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Abstract

In this work, we consider firstly the existence of the solution of gen-
eralized quasi-variational inequalities;secondly,we discuss the stability
and on essential components of it’s solution set.
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1 Introduction

In 1985,With the method of generalized KyFan—minimax inequality[1],
Tan.K.K[4] discussed the existence of the solution of generalized quasi-variational
inequality problem in the local convex Hausdorff topological space. In 1990,
Ding.X.P and Tan.K.K[9] proved the two theorems of generalized quasi-variational
inequality’s solution set by the Himmlbesg fixed point, which improved the

1This research was partially supported by the Provincial Nature Science Foundation of
Guizhou of China(2006325).
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same conclusion of shi-Tan[4].In this paper ,we discuss the stability and con-
nected essential components of the solutions set of generalized quasi-variational
inequality problem(for short GQVI), which improve the corresponding result[7].

2 Preliminaries

Definition 2.1 1) a set—valued mapping F : Y → 2X is called upper semi-
continuity in y ∈ Y , if O is any open set in X, and F (y) ⊂ O,there exists the
open neighborhood U(y) of y,such that F (y

′
) ⊂ O for every y

′ ⊂ U(y). 2)
F : Y → 2X is said to be lower semi-continuity in y ∈ Y ,if O is any open set in
X and F (y)

⋂
O �= φ ,there exists the open neighborhood U(y) of y,such that

F (y
′
)
⋂

O �= φ,for every y
′ ⊂ U(y). 3) F is to be continuity in y ∈ Y ,if F is

both upper and lower semi-continuity in y. 4) F is called continuity in Y ,if F
is continuity for every y ∈ Y . 5) F is a usco(upper semi-continuity)mapping,if
F is semi-continuity in Y and F (y) is compact set for every y ∈ Y .

Definition 2.2 Q is said to be residual set in Y ,if Q contains the intersec-
tion of a sequence dense open set in Y ;Q is dense in Y ,if Y is a Baire space.

We also need the following well known fort theorem.
Lemma 2.1 [5]Let X be a metric space ,Y is a Baire space ,F is a usco

mapping in Y , then there exists a dense residual set Q,for every y ∈ Q,F is
lower semi-continuity in y ∈ Y .

Definition 2.3 Let Y is a problem space, F (u) is the solution set to some
problem u ∈ Y and x ∈ F (u)

1) Let x is a essential set of u ,if for any open neighborhood O of x in
X,there exists a open neighborhood U of u in Y ,such that F (u∗) ∩ O �= φ;
for everyu∗ ∈ U ;2) u is called weak-ed essential,if there exists a set of u is a
essential set;3)u is called essential ,if any set of u is a essential set.

Let u ∈ Y, x ∈ F (u), the summation set of every connected subset of
x in F (u) is said to be a connected component of F (u)(seeing[6]page 356),a
connected component of F (u) is a closed connected subset of F (u),thereby a
compact connected subset, if u �= u∗, the connected components of F (u) and
F (u∗) are either superposition or no-intersection, so F (u) is de-compound a
family of each other non-intersection summation set ( finity or infinity),that is
F (u) = ∪α∈ΛFα,thereinto Λ is a index set, α ∈ Λ, Fα is a nonempty connected
close subset,for every α, β ∈ Λ, α �= β,and for every Fα ∩ Fβ = φ.

Definition 2.4 Let f is a nonempty connected close subset of solution
set F (u), f is said to be a essence set of F (u) for any u ∈ Y ,if for any open
set O containing in f ,there exists δ >0,such that F (u∗) ∩ O �= φ for every u∗

that satisfy ρ(u, u∗) < δ; If Fα is a essence set of F (u),then Fα is said to be
a essence connected section of F (u);a essence set f of F (u) is said to be a
minimal essence set , if f is a minimal element in the family of essence sets of
F (u) according to inclusion of sets.
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Definition 2.5[7]Let E a linear norm-ed space,X is any nonempty subset
in E, E∗ is conjugate space of E, 〈•, •〉 show the partnership of between E and
E∗, let S : X → 2X and T : X → 2E∗

is set-valued mapping, then the problem
of generalized quasi-variational inequalities indicate: find a point y ∈ S(y) and
u ∈ T (y)such that : Re〈u, y − x〉 ≤ 0, ∀x ∈ S(y).

Lemma 2.2 [8] Let E a linear norm-ed space , X is any non-empty close
convex set in E , let Q : X → 2X is a upper-continuity mapping with non-
empty close value;
J : X × X → R is a lowercontinuity mapping;J(x, y) is convex for y;∀x ∈
X, J(x, x) ≥ 0; if for every sequence zn → z and y ∈ Q(z),there exists yn ∈
Q(zn) such that

limnJ(zn, yn) ≤ J(z, y)

then there exists x̄ ∈ X,such that x̄ ∈ Q(x̄) and J(x̄, y) ≥ 0, ∀y ∈ Q(x̄).
Lemma 2.3[8] Let E a linear norm-ed space,X is any nonempty close

convex set in E, T : X → 2E∗
is nonempty close convex set and continuity,then

Re〈w, y − x〉(w ∈ T (x)) is a continual function in X × Y .

3 the stability of the solution set of GQVI

Due to the existence [8]of the set to quasi-variational inequalities and lemma
2.2,lemma 2.3,we get out easily the following existence theorem (don’t testify
):

Theorem 3.1 Let E a linear norm-ed space,X is any nonempty close
convex set in E, let S : X → 2X is a upper-continuity mapping with nonempty
close value, T : X → 2E∗

is nonempty close convex set and continuity. Then
there exists x ∈ X,such that 1)x ∈ S(x); 2)when u ∈ T (x),get out Re〈u, x −
y〉 ≤ 0, ∀y ∈ S(x).

Let E a linear norm-ed space,X is any nonempty close convex set in
E. Definition B = {(S, T ) : S : X → 2X is a upper-continuity mapping
with nonempty close value , T : X → 2E∗

is nonempty close convex set and
continuity} , For every b = (S, T ), b1 = (S1, T 1) ∈ B,we define

ρB(b, b1) = sup
x∈X

h1(T (x), T 1(x)) + sup
x∈X

h2(S(x), S1(x))

thereinto h1, h2 are Hausdorff metric in each other E∗, X.by all appearances
(B, ρB) is a complete metric space.

For any b = (S, T ) ∈ B,there exists a corresponding generalized quasi-
variational inequalities problem ,so still marking with b and E(b) is it’s solution
set .by theorem 3.1,we know easily E(b) �= φ , then we define a set-valued
mapping E : B → 2X .

Lemma 3.1 E : B → 2X is a usco mapping.
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Proof: by X close and corollary 9 [5], only testifying Graph(E) is a closed
subset in B × X,and

Graph(E) = {((S, T ), x) ∈ B × X : x ∈ E((S, T ))}
for any a sequence {((Sn, Tn), xn)}∞1 ∈ Graph(E), and ((Sn, Tn), xn) → ((S, T ), x),
due to Sn : X → 2X is a upper-continuity mapping with nonempty close value,
adding to Tn continuity,getting out easily : ((S, T ), x) ∈ B × X.
in the following testifying :x ∈ E(S, T ) because of (Sn, Tn) → (S, T ), xn →
x and xn ∈ E(Sn, Tn),by theorem 3.1,so: 1)xn ∈ Sn(xn); 2) when zn ∈
Tn(xn)(might as well set zn → z),such that Re〈zn, xn−y〉 ≤ 0, ∀y ∈ Sn(xn). X
close , xn → x getting out i)∀ε > 0, ∃N1, ∀n > N1, d(xn, x) < ε, · · · · · · · · · (1)
on the other hand, Sn → S ⇒ Sn(xn) → S(xn).(∃N2, ∀n > N2) ,S is
upper-continuity,for the above ε, ordering δ = ε, S(xn) ⊂ U(S(x), ε) N =
max(N1, N2) , basing on xn ∈ Sn(xn) → S(xn) =⇒ xn ∈ U(S(xn), ε), y ∈
U(S(xn), ε) =⇒ xn ∈ U(S(x), 2ε),by formula(1)and the random ε,then x ∈
S(x) ; ii) by Tn continuity and close value, zn ∈ Tn(xn),then zn → z ; as well
as

d(z, (T (x))) ≤ d(z, zn)+d(zn, Tn(xn))+h(Tn(xn), Tn(x))+h(Tn(x), T (x)) → 0

then z ∈ T (x); 〈•, •〉 is continuity,there |〈z − zn, x − y〉 + 〈zn, x − xn〉| < ε

〈z − zn, x − y〉 + 〈zn, x − xn〉 < ε

〈z − zn, x − y〉 + 〈zn, x − xn − y + y〉 < ε

that is
Re〈z − zn, x − y〉 + Re〈zn, x − xn − y + y〉 < ε

Re〈z, x − y〉 − Re〈zn, x − y〉 + Re〈zn, y − xn〉 + Re〈zn, x − y〉 < ε

Re〈z, x − y〉 < Re〈zn, xn − y〉 + ε ≤ ε,

(reasoning :Re〈zn, xn − y〉 ≤ 0, ∀yn ∈ S(xn)), due to the random ε, S(xn) ⊂
U(S(x), ε) and y ∈ U(S(xn), ε),there:

Re〈z, x − y〉 ≤ 0, ∀y ∈ S(x)

summing:
x ∈ (S, T ).

which completes the proof.
Since definition 2.1 and 2.3,knowing easily:
Lemma 3.2 b is essence, the sufficient and necessary condition of which is

that A set-valued mapping E : B → 2X is lower-continuity in b .
The important conclusion:
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Theorem 3.2 there exists a dense residual set Q in B,for every b ∈ Q, b
is essence.

Proof: by lemma 2.1 and 3.1,3.2,the theorem is proved easily .
So, we obtain the generalized quasi-variational inequalities is stability in

the dense residual set, that is ,basing on Baire classify, the most absolutely of
the generalized quasi-variational inequalities are stability.

4 on essential components of the solution set

of GQVI

Theorem 4.1 for each b ∈ B,there exists a essential components of E(b).
In order to prove the theorem, we firstly present the following condition

((A) : let B, Xare metric spaces (the defined before ),E : B → 2X is a mapping,
for any two nonempty closed sets K1, K2 in X, K1 ∩ K2 = φ and for any two
points b1, b2of B, if E(b1)∩K1 = φ, E(b2)∩K2 = φ . then there exists b∗ ∈ B,
such that
d(b∗, b2) ≤ d(b1, b2), d(b1, b

∗) ≤ d(b1, b2), and E(b∗)∩ (K1∪K2) = φ by theorem
3.1[3],if E satisfy (A),then
(1)for any b ∈ B,then there exists a minimal essential set of E(b), and each
minimal essential set of E(b)is connected.
(2) for each b ∈ B, there exists at least a essential component of E(b).

In order to prove theorem 4.1.so we testify condition (A) :
Proof: for any nonempty closed K1, K2in X,K1 ∩ K2 = φ and any point

b1, b2in B,if E(b1) ∩ K1 = φ, E(b2) ∩ K2 = φ ,firstly we construct the new
b∗ = (S∗(x), T ∗(x)),seeing

S∗(x) = λ(x)S1(x) + μ(x)S2(x)

T ∗(x) = λ(x)T1(x) + μ(x)T2(x)

thereinto b1 = (S1, T1), b2 = (S2, T2)

λ(x) =
d(x, K2)

d(x, K1) + d(x, K2)

μ(x) =
d(x, K1)

d(x, K1) + d(x, K2)

by all appearances λ(x), μ(x)continuum, λ(x) ≥ 0, μ(x) ≥ 0,and λ(x)+μ(x) =
1.testify easily b∗ = (S∗, T ∗) ∈ B then ∀x ∈ X,

h1(S
∗, S1) ≤ h1(S1, S2), h1(S

∗, S2) ≤ h1(S1, S2)

h2(T
∗, T1) ≤ h2(T1, T2), h2(T

∗, T2) ≤ h2(T1, T2)



412 XiaoHua Liu and XiaoJun Yu

so :

suph1(S
∗, S1) ≤ suph1(S1, S2), sup h1(S

∗, S2) ≤ suph1(S1, S2)

sup h2(T
∗, T1) ≤ sup h2(T1, T2), sup h2(T

∗, T2) ≤ suph2(T1, T2)

sup h1(S
∗, S1) + suph2(T

∗, T1) ≤ suph1(S1, S2) + suph2(T1, T2)

sup h1(S
∗, S2) + suph2(T

∗, T2) ≤ suph1(S1, S2) + suph2(T1, T2)

=⇒
ρB(b∗, b1) ≤ ρB(b1, b2)

ρB(b∗, b2) ≤ ρB(b1, b2)

the following we testify E(b∗) ∩ (K1 ∪ K2) = φ
i)if x ∈ K1,then λ(x) = 1, μ(x) = 0,so

S∗ = λ(x)S1(x) + μ(x)S2(x) = S1

T ∗ = λ(x)T1(x) + μ(x)T2(x) = T1

then b1 = (S1, T1) = b∗ = (S∗, T ∗), by E(b1) ∩ K1 = φ =⇒ x /∈ E(b1) =
E(b∗)
ii)if x ∈ K2,then λ(x) = 0, μ(x) = 1,so

S∗ = λ(x)S1(x) + μ(x)S2(x) = S2

T ∗ = λ(x)T1(x) + μ(x)T2(x) = T2

then b2 = (S2, T2) = b∗ = (S∗, T ∗). by E(b2) ∩ K2 = φ =⇒ x /∈ E(b2) =
E(b∗); that is E(b∗) ∩ (K1 ∪ K2) = φ.which the condition (A)is satisfied. that
is for each b ∈ B,there exists a essential components of E(b). which completes
the proof.
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