate holds(f, s), where f is a fluent function, and s is
a situation. The predicate holds(f, s) means that fluent f is true at situation s. ℒ also
has a resulting function res(a, s), which denotes a situation resulting from situation s
by performing action a. To begin with, ℒ has one initial situation constant S0.

Based on language ℒ, the following action functions are defined in MLPMAS
systems:
Write (MHi): denotes MHi has an update transaction request.
Submit (MSSi): denotes MSSi submits the transaction request to HS.
acquire-lockc(MHi): denotes MHi acquires lock for transaction updating.
do-trans(HS): denotes HS starts the transaction.

320 Jianwen Chen

request-info(MHi): denotes MHi is requested to provide its information.
cal-output(MHi):denotes MHi calculates its output.
sent-info(MHi): denotes MHi sends its information as output.
cal-input(MSSi): denotes MSSi calculates its input.
cal-output(MSSi): denotes MSSi calculates its output.
cal-input(HS): denotes HS calculates its input.
cal-output(HS): denotes HS calculates its output.
make-decision (HS): denotes HS makes the decision for the transaction.
abort-trans (HS): denotes HS aborts the transaction.
notice-abort (HS, MSSi): denotes HS notices MSSi transaction abort.
broadcast (MSSi, MHi): denotes MSSi broadcasts transaction status to MHi.
update-knowledge (MHi): denotes MHi updates its knowledge base.

The following fluent functions are defined in MLPMAS systems:
update-requested(MHi): denotes MHi has an update transaction request.
registered(MSSi, MHi): denotes MHi has registered in MSSi cell.
trans-submitted (MSSi): denotes MSSi has submitted the transaction request to HS.
locked (MHi): denotes MHi has got the lock for the transaction.
trans-start (HS): denotes transaction start on HS.
info-requested (MHi): denotes MHi has been requested to provide its information.
output-derived (MHi): denotes MHi has derived its output.
output-sent(MHi): denotes MHi has sent its output to MSSi.
input-derived(MSSi): denotes MSSi has derived its input.
output-derived(MSSi): denotes MSSi has derived its output.
input-derived(HS): denotes HS has derived its input.
output-derived(HS): denotes HS has derived its output.
decision-made(HS): denotes HS has made the transaction decision.
trans-aborted(HS): denotes HS has aborted the transaction.
knowledge-update(HS): denotes HS has updated its knowledge base.
abort-noticed(HS, MSSi): denotes HS has sent the transaction abort notice to MSSi.
abort-broadcasting(MSSi, MHi): denotes MSSi has broadcast the transaction abort to
MHi.
knowledge-update(MHi): denotes MHi has updated its knowledge base.

4.3 Transaction Processing Rules in MLPMAS Systems

In our paper [5], a set of rules are specified and imposed to formalize a knowledge
transaction processing model in mobile environments, which models all transaction
processing activities, requests, results and constraints on MH, MSS, and HS levels.

Multi-agent system formalization 321

Firstly we recall some of those transaction rules, which will be used in the study cases
in later sections of this paper.

The following rules are imposed in paper [5] to specify knowledge transaction
processing in mobile environments:

At the register stage of a transaction, when MH moves into MSS cell, it is registered.
The rule for this is:

t1: holds(registered(MSS, MH), res(move(MSS, MH), s)) ←
After an action move(MSS, MH) happens, res(move(MSS, MH), s) becomes the
current situation, and registered(MSS, MH) is true.

Then MH requests to start an update transaction. The rule is:

t2: holds(update-requested(MH), res(write(MH), s)) ←
After an action write(MH), i.e., the MH submits a write request, res(write(MH), s)
becomes the current situation, and update-requested(MH) becomes true.

After the MH requests a query or update, the MSS submits this transaction request to
the HS on behalf of the MH. If it is a write request, the lock needs to be acquired
firstly to submit this transaction.

t3: holds(trans-submitted(MSS), res(submit(MSS), s)) ←
holds(locked(MH), s),holds(update-requested(MH), s))

If both update-required(MH) and locked(MH) are true, action submit(MSS) will
happen and trans-submitted(MSS) then becomes true.

After the MH requests a query or update transaction and the MSS submits this
transaction request to the HS, the HS starts the transaction. The rule is:

t4: holds(trans-start(HS), res(do-trans(HS), s)) ← holds(trans-submitted(MSS), s)
After transaction request is submitted by the MSS, i.e., trans-submitted(MSS) is true,
action do-trans(HS) happens, and trans-start(HS) then becomes true, the transaction
starts.

If the decision is made that the transaction will be aborted at the HS level, HS updates
its knowledge base to reflect this accordingly. The rules to denote this are t5 and t6:

t5: holds(trans-aborted(HS),res(abort-trans (HS),s))←holds(decesion-made(HS),s)
t6: ¬holds(knowledge-update(HS),s) ← holds(trans-aborted(HS),s)

The HS sends transaction abort notice to the MSS. The rule is:

t holds abort noticed HS MSS res notice abort HS MSS s
holds trans aborted HS s
7: ((,), ((,),))

((),)
− − ←

−

322 Jianwen Chen

The MSS broadcasts the transaction abort information to involved MHs. The rule is:

t holds abort broadcasting MSS MH res broadcast MSS MH s
holds abort noticed HS MSS s
8: ((,), ((,),))

((,),)
− ←

−

The MHs update their local knowledge base accordingly, the rule reflecting this is:

t holds knowledge update MH res update knowledg MH s
holds abort broadcasting MSS MH s
9: ((), ((),))

((,),)
¬ − − ←

−

A set of new rules are imposed in this paper to specify the activities and capture the
features of MLPMAS systems in mobile environments. The rules are specified as
follows. Note that the equations mentioned below are those presented in section 2 for
the formalization of a MLPMAS system.

After the MH agent is requested by the HS to provide problem domain related
information to the HS, the MH agent calculates the MH’s output based on equation
(2), then sends its output to the MSS if the MH is not at sleep. The rules specifying
this are:

t holds output derived MHi res cal output MHi s
holds requested MHi s
10: ((), ((),))

((),)
− − ←

−info

t holds output sent MHi res sent output MHi s
holds output derived MHi s
11 0

0

: ((), ((),))
((),)

− − ←

−

Rules t10 and t11 denote: If the MH agent is requested to provide its information,
action cal-output(MH) is taken to calculate the output, output-derived(MH) becomes
true. Then output is sent to the MSS by action sent-output(MH), ,i.e., output-
sent(MH) becomes true.

The MSS agent collects information from all related MHs and calculates the input
based on the equation (3). The rule is:

t holds input derived MSSi res cal input MSSi s
holds output sent MHi s
12: ((), ((),))

((),)
− − ←

−

Rule t12 denotes: After output of the MH is sent to the MSS, the MSS agent takes
action cal-input(MSS., This derives the input of the MSS, i.e., input-derived(MSS) is
true.

Then the output of the MSS is calculated and derived based on equation (4) after its
input is derived. The rule is:

t holds output derived MSSi res cal output MSSi s
holds input derived MSSi s
13: ((), ((),))

((),))
− − ←

−

Multi-agent system formalization 323

Rule t13 denotes: After input of the MSS is derived, the MSS agent takes action cal-
output(MSS), then its output is derived, i.e., output-derived(MSS) becomes true.

The HS agent gets the output of the MSS, and calculates the input of the HS based on
equation (5). The rule is:

t holds input derived HS res cal input HS s
holds output derived MSSi s
14: ((), ((),))

((),)
− − ←

−

Rule t14 denotes: After the output of the MSS is known to the HS, the HS agent takes
action cal-input(HS), then the input of the HS has been derived , i.e., input-
derived(HS) is true.

The output of the HS will be derived after the calculation base on equation (6) by
considering the input of the HS and its local knowledge base. The rules are:

t holds output derived HS res cal output HS s
holds input derived HS s
15: ((), ((),))

((),))
− − ←

−

Rule t15 denotes: After input of the HS is derived, the HS agent takes action cal-
output(HS), then its output is derived, i.e., output-derived(HS) becomes true.

The HS will do the decision-making based on its output. The rule is:

t holds decision made HS res make decision HS s
holds output derived HS s
16: ((), ((),))

((),)
− − ←

−

Rule t16 denotes: After output-derived(HS) becomes true, the HS will take action
make-decision(HS), then the decision is made, i.e. decision-made(HS) becomes true.

4.4 Transaction Study Case in MLPMAS systems

Study case 2 demonstrates how a knowledge transaction is processed in a specific
problem domain in MLPMAS systems.

Study Case 2: Given the same scenario and investment domain as study case 1 in this
paper. The initial status is the same: MH1, MH2 and MH3 is alive, while MH4 is at
sleep. At the time the HS agent requests a transaction, MH1 initializes an update
transaction by requesting to invest a share (share1). Here, we will present, step by
step, the activities involved in this transaction together with the generic transaction
rules and the specific rules that are applied in this investment domain.

As the initial facts, MH1 and MH2 are registered with MSS1, while MH3 and MH4
are registered with MSS2. Based on rule t1 specified in section 4.3, the rules i1-i4
below denote the initial status:

324 Jianwen Chen

i1: holds(registered(MSS1, MH1), s0) ←
i2: holds(registered(MSS1, MH2), s0) ←
i3: holds(registered(MSS2, MH3), s0) ←
i4: holds(registered(MSS2, MH4), s0) ←

The rules for the local knowledge base in the MH, MSS and HS are domain related
rules. Recall these rules as below.

Local knowledge base of MH:
The local Knowledge base of MH1 has rules r1-r3 related to share1 investment:

r holds profit share s
r holds risk share s
r holds t share s

1 1
2 1
3 1

0

0

0

: ((),)
: ((),)
: (cos (),)

←

←

¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local Knowledge base of MH2 has rules r4-r6 related to share1 investment:
r holds profit share s
r holds risk share s
r holds t share s

4 1
5 1
6 1

0

0

0

: ((),)
: ((),)
: (cos (),)

←

¬ ←

¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local Knowledge base of MH3 has rules r7-r9 related to share1 investment:
r holds profit share s
r holds risk share s
r holds t share s

7 1
8 1
9 1

0

0

0

: ((),)
: ((),)
: (cos (),)

←

¬ ←

¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local Knowledge base of MH4 has rules r10-r12 related to share1 investment:
r holds profit share s
r holds risk share s
r holds t share s

10 1
11 1
12 1

0

0

0

: ((),)
: ((),)
: (cos (),)

←

¬ ←

¬ ←

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

The local knowledge base of the MSS:
On MSS1, rule r13 is related to this investment in its knowledge base:

}{r holds requested HS MHi s holds slept MHi s13 0 0: ((,),) ((),)info− ←
On MSS2, rule r14 is related to this investment in its knowledge base:

}{r holds requested HS MHi s holds slept MHi s14 0 0: ((,),) ((),)info− ←
Rules r13 and r14 denote that if MHi is at sleep at the time the HS agent requests
transaction information from the MHs, the HS will request information from MHi
when it does the decision making for the transaction.

Multi-agent system formalization 325

The local knowledge base of the HS:
There are rules r15-r21 in local knowledge base of HS:

r holds invest share s holds profit share s holds risk share s
holds t share s holds get MHi res request MHi s

r holds invest share s holds risk share s
r holds invest share s holds t share s
r holds risk share s notholds risk share s
r holds t share s notholds t share s

15 1 1 1
1

16 1 1
17 1 1
18 1 1
19 1 1

0 0 0

0 0

0 0

0 0

0 0

0 0

: ((),) ((),), ((),),
(cos (),), ((), ((),))

: ((),) ((),)
: ((),) (cos (),)
: ((),) ((),)
: (cos (),) (cos (),

← ¬

¬ − −

¬ ←

¬ ←

¬ ←

¬ ←

info info

)
: ((),) ((,),),

((), ((),)),
: ((),) ((),),

((),), ((),)

r holds invest share s holds requested HS MHi s
holds get MHi res request MHi s

r holds get MHi s notholds get MHi s
holds requested MHi s holds timeout MHi s

20 1

21

0 0

0

0 0

0 0

¬ ← −

¬ − −

¬ − ← −

−

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

info
info info

info info
info

In the following discussion of transaction processing, all the rules have been formally
specified in section 4.3.

Step 1: MH1 requests to start an update transaction to invest share1. The rule is:

g1: holds(update-requested(MH1), res(write(MH1), s0)) ←

Step 2: After MH1 requests an update transaction and the lock is acquired, MSS1
submits this transaction request to the HS. The transaction rule is:

g2: holds(trans-submitted(MSS1), res(submit(MSS1), s0)) ←
holds(update-requested(MH1), s0),

holds(locked(MH1), res(acquire-lock(MH1), res(write(MH1), s0)))

Step 3: After the MSS submits the transaction to the HS, the HS starts the
transaction. The transaction rule is:

g3: holds(trans-start(HS), res(do-trans(HS), s0)) ←
 holds(trans-submitted(MSS1), s0)

Step 4: Based on its knowledge base, the HS will know which MH agents are related
to this investment request, then the HS sends this investment request to all involved
MH agents and asks these agents to provide their related investment information. The
rule is:

g holds requested MHi res request MHi s
holds invest involved MHi s

4 info info: ((), ((),))
((),)

− − ←

−
0

0

326 Jianwen Chen

Step 5: After the MH agent receives the request from the HS, via MSS, the agent
calculates the MH’s output and then sends its output to the MSS if the MH is not at
sleep. The rules are:

g holds output derived MHi res cal output MHi s
holds requested MHi s

5 0

0

: ((), ((),))
((),)

− − ←

−info

g holds output sent MHi res sent output MHi s
holds output derived MHi s

6 0

0

: ((), ((),))
((),)

− − ←

−

The outputs of MH1 and MH2 are sent to MSS1, the output of MH3 is sent to MSS2,
while MH4 is at sleep at the moment.

Step 6: The MSS agent collects information from all related MHs and calculates the
input. MSS1 collects input from MH1 and MH2, while MSS2 collects input from
MH3 and MH4. The rule is:

g holds input derived MSSi res cal input MSSi s
holds output sent MHi s

7 0

0

: ((), ((),))
((),)

− − ←

−

The inputs of MSS1 and MSS2 are derived accordingly.

Step 7: The output of the MSS is derived by considering its input and its own
knowledge base. The rule is:

g holds output derived MSSi res cal output MSSi s
holds input derived MSSi s

8 0

0

: ((), ((),))
((),))

− − ←

−

Step 8: The HS agent gets the output of MSS1 and MSS2, and calculates the input of
the HS, the rule is as below:

g holds input derived HS res cal input HS s
holds output derived MSSi s

9 0

0

: ((), ((),))
((),)

− − ←

−

In this study case, MH4 is at sleep at the moment MSS2 collects information from it,
MSS2 sends this information to the HS as a belief of its output and the HS reflects
this in its input.

Step 9: The output of the HS will be derived by considering its input and its own
knowledge base. The rules are:

g holds output derived HS res cal output HS s
holds input derived HS s

10 0

0

: ((), ((),))
((),))

− − ←

−

g holds decision made HS res make decision HS s
holds output derived HS s

11 0

0

: ((), ((),))
((),)

− − ←

−

Multi-agent system formalization 327

From the discussion of study case 1 of this paper, we know that ¬invest(share1) is in
every answer set, which means the HS will make the decision that share1 can’t be
invested.

Step 10: After the decision has been made (that share1 will not be invested), the
transaction will be aborted at the HS level and the HS will update its knowledge base
to reflect this accordingly. The rules t12 for this are:

g12: holds(trans-aborted(HS),res(abort-trans (HS),s0)) ←
holds(decesion-made(HS),s0)

g13: ¬holds(knowledge-update(HS),s0) ← holds(trans-aborted(HS),s0)

Step 11: The HS sends a transaction abort notice to the MSS. The rule reflecting this
is:

g holds abort noticed HS MSSi res notice abort HS MSSi s
holds trans aborted HS s

14 0

0

: ((,), ((,),))
((),)

− − ←

−

Step 12: The MSS broadcasts the transaction abort information to involved MHs The
rule for this is:

g holds abort broadcasting MSSi MHi res broadcast MSSi MHi s
holds abort noticed HS MSSi s

15 0

0

: ((,), ((,),))
((,),)

− ←

−

Step 13: The MHs update their local knowledge base accordingly. The rule reflecting
this is:

g holds knowledge update MHi res update knowledg MHi s
holds abort broadcasting MSSi MHi s

16 0

0

: ((), ((),))
((,),)
¬ − − ←

−

As defined previously, a knowledge transaction in a MLPMAS system can be
denoted as T A C R I D=< , , , ()) . Study case 2 presented the steps in how a transaction
is processed in a MLPMAS systems showing how agents, rules, initial facts, input
and output work together allowing the HS to make a decision. In this study case,
agents are on each MH, MSS and HS level, and reflexive communication channels
are between the MH, MSS, and HS. The initial fact and domain related rules are
reflected as I(D)={i1-i4,r1-r21}, which includes initial facts of the transaction and
every local knowledge base on the MH, MSS and HS. The generic transaction rules
are reflected as R={g1-g16}, therefore the following fact ϕ is in answer set:

ϕ={ ¬holds(invest (share1), so),
holds(trans-aborted (HS), s0),

¬holds(knowledge-updated(MH), s0) }

328 Jianwen Chen

i.e. the facts that share1 isn’t invested, the transaction is aborted on the HS, and the
knowledge base isn’t updated on the MHs are concluded from the Answer set of the
logic programs.

4.5 Disconnection and Mobility in MLPMAS Systems

In Comparison to stationary environments, disconnection and mobility are two
distinguished features of mobile environments. The Mobile Host can be disconnected
from the network due to voluntary or involuntary sleep, or network connection issues.
Also, the Mobile Host can migrate to another MSS cell after a physical movement.
Study cases 3 and 4 are presented to demonstrate how these two features can be
addressed for knowledge transaction processing in the specific problem domain in the
formalized MLPMAS systems.

Study Case 3: This study presents how a transaction is processed when MH4 is at
sleep. Consider the same scenario as study case 1,, but now the select function SF will
take a negative atom as high preference for investment risk. Thus, ¬invest (share1)
will become the input of a MSS1 , and the input of aHS becomes:

),),((

),(

F
YMSS

HSMSS

HS

S
a

aautputKnowledgeOcons

YanputKnowledgeI

U
∈

=

= ∪cons KnowledgeOutput a a KnowledgeOutput a a SMSS HS MSS HS F(((),),) ,1 2

{ }= ¬ ¬ −profit share risk share t share requested HS MH(), (), cos (), (,)1 1 1 4info

In this case, the HS requests information from MH4. The HS needs to know if
holds(info-get(MH4)) is true, and if holds(profit(share1)), ¬holds(risk(share1)) and
¬holds(cost(share1)) are still true when considering the input from MH4. It is
assumed that MH4 is still at sleep after the time bound. Thus ¬holds(info-get(MH4))
becomes true, according to the rule r20 in local knowledge base of the HS. In this
case, ¬invest (share1) is always true in every answer set, that is, the HS will make the
decision that share1 cannot be invested and the transaction will be aborted
accordingly. In this study case, the rules for transaction processing are almost the
same as in study case 2, the only difference being an extra rule, added after rule g9,
for the HS to request the information from MH4:

f holds requested MH res request MH s
holds input derived HS s

1 4 4 0

0

: ((), ((),))
((),)

info info− − ←

−

Multi-agent system formalization 329

Rule f1 denotes: after the input of the HS is derived, the HS takes the action request-
info(MH4) to request information from MH4, then info-requested (MH4) becomes
true.

Study Case 4: This study case addresses how a transaction is processed after a MH’s
migration from one cell to another. Given the same scenario as study case 1, the
difference is MH4 will move to another cell managed by MSS3 during sleep, then
wake up and register with a new mobile support station, MSS3. In this case, when the
HS requests information from MH4 via MSS2 for decision making, MSS2 tells the
HS that MH4 has left its cell. Thus the HS needs to find in which cell MH4 is
currently located using one of the following algorithms: broadcast [8, 9], central
service [12], home bases [17], and forwarding pointer [9], which are four basic
mechanisms for determining the current address of a mobile host. After knowing that
MH4 is located in cell MSS3, the HS will request MH4’s information from MSS3,
and eventually it will get MH4’s information from MSS3. After the transaction is
processed according to rules g1-g9 as in study case 2, the following extra rules are
added to address the migration scenario:

f2: holds(info-requested(MH4), res(request-info(MH4), s0))←
holds(input-derived(HS),s0)

Rule f2 denotes: based on its derived input, the HS takes action request-info(MH4) to
request information from MH4, then info-requested(MH4) becomes true.

f3: holds(cell-located(HS, MH4), res(locate-cell(HS, MH4),s0)) ←
holds(cell-migrated(HS, MH4),s0)

Rule f3 denotes: After the HS realises that MH4 has migrated from MSS2, i.e., cell-
migrated(HS, MH4) is true, the HS takes action locate-cell(HS, MH4) to locate MH4
according to some algorithm and, then, the location of MH4 is known, i.e., cell-
located(HS, MH4) becomes true.

f4: holds(info-get(MH4), res(request-info(MH4),s0)) ←
holds(cell-located(HS, MH4),s0)

Rule f4 denotes: after the location of MH4 is established, i.e., cell-located(HS, MH4)
becomes true, the HS takes action request-info(MH4) to request information from
MH4 via the new MSS whereupon information from MH4 becomes available, i.e.,
info-get(MH4) is true.

From the local knowledge base of MH4, given in study case 1, it is known that
MH4’s output is { }profit share risk share t share(), (), cos ()1 1 1¬ ¬ , and by considering
the output from MH4, the input of the HS becomes:

{ }KnowledgeInput a Y profit share risk share t shareHS(,) (), (), cos ()= ¬ ¬1 1 1 .

330 Jianwen Chen

info-requested(HS, MH4) is no longer a belief in the HS’s input.

Thus, holds(invest(share1), s0) is entailed by the HS’s logic programs. That is, the HS
will make the decision that share1 will be invested, and the transaction will be
committed, whereupon the knowledge will be updated accordingly in both the HS
and the MH level.

5. Summary

This paper presented and formalized a mobile logic programming multi-agent system
(MLPMAS) for mobile environments. This formalization can be used to process
knowledge transactions in such kinds of mobile multi-agent systems. Extended logic
program was employed as a specification method so this model is knowledge oriented
and has declarative semantics. The formalized MLPMAS system is very useful for
modeling decision-making problems for mobile applications, not just the solutions of
the problem but also the evolution of the beliefs of and the interactions between the
agents in mobile environments. Based on the formalized MLPMAS system, this
paper formally defined the knowledge transaction in this kind of multi-agent systems.
A few study cases were illustrated to demonstrate how knowledge transactions can be
processed in a particular problem domain in MLPMAS systems.

With respect to previous works, major advantages of the formalized MLPMAS
system can be characterized as follows: (1) This model can be used to process
knowledge transactions in multi-agent systems for mobile environments. This differs
from many investigations on multi-agents and intelligent agents in that currently
developed languages and models for knowledge representation, reasoning and
problem solving are only limited in conventional environments and haven’t been
extended to mobile environments, such as stable model/answer set, SMODEL, DLV
and XSB model in [7, 15, 16]. (2) Extending logic programs is adopted in this
formalization so this model is knowledge oriented and has declarative semantics. (3)
It can specify details of knowledge transactions, input/ output and the knowledge
base using knowledge rules. (2) and (3) make the formalization different from most
other works on mobile agent systems in that they are not knowledge oriented
processing, such as Telescript [20], Aglets [11], Mole [1] and KLAVA [2, 6, 11].

Multi-agent system formalization 331

Reference

[1] Baumann, J., and Rothermel, K., “The Shadow Approach: An Orphan Detection
Protocol for Mobile Agents,” Proceedings of the Second International Workshop on
Mobile Agents (MA’98), pp. 2-13, September 1998.
[2] Bettini, L., et al, “KLAVA: a Java package for distributed and mobile
applications,” Software Practice and Experience, 32 (2002) 1365-1394.
[3] Cardelli, L., A. Gordon, D., “Mobile Ambients,” Theoretical Computer Science,
240 (2000), 177-213.
[4] Cardelli, L., A. Gordon, D., “Types for the Ambient Calculus,” Information and
Computation 177 (2002), 160-194.
[5] Jianwen Chen and Yan Zhang, “A Rule Based Knowledge Transaction Model in
Mobile Environments”, Proceeding of 2nd IASTED International Conference on
Information and Knowledge Sharing, Scottsdale, U.S.A., November, 2003.
[6] Deugo D.,“Choosing a mobile agent messaging model,” Proceedings of ISADS
2001. IEEE Press, 2001;278-286.
[7] Eiter, T., and et al., “A deductive system for nonmonotonic reasoning,” in
Proceedings of the 4th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR97), pp 363-374. LNAI, Vol. 1265, 1997.
[8] Imielinski, T. and Badrinath, B.R., “Data Management for Mobile
Computing”, SIGMOD Record, 22(1), pp. 34-39, March 1993.
[9] Ioannidis, J.Duchamp, D. and Maguire, G.Q. Jr., “IP-Based Protocols for Mobile
Internetworking,” Proceedings of the ACM SIGCOMM’91 Conference on
Communications Architectures and Protocols, pp.235-245, September 1991.
[10] Komiya, T., et al, “Mobile Agent Model for Transaction Processing on
Distributed Objects,” Information Sciences, 2003, pp.1-16.
[11] Lange D, Oshima M. Programming and Deploying Java Mobile Agents with
Aglets, Addision-Wesley: Reading, MA, 1998.
[12] Ma, C., “On Building Very Large Nameing Systems”, Proceeding of 5th SIGOPS
Workshop on Models and Paradigms for Distributed Systems Structuring, Sep. 1992.
[13] Milner, R., et al, “A calculus of mobile processes, Parts 1-2,” Information and
Computation, 100 (1) (1992) 1-77.
[14] Milojicic, D., “Mobile Agent Applications,” IEEE Concurrency, 1999, pp. 80-
90.
[15] Nemela, I., and Simons, P., “Efficient implementation of the well-founded and
stable model semantics,” in Proceeding of the International Joint Conference and
Symposium on Logic Programming, pp 289-303. MIT Press, 1996.

332 Jianwen Chen

[16] Rao, P., et al, “XSB: A System for Efficiently Computing Well-founded
Semantics,” Proceedings of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning, pp 2-17. LNAI, vol. 1265, 1997.
[17] Teraoka. F. and Tokoro. M., “Host Migration Transparency in IP networks: the
VIP Approach”, Computer Communication Review, 23(1), pp.45-65, Jan. 1993.
[18] Vos, M. D., and Vermeir, D., “Extending Answer Sets for Logic Programming
Agents,” in Proceedings of the Logic in Artificial Intelligence (Jelia2000) workshop,
2000.
[19]Weiss, G., Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, The MIT Press, Cambridge, Massachusetts, 1999.
[20] White, J.E., “Telescript Technology: Mobile Agents,” General Magic White
Paper, Appeared in Bradshaw, J., Software Agents, AAAI/MIT Press, 1996.
[21] Wooldridge, M., An Introduction to Multiagent Systems, John Wiley & Sons,
LTD, 2002.

Received: June 11, 2007

