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Abstract 
 
The four-point rectangular data array has traditionally been represented by the bilinear 
equation. A quadratic equation for the design can be developed with or without the 
shifting operator. The method involving the operator is a general approach to the problem 
of generating equations for geometric data arrays. It is easy to apply and it is a suggestive 
instrument as illustrated by examples.  

   
 
 
1. Introduction 
 
 The bilinear equation represents the traditional method for interpolating four data 
in rectangular array. It is versatile and easy to apply but it does not estimate curvature and 
it does not apply to the diamond configuration. Alternatives to the bilinear equation are 
provided by the shifting operator, exp(hx)F(x)=F(x+h). It has recently been applied to 
derive interpolating equations for data in various arrays such as four- and five-point 
rectangles and diamonds, and cubes [1-3]. The operator-derived equations have the 
advantage that they estimate curvature. They can be better representations of surfaces 
than the representations rendered by the bilinear and trilinear equations. This judgment is 
based on comparisons of sums of squares of deviations. Data in geometric designs make 
useful illustrations of applied operational calculus.   
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The new approach turns on applying operators disguised in trigonometric 

identities [4,5]. Identities in one parameter are converted into relationships among points 
on a curve. Identities in two parameters are converted into previously unperceived 
relationships among points on surfaces. Identities that are homogeneous in sine terms 
were the first to be applied to these ends but the homogeneity requirement is not absolute 
[4,6]. Interpolating equations so obtained offer the advantage of economy of 
experimental effort: curvature can be detected by means of a few measurements. That is 
an important consideration in view of the high costs of laboratory work [1-3].  

 
This paper illustrates that some of the equations rendered by the shifting operator 

can also be obtained by conventional methods. There is no clear boundary between the 
category of interpolating equations requiring the shifting operator for their development 
and the category of equations that do not depend on the operator. It is a subject that 
remains to be explored. These remarks are made clearer by examples. They illustrate that 
there is room for further contributions to operational calculus as applied to geometry.   
 
 
 
2. The four-point rectangle, first polynomial method  
  
A diagram of a nine-point rectangle appears in Fig. 1. Methods for deriving operational 
interpolating equations for the six-point array ABCFED and the nine-point  array ACIG 
have been illustrated in Refs. [7,8]. In order to apply these methods, equations for the 
four-point subspaces are needed. Ref. [4] illustrates the derivation of equations for the 
center and side points of the rectangle in Fig. 1. They are Eqs. (1) and (2), respectively.  

 
E2 = (GI – AC)(CI – AG) / [(I – A)2 – (C – G)2]                   (1) 
 
D2 = (A + G)2(CI – AG) / [(I + C)2 – (A + G)2]             (2)  
 
 Let each letter on both sides of Eq. (1) be augmented by adding a term denoted T. 
Take the square root of the augmented expressions, subtract T from them, and find the 
limits of the differences as T is approaches infinity. The result is Eq. (3). A similar  
procedure applied to Eq. (2) yields Eq. (4). These are the new center and side  point 
formulas, respectively, in Fig. 1. They are exact on bilinear numbers and their squares. 
Rotate Fig. 1 to obtain analogous formulas for side points B, F, and H. 
 
E = [(C2 + G2)(I + A) – (A2 + I2)(C + G) + 2(CI(A – G) + GA(I – C))]  
       / [2((C – G)2 – (I – A)2)]               (3) 
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D = [3(A2 + G2) + C2 + I2 + 2A(5G – 2C – 2I) – 2CI – 4G(I + C))  
       / 8(A + G – C – I)                (4) 
 
 Pearson’s equation for the nine-point rectangle is Eq. (5) [9]. R represents an 
interpolated number at specified (x, y) coordinates in the –1 .. 1 coordinate system.  
 
R = E + (F – D)x/2 + (H – B)y/2 + (A – C – G + I)xy/4 + (F – 2E + D)x2/2  
      + (H – 2E + B)y2/2 + [A + C + G + I + 4E – 2(F + D + B + H)]x2y2/4         (5) 
 
 Let Eqs. (3) and (4), and the analogous expressions for side points B, F, and H, be 
substituted into Eq. (5). The result simplifies to Eq. (6), the operational interpolating 
equation for the four-point rectangle ACIG. It is exact on bilinear numbers and their 
squares. Eq. (6) was first obtained by the described method. Eq. (6) seems to be 
dependent on the shifting operator for its derivation but this conclusion is misleading. 
 
R = (A + C + G + I)/4 – x2c – y2c + (I + C – A – G)x/4 + (G + I – A – C)y/4  
       + (I + A – C – G)xy/4 + (x2c)x2 + (y2c)y2            (6) 
 
x2c = (I + A – C – G)(I + C – G – A) / (8(G + I – A – C))           (7)  
 
y2c = (I + A – C – G)(G + I – A – C) / (8(I + C – A – G))                   (8) 
 
 
3. The four-point rectangle, second polynomial method 
 
 The bilinear equation for the four-point rectangle ACIG is Eq. (9). The result of 
squaring an arbitrary bilinear expression is illustrated by Eq. (10).  
 
R = (A + C + G + I)/4 + (I + C – A – G)x/4 + (G + I – A – C)y/4 + (I + A – C – G)xy/4  
                  (9) 
 
R = (k + px + qy)2 = k2 + 2pkx + 2kqy + p2x2 + 2pqxy + q2y2        (10) 
 
 Eq. (10) contains three unknowns, k, p, and q. They appear in the coefficients of 
the linear and the cross-product terms on the right-hand side of Eq. (10). The bilinear 
equation, Eq. (9), also contains linear and cross-product terms.  In order to express k, p, 
and q in terms of A, C, G, and I, form three equations as illustrated by Eqs. (11)-(13).  
 
2kp – (I + C – A – G)/4 = 0            (11) 
 
2kq – (G + I – A – C)/4 = 0            (12) 
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2pq – (I + A – C – G)/4 = 0             (13) 
 
 Let Eqs. (11)-(13) be solved simultaneously. Two sets of solutions result from this 
operation. To obtain p2, q2, and k2, such as are present in Eq. (10), square p, q, and k in 
each set. This operation yields identical expressions for the corresponding p2, q2, and k2. 
The denominator of k2 vanishes when it is substituted with bilinear numbers like [1,3,7,9] 
as [A,C,G,I], respectively. This implies that k2 is not an acceptable estimate of the center 
of four data in rectangular array. However, p2 and q2 estimate the two quadratic-term 
coefficients in Eq. (10) so let them be denoted by x2c and y2c as in Eqs. (14) and (15), 
respectively. An additional relationship is needed to estimate the center point. That 
relationship is Eq. (16). It is determined from the general form of the quadratic equation, 
the data, and their coordinates, as illustrated in the Appendix.  
 
x2c = (I + A – C – G)(G + A – I – C) /[8(A + C – G – I)]         (14) 
 
 
y2c = (I + A – C – G)(A + C – G – I) / [8(G + A – I – C)]         (15) 
  
new constant term in Eq. (9) = (A + C + G + I)/4 – x2c – y2c        (16) 
  

The right-hand side of Eq. (9) can be completed with the new expression for the 
constant term and then adding the quadratic-terms (x2c)x2 and (y2c)y2 as in Eq. (10). The 
result is an interpolating equation that is exact on bilinear numbers and their squares. It is 
identical to Eq. (6), the equation found with the aid of the shifting operator. The second 
method is simple and straightforward. It illustrates that the quadratic equation for the 
four-point rectangle can be obtained with or without assistance of the shifting operator. A 
similar approach develops the quadratic equation for the eight-point cube [3].  
 
 
4. The five-point rectangle 

 
The identity in Eq. (17) is homogeneous in sine terms. Multiply the identity by 

F(x,y)4, the fourth power of the unknown function at the center point, E, in Fig. 1 [4,5]. 
The result is an expression relating E to four other vertices in the figure, Eq. (18). It is 
exact on linear numbers when used as exponents of a common base as in 2x. 
 
sin(x + y)2 + sin(x – y)2 + 2sin(x + y)sin(x – y)(2cos(x)2 – 1) = (2sin(x)cos(x))2    (17) 
 
E2 = [(F – D)2(F + D)2 – (I – A)(C – G)(F + D)2]  
 / [(I – A)2 + (C – G)2 – 2(I – A)(C – G)]         (18) 
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Remove F from Eq. (18) by means of the substitution F = (IC – AG + D2)(1/2) and 

thereby obtain an expression for side point D in terms of A, C, E, G, and I [4]. The 
expression is simplified by squaring it. Even in the squared form it is complicated so it is 
stored in the memory of the computer. Add a parameter T to each term in the stored 
expression, take the square root of the result, and then subtract T from it. The limit of the 
difference as T approaches infinity is Eq. (19). 
 
D = (AC + IG – 2AG)(C + I – A – G) – E(I + G – C – A)2)/ (4(IC + AG – AC – IG)) 
                  (19) 
 
 Fig. 1 can be rotated so that formulas analogous to Eq. (19) are obtained for 
vertices B, F, and H. The four expressions are substituted into Pearson’s equation, Eq. (5) 
above. The result is complicated but it simplifies to Eq. (20), a polynomial equation. That 
equation is potentially suitable for interpolating the five-point rectangle. It is exact on 
bilinear numbers and their squares but it is not useful if A=I or G=C. Another five-point 
polynomial equation can then be selected [10]. 
 
R = E + (I + C – A – G)x/4 + (G + I – C – A)y/4 + (I + A – C – G)xy/4   
       + (G – I – C + A)(E(G + A – C – I) + IC – AG)x2 / (4(I – A)(G – C))  
       – (G + I – C – A)(E(G + I – A – C) + AC – IG)y2 / (4(I – A)(G – C))       (20) 
 

The center point expression in Eq. (3) can replace the letter E in Eq. (20).  
Simplification yields Eq. (6), an equation for the four-point rectangle. This represents a 
third method for generating the four-point, polynomial equation.   

 
 

5. Alternative representation of sine and cosine 
 
The preceding sections have illustrated the derivation of polynomial-type 

equations for data in a rectangular array. The sine and cosine functions can be applied in 
another form in order to generate an exponential-type interpolating equation for the four-
point rectangular array. The same equation can be obtained by standard methodology so 
the shifting operator is presently unnecessary. The operator approach is tedious by 
comparison but part of it is useful as an illustration of how the operator can be applied.  

 
In Eqs. (21)-(24) the italic letter I represents the square root of (–1). Note that the 

hyperbolic functions could be used instead of the circular functions. 
 
2cos(M + N) + 2cos(M – N) = JK + 1/(JK) + J/K + K/J        (21) 
 
2cos(M + N) – 2cos(M – N) = JK + 1/(JK) – J/K – K/J        (22) 
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(2I)sin(M + N) + (2I)sin(M – N) = JK – 1/(JK) + J/K – K/J                    (23) 
 
(2I)sin(M + N) – (2I)sin(M – N) = JK – 1/(JK) – J/K + K/J        (24) 
 

 The left-hand sides of Eqs. (21)-(24) can be multiplied by unity in the form of 
F(x,y)/F(x,y) or (E/E). They are thereby converted to (I + A + C + G)/E, (I + A – C – 
G)/E, (I – A + C – G)/E, (I – A – C + G)/E, respectively [4,6]. If the data at vertices A, C, 
E, G, I in Fig. 1 are known, then Eqs. (21)-(24) contain only J and K as the unknowns on 
their right-hand sides. This circumstance permits the introduction of two new unknowns, 
Q and T, into the left-hand sides of Eqs. (21)-(24). We now have four equations in four 
unknowns. Those equations can be rewritten as Eqs. (25)-(28) and they are amenable to 
solution as a simultaneous set. The interested reader can pursue the details in Ref. [6]. 
 
[T(I + A + C + G) + 4Q] / (E + Q) = JK + 1/(JK) + J/K + K/J       (25) 

 
[T(I + A – C – G)] / (E + Q)  = JK + 1/(JK) – J/K – K/J             (26) 

 
[T(I – A + C – G)] / (E + Q)  = JK – 1/(JK) + J/K – K/J                     (27) 

 
[T(I – A – C + G)] / (E + Q) = JK – 1/(JK) – J/K + K/J             (28) 
 
  

The exponential-type equation for the four-point rectangle, developed as indicated 
by Eqs. (25)-(28), is Eq. (29) [6]. In the equation, J is the square root of (C – I)/(A – G) 
and K is the square root of (G – I)/(A – C). Two things about Eq. (29) are noteworthy. 

 
R = [J(x+1)K(y+1)(A – G)(A – C) + AI – CG] / (A – C – G + I)       (29) 
 
(1) Eq. (29) was originally developed by means of the shifting operator [6]. The 
development is tedious and unnecessary. We may recognize that an exponential-type 
equation for the four-point rectangle can take the form of Eq. (30).  
 
R = (P)J(x+1)K(y+1) +  S                        (30) 
 
 Four subsidiary equations can be developed from Eq. (30) by taking the data A, 
C, G, I as in Fig. 1 and recognizing that their coordinates are (–1,–1), (1,–1), (–1,1), and 
(1,1), respectively. The four subsidiary equations can be solved as a simultaneous set. 
When the solutions for J, K, P, and S are obtained they can be substituted into Eq. (30). 
The result is Eq. (29), the same equation obtained by the roundabout method of applying 
the shifting operator to the circular functions as in Eqs. (21)-(28).  
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The point of these remarks is that we can pay too much attention to the shifting 

operator. The cost of this preoccupation is the failure to recognize commonplace things. 
The same point is implicit in section 3 above. The shifting operator is a legitimate way to 
generate interpolating equations for data in geometric arrays but it is not the only method 
for that purpose. It is reassuring to know that the shifting operator yields the same results 
that are obtained by standard methodology. On the other hand, that observation raises an  
interesting historical question: Why have the bilinear and trilinear equations monopolized 
the representations of four and eight data in rectangular and cubical arrays, respectively?  
 

Implicit in the preceding discussion is an interesting observation. There are 
apparently two groups of interpolating equations for data in geometric arrays: those 
equations whose derivations depend on the shifting operator and those equations that can 
be derived without the operator. The boundary separating the two groups is not clear. 

 
(2) Functions like 2x are monotonic-increasing with x. The slopes of such functions never 
change their signs. What happens when experimental data imply a change of sign in 
slope? For example, suppose A=70, C=180, G=90, I=75. Eq. (29) then yields Eq. (31).  
 
R = (–17.6)(2.291I)(x+1)(0.369I)(y+1) + 87.6          (31) 
 
 Eq. (31) can be plotted in terms of its real parts. That is a common way of using 
equations containing imaginary or complex numbers. The difficulty with this method is 
that it often generates surfaces with extrema on their boundaries. Ordinarily, there is no 
justification for boundary extrema when a surface is generated from only four data in 
rectangular array. When only four data are available, extrema are usually artifacts of the 
interpolating equations. This remark applies not only to Eq. (31) but to all four-point 
operational equations. Boundary extrema are signals to decline the equations in favor of 
something else. From a practical point of view, the problem of unjustified extrema can 
sometimes be ameliorated by the following artifice.  
 
…. If the imaginary number occurs under the exponent containing x, change it to a real, 
positive number and multiply the leading coefficient in the equation by (–x). 
 
…. If the imaginary number occurs under the exponent containing y, change it to a real, 
positive number and multiply the leading coefficient in the equation by (–y). 
 
…. If the imaginary number occurs under both exponents, change them both it to real, 
positive numbers and multiply the leading coefficient in the equation by (xy). 
 
 Eq. (31) thus becomes Eq. (32). The new equation does not generate boundary 
extrema. This artifice does not always eliminate boundary extrema but it illustrates the 
idea that more imaginative approaches are needed. There is room for improvements when  
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four data in rectangular array are to be represented by exponential-type equations. The 
usefulness of equations like Eq. (32) remains to be determined in the laboratory.  
 
R = (–17.6)(xy)(2.291)(x+1)(0.369)(y+1) + 87.6              (32) 
 
 
 
7. Discussion 

 
It is a curiosity that identities in the circular functions have been exclusively 

regarded as relationships among angles. When treated by the shifting operator they are 
transformed into relationships among points in space. This approach is a simple and  
versatile way to generate interpolating equations for data in geometric arrays. The 
equations present themselves in many ways. Verifying their properties makes interesting 
demonstrations of the shifting operator and its applications [6,10-14].  

 
The bilinear equation generates center and side point expressions that are 

functionally related. That is, the determinant of the Jacobian of the bilinear expressions 
for B, D, E, F in Fig. 1 is zero. The determinant is nonzero when applied to the 
operational expressions for the same points.  

 
 The shifting operator can address many problems besides the interpolation of data 
in geometric arrays. At present, we do not have a good idea of its limitations so we have 
to be careful. This remark is illustrated by a putative expression for the “halfth” 
derivative as rendered by the operator. It appears as Eq. (33) applied to the evaluation of 
the “halfth” derivative of the function u(x)=x2 at x=4.    
 
(u(x))(1/2)(d(u(x))/dx)(1/2)  = (16)(1/2)(8)(1/2) ≈ 11.3                    (33) 
 

Eq. (33) seems to have some appealing properties. For example, the zeroth 
derivative of x2 at x = 4 is 16, the first derivative is 8, and the second derivative is 2. The 
derivative-order sequence is [0, 1/2, 1, 2] and the derivative-value sequence is [16, 11.3, 
8, 2]. Both orders are monotonic. According to Eq. (33), the derivative of a constant is 
zero. These illustrations accord with intuition. On the other hand, when the function is 
monotonic-decreasing Eq. (33) says that its “halfth” derivative is an imaginary number. 
The surprise is an artifact of the square-root operator. The question is this: If the shifting 
operator is to be useful in the fractional calculus, should it produce something better than 
Eq. (33)? The operator methods are potentially useful instruments but they are not always 
necessary and they may occasionally mislead us.   
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Appendix 
 
 The form of a quadratic equation for the four-point rectangle is Eq. (34). The 
coordinates and the four data are (–1,–1,A), (1,–1,C), (–1,1,G) and (1,1,I). See Fig. 1. 
Form four simultaneous equations from the data and Eq. (34) and solve them for the 
coefficients k, xc, yc, xyc. This yields Eq. (16) for the constant term in Eq. (6).   
 
R = k + (xc)x + (yc)y + (xyc)xy + (x2c)x2 + (y2c)y2     (34) 
 
 
 
 
 
    G H I 
    D E F 
    A B C 
 
 

Fig. 1. The nine-point rectangle. 
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