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Abstract

In this paper, a class of two species predator-prey model with func-

tional response and harvesting, we consider a stage-structured popula-

tion model with two life stages, immature and mature; and assumed

the predator have different functional response between immature and

mature. According to model we obtain the optimal harvesting policy

and the condition for the optimal policy

Keywords: immature; mature; functional response; Hamiltonian; optimal
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1 Introduction

The models used for resources assessment rarely take into account the total life cycle

of an exploited marine population. They only consider the individuals susceptible

to exploitation, which constitute the so-called stock. The exploitation stock does

not contain in general larvas and old fish, because larvas and alevin are too small

or absent in the potential fishing zones, and the old fish eventually leave the fishing

zones, or become inaccessible to the fleet. But we notice that the fisher do not

exclude the fishing of the juvenile, and that it is developing in an alarming way and

without control even if there are strict measures that forbid this fishing, therefore
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to solve this problem, there must take in consideration this fishing with taking in

account the juvenile stage in the system that describes the stock evolution.

2 The mathematical model
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ0 = −αx0 − m0x0 + F1x1 − y
x0

x0 + x1
ϕ(x0 + x1)

ẋ1 = αx0 − m1x1 − y
x1

x0 + x1
ϕ(x0 + x1) − q1E1x1

ẏ = kyϕ(x1 + x0) − m2y − q2E2y

(1)

where x0(t), x1(t) represent the immature and mature population sizes respec-

tively to model stage-structured population growth; y(t) represent the predator

population size; α represent the immature’s transformation rate of mature; F1

represent the birth rate of the immature population; m0, m1, m2 respectively

represent the death rate of the immature, the mature and the predator; E1, E2

respectively represent the fishing effort; ϕ(x1 +x0) represent the functional response

between predator and prey. where α(t), mi(t) (i = 0, 1, 2), F1(t) are nonnegative

function.

Now assume pi(i = 1, 2), of the harvested resource is a fixed constant; furthermore

assume that the cost, ci(i = 1, 2), of a unit of fishing effort is also constant, δ > 0

is a constant denoting the rate of discount, this objective may be expressed as

maximizing:

max

E1, E2

∫ ∞

0
e(−δt){(q1p1x1 − c1)E1(t) + (q2p2y − c2)E2(t)}dt. (2)

where, 0 ≤ E1(t) ≤ Emax
1 , 0 ≤ E2(t) ≤ Emax

2 ∀t ≥ 0

In order to maximize the net revenues, simultaneously can make the resources

renewable, we should view the fishing problem as an optimal control problem.Our

goal consists on the determination of an optimal fishing effort (E∗
1 , E∗

2).

3 Application of the maximum principle

First we introduce the Hamiltonian[1]:

H(t, E1, E2, x1, y, R, S) = R[αx0 − m1x1 − y
x1

x0 + x1
ϕ(x0 + x1) − q1E1x1]

+S[kyϕ(x1 + x0) − m2y − q2E2y]

+e(−δt){(q1p1x1 − c1)E1(t) + (q2p2y − c2)E2(t)}dt.
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where R or S are additional variables called the adjoint variables. If (E∗
1 , E∗

2) is an

optimal control and (x∗
1, y

∗) is the corresponding response. The functional response

is:

ϕ(x0 + x1) =

⎧⎨
⎩

b

a
(x0 + x1) 0 ≤ x0 + x1 ≤ a

b x0 + x1 > a

the maximum principle asserts the existence of adjoint variables R(t) and S(t) such

that the following equation are satisfied, for all t:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙R(t) = −∂H

∂x1
= R(m1 + q1E

∗
1 + y

b

a
) − Sky

b

a
− e(−δt)q1p1E

∗
1 − TF1

˙S(t) = −∂H

∂y
= Rx1

b

a
+ S[m2 + q2E

∗
2 − b

a
k(x0 + x1)] − e(−δt)q2p2E

∗
2 + Tx0

˙T (t) = −∂H

∂x0
= T (α + m0 + y

b

a
) − Rα − Sky

b

a
(3)

If we replace R by Re−δt, and S by Se−δt. the associate system (3) becomes:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṙ = R(m1 + δ + q1E
∗
1 +

b

a
y) − Sky

b

a
− p1q1E

∗
1 − TF1

Ṡ = S[m2 + q2E
∗
2 + δ − b

a
k(x0 + x1)] + R

b

a
x1 − p2q2E

∗
2 + Tx0

Ṫ = T (α + m0 + δ + y
b

a
) − Rα − Sky

b

a

(4)

The Hamiltonian become:

H(t, E∗
1 , E∗

2 , x∗
1, y∗, R(t), S(t))

max

(E1, E2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

= e−δtR[αx0 − m1x1 − q1E1x1 − yx1
b

a
]

+Se−δt[ky
b

a
(x0 + x1) − m2 − y − q2E2y]

+Te−δt[−αx0 − m0x0 + F1x1 − y
b

a
x0]

+e−δt[(p1q1x1 − c1)E1 + (p2q2y − c2)E2]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

The Pontryagin′s maximum principle, for all t, (E∗
1 , E∗

2) must maximize the Hamil-

tonian. The linearity of the Hamiltonian with respect to the controls leads to a

bang − bang optimal control.

∂H

∂E1
= e−δt(−Rq1x1 + p1q1x1 − c1)

∂H

∂E2
= e−δt(−Sq2y + p2q2y − c2)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if p1 − c1

q1x1
− R(t) > 0 then E∗

1 = Emax
1

if p1 − c1

q1x1
− R(t) < 0 then E∗

1 = 0

if p2 − c2

q2y
− S(t) > 0 then E∗

2 = Emax
2

if p2 − c2

q2y
− S(t) > 0 then E∗

2 = 0

(6)

Note that when the switching function R(t)−p1+
c1

q1x1
or S(t)−p2+

c2

q2y
vanishes,

the Hamiltonian becomes independent of (E1, E2), so the maximum principle does

not specify the value of the optimal control. The most important case arises when

R(t) − p1 +
c1

q1x1
, S(t) − p2 +

c2

q2y
vanishes identically over some time interval of

positive length, Establishing the existence of this interval will permit us to identify

the following system by deriving these two equations R(t) − p1 +
c1

q1x1
= 0 and

S(t) − p2 +
c2

q2y
= 0:

⎧⎪⎨
⎪⎩

p1(m1 + δ +
b

a
y) − c1

q1x1
(δ +

αx0

x1
) − (p2 − c2

q2y
)ky

b

a
= 0

p2[m2 + δ − b

a
k(x0 + x1)] − c2

q2y
δ + p1x1

b

a
− c1b

aq1
= 0

(7)

4 The optimal strategy

We are ready to describe definitively the optimal exploitation policy. Now we study

the system (7) given in the previous section. Let us the following function denote by

φ1(x1, y), the first equation of system (7), let φ2(x1, y) denote the second equation

of system (7).

φ1(x1, y) = p1(m1 + δ +
b

a
y) − c1

q1x1
(δ +

αx0

x1
) − (p2 − c2

q2y
)ky

b

a
= 0 (8)

φ2(x1, y) = p2[m2 + δ − b

a
k(x0 + x1)] − c2

q2y
δ + p1x1

b

a
− c1b

aq1
= 0 (9)

Let
x0

x1
=

F

α + m0 + βy
, β =

b

a
, m1 + δ = L, m0 + α = K.

From equation (8) we obtain a function y(x1):

y(x1) =

c2δβ

q1x1
+ p2kKβ − c2kβ2

q2
− p1(K + L)β −√

Δ

2β2(p1 − p2k)
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where,

Δ = p1β
2(K − L)2 + (

c2βδ

q1x1
)2 + (p2kKβ)2 + (

c2kβ2

q2
)2 − 2p1β

2(K + L)c2δ

q1x1

−2p1p2kKβ2(K − L) +
2p1β

2k(L − K)c2

q2
+

2c2δβ
2kKp2

q1x1
− 2c2

2kδβ3

q1q2x1

+
2p2k

2Kc2β
3

q2
+

4c1β
2

q1x1
(δK + αF )(p1 − p2k)

From equation (9) we obtain a function x1(y):

x1(y) =

c2δ

yq2
+

c1β

q1
− p2(m2 + δ)

p1β − p2kβ(1 +
F

K + yβ
)

The graph of function y(x1) and function x1(y) are given by Fig.(1)andFig.(2):

x(y)

x1

y

y(x1)

x1

y

Fig.(1) Fig.(2)

Now we describe the optimal exploitation policy,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

if x1 > x1(y) then E∗
1 = Emax

1

if x1 < x1(y) then E∗
1 = 0

if y > y(x1) then E∗
2 = Emax

2

if y > y(x1) then E∗
2 = 0

This optimal strategy is given and illustrate by the following Fig.(3):
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y(x)

x(y)

I

II

III

IV

(0,E
2
max)

(0,0)

(E
1
max,0)

(E
1
max,E

2
max)

x1

y

Fig.(3)

The intersect of the two curves is the equilibrium of system (1). If in the area I denote

the predator biomass is large and the adult prey biomass is weak. The optimal control

consists of taking (E∗
1 , E∗

2) = (0, Emax
2 ), in order to increase the adult prey biomass

as fast as possible until the trajectory reaches the area IV to take as optimal control

(E∗
1 , E∗

2 ) = (Emax
1 , Emax

2 ); If in the area II denote the predator biomass and the adult

prey biomass are weak, the optimal control consists of taking (E∗
1 , E∗

2) = (0, 0); If

in the area III denote the predator biomass is weak and the adult prey biomass is

large. The optimal control consists of taking (E∗
1 , E∗

2) = (Emax
1 , 0); If in the area

IV denote the predator biomass and the adult prey biomass are large. The optimal

control consists of taking (E∗
1 , E∗

2) = (Emax
1 , Emax

2 ).

5 Conclusion

In the previous studies[2-4], the aim was the search of equilibrium points for a

structured model and the study of the stability, but in this work, a structure

predator-prey model is associated with the maximization of a total discounted net

revenues derive from exploitation of the resource, and the main objective is to prove

the existence of an optimal strategy for the fishing problem. By using tools of control

theory, the pontryagin′s maximum principle, we are found the optimal strategy of

the fishing problem.
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