The Stability and on Essential Components of the Solution Set of Generalized Quasi-Variational Inequalities¹

XiaoHua Liu

School of Mathematical and Computer Science Guizhou University for Nationalities GuiYang, Guizhou, China 550025 lxhjkkl@yahoo.com.cn

XiaoJun Yu

School of Mathematical and Statistics Guizhou College of Finance and Economics GuiYang, Guizhou, China 550025

Abstract

In this work, we consider firstly the existence of the solution of generalized quasi-variational inequalities; secondly, we discuss the stability and on essential components of it's solution set.

Mathematics Subject Classification: 35A30

Keywords: generalized quasi-variational inequalities; stability; connected essential components

1 Introduction

In 1985,With the method of generalized KyFan—minimax inequality^[1], Tan.K.K^[4] discussed the existence of the solution of generalized quasi-variational inequality problem in the local convex Hausdorff topological space. In 1990, Ding.X.P and Tan.K.K^[9] proved the two theorems of generalized quasi-variational inequality's solution set by the Himmlbesg fixed point, which improved the

¹This research was partially supported by the Provincial Nature Science Foundation of Guizhou of China(2006325).

same conclusion of shi-Tan^[4].In this paper ,we discuss the stability and connected essential components of the solutions set of generalized quasi-variational inequality problem(for short GQVI), which improve the corresponding result^[7].

2 Preliminaries

Definition 2.1 1) a set—valued mapping $F: Y \to 2^X$ is called upper semi-continuity in $y \in Y$, if O is any open set in X, and $F(y) \subset O$, there exists the open neighborhood U(y) of y, such that $F(y') \subset O$ for every $y' \subset U(y)$. 2) $F: Y \to 2^X$ is said to be lower semi-continuity in $y \in Y$, if O is any open set in X and $F(y) \cap O \neq \phi$, there exists the open neighborhood U(y) of y, such that $F(y') \cap O \neq \phi$, for every $y' \subset U(y)$. 3) F is to be continuity in $y \in Y$, if F is both upper and lower semi-continuity in y. 4) F is called continuity in Y, if F is continuity for every $Y \in Y$. 5) F is a usco(upper semi-continuity) mapping, if F is semi-continuity in Y and F(y) is compact set for every $Y \in Y$.

Definition 2.2 Q is said to be residual set in Y, if Q contains the intersection of a sequence dense open set in Y; Q is dense in Y, if Y is a Baire space.

We also need the following well known fort theorem.

Lemma 2.1 [5] Let X be a metric space Y is a Baire space F is a usco mapping in Y, then there exists a dense residual set Q, for every $Y \in Q$, F is lower semi-continuity in $Y \in Y$.

Definition 2.3 Let Y is a problem space, F(u) is the solution set to some problem $u \in Y$ and $x \in F(u)$

1) Let x is a essential set of u, if for any open neighborhood O of x in X, there exists a open neighborhood U of u in Y, such that $F(u^*) \cap O \neq \phi$; for every $u^* \in U$; 2) u is called weak-ed essential, if there exists a set of u is a essential set; 3) u is called essential, if any set of u is a essential set.

Let $u \in Y, x \in F(u)$, the summation set of every connected subset of x in F(u) is said to be a connected component of F(u)(seeing^[6]page 356), a connected component of F(u) is a closed connected subset of F(u), thereby a compact connected subset, if $u \neq u^*$, the connected components of F(u) and $F(u^*)$ are either superposition or no-intersection, so F(u) is de-compound a family of each other non-intersection summation set (finity or infinity), that is $F(u) = \bigcup_{\alpha \in \Lambda} F_{\alpha}$, thereinto Λ is a index set, $\alpha \in \Lambda$, F_{α} is a nonempty connected close subset, for every $\alpha, \beta \in \Lambda$, $\alpha \neq \beta$, and for every $F_{\alpha} \cap F_{\beta} = \phi$.

Definition 2.4 Let f is a nonempty connected close subset of solution set F(u), f is said to be a essence set of F(u) for any $u \in Y$, if for any open set O containing in f, there exists $\delta > 0$, such that $F(u^*) \cap O \neq \phi$ for every u^* that satisfy $\rho(u, u^*) < \delta$; If F_{α} is a essence set of F(u), then F_{α} is said to be a essence connected section of F(u); a essence set f of F(u) is said to be a minimal essence set, if f is a minimal element in the family of essence sets of F(u) according to inclusion of sets.

Definition 2.5^[7]Let E a linear norm-ed space,X is any nonempty subset in E, E^* is conjugate space of E, $\langle \bullet, \bullet \rangle$ show the partnership of between E and E^* , let $S: X \to 2^X$ and $T: X \to 2^{E^*}$ is set-valued mapping, then the problem of generalized quasi-variational inequalities indicate: find a point $\overline{y} \in S(\overline{y})$ and $u \in T(\overline{y})$ such that $: Re\langle u, \overline{y} - x \rangle \leq 0, \forall x \in S(\overline{y}).$

Lemma 2.2 [8] Let E a linear norm-ed space, X is any non-empty close convex set in E, let $Q: X \to 2^X$ is a upper-continuity mapping with non-empty close value;

 $J: X \times X \to R$ is a lower continuity mapping; J(x,y) is convex for $y; \forall x \in X, J(x,x) \geq 0$; if for every sequence $z_n \to z$ and $y \in Q(z)$, there exists $y_n \in Q(z_n)$ such that

$$\overline{\lim}_n J(z_n, y_n) \le J(z, y)$$

then there exists $\bar{x} \in X$, such that $\bar{x} \in Q(\bar{x})$ and $J(\bar{x}, y) \geq 0, \forall y \in Q(\bar{x})$.

Lemma 2.3^[8] Let E a linear norm-ed space,X is any nonempty close convex set in $E, T: X \to 2^{E^*}$ is nonempty close convex set and continuity,then $Re\langle w, y - x \rangle (w \in T(x))$ is a continual function in $X \times Y$.

3 the stability of the solution set of GQVI

Due to the existence ^[8] of the set to quasi-variational inequalities and lemma 2.2,lemma 2.3,we get out easily the following existence theorem (don't testify):

Theorem 3.1 Let E a linear norm-ed space, X is any nonempty close convex set in E, let $S: X \to 2^X$ is a upper-continuity mapping with nonempty close value, $T: X \to 2^{E^*}$ is nonempty close convex set and continuity. Then there exists $\overline{x} \in X$, such that $1)\overline{x} \in S(\overline{x})$; 2) when $u \in T(\overline{x})$, get out $Re\langle u, \overline{x} - y \rangle \leq 0, \forall y \in S(\overline{x})$.

Let E a linear norm-ed space,X is any nonempty close convex set in E. Definition $B=\{(S,T):S:X\to 2^X \text{ is a upper-continuity mapping with nonempty close value }, <math>T:X\to 2^{E^*}$ is nonempty close convex set and continuity $\}$, For every $b=(S,T), b^1=(S^1,T^1)\in B$,we define

$$\rho_B(b, b^1) = \sup_{x \in X} h_1(T(x), T^1(x)) + \sup_{x \in X} h_2(S(x), S^1(x))$$

thereinto h_1, h_2 are Hausdorff metric in each other E^*, X by all appearances (B, ρ_B) is a complete metric space.

For any $b=(S,T)\in B$, there exists a corresponding generalized quasi-variational inequalities problem , so still marking with b and E(b) is it's solution set . by theorem 3.1, we know easily $E(b)\neq \phi$, then we define a set-valued mapping $E:B\to 2^X$.

Lemma 3.1 $E: B \to 2^X$ is a usco mapping.

Proof: by X close and corollary 9 [5], only testifying Graph(E) is a closed subset in $B \times X$, and

$$Graph(E) = \{((S, T), x) \in B \times X : x \in E((S, T))\}\$$

for any a sequence $\{((S_n,T_n),x_n)\}_1^\infty \in Graph(E)$, and $((S_n,T_n),x_n) \to ((S,T),x)$, due to $S_n: X \to 2^X$ is a upper-continuity mapping with nonempty close value, adding to T_n continuity, getting out easily: $((S,T),x) \in B \times X$. in the following testifying: $x \in E(S,T)$ because of $(S_n,T_n) \to (S,T),x_n \to x$ and $x_n \in E(S_n,T_n)$, by theorem 3.1,so: $1)x_n \in S_n(x_n)$; 2) when $z_n \in T_n(x_n)$ (might as well set $z_n \to z$), such that $Re\langle z_n,x_n-y\rangle \leq 0, \forall y \in S_n(x_n)$. X close, $x_n \to x$ getting out $i)\forall \varepsilon > 0, \exists N_1, \forall n > N_1, d(x_n,x) < \varepsilon, \cdots (1)$ on the other hand, $S_n \to S \Rightarrow S_n(x_n) \to S(x_n)$. $(\exists N_2, \forall n > N_2)$, S is upper-continuity, for the above ε , ordering $\delta = \varepsilon, S(x_n) \subset U(S(x), \varepsilon)$ $N = max(N_1,N_2)$, basing on $x_n \in S_n(x_n) \to S(x_n) \Longrightarrow x_n \in U(S(x_n),\varepsilon)$, $y \in U(S(x_n),\varepsilon) \Longrightarrow x_n \in U(S(x),2\varepsilon)$, by formula (1) and the random ε , then $x \in S(x)$; ii) by T_n continuity and close value, $z_n \in T_n(x_n)$, then $z_n \to z$; as well as

$$d(z, (T(x))) \le d(z, z_n) + d(z_n, T_n(x_n)) + h(T_n(x_n), T_n(x)) + h(T_n(x), T(x)) \to 0$$

then $z \in T(x)$; $\langle \bullet, \bullet \rangle$ is continuity, there $|\langle z - z_n, x - y \rangle + \langle z_n, x - x_n \rangle| < \varepsilon$

$$\langle z - z_n, x - y \rangle + \langle z_n, x - x_n \rangle < \varepsilon$$

$$\langle z - z_n, x - y \rangle + \langle z_n, x - x_n - y + y \rangle < \varepsilon$$

that is

$$Re\langle z - z_n, x - y \rangle + Re\langle z_n, x - x_n - y + y \rangle < \varepsilon$$

$$Re\langle z, x - y \rangle - Re\langle z_n, x - y \rangle + Re\langle z_n, y - x_n \rangle + Re\langle z_n, x - y \rangle < \varepsilon$$

$$Re\langle z, x - y \rangle < Re\langle z_n, x_n - y \rangle + \varepsilon \le \varepsilon,$$

(reasoning : $Re\langle z_n, x_n - y \rangle \leq 0, \forall y_n \in S(x_n)$), due to the random ε , $S(x_n) \subset U(S(x), \varepsilon)$ and $y \in U(S(x_n), \varepsilon)$, there:

$$Re\langle z, x - y \rangle \le 0, \forall y \in S(x)$$

summing:

$$x \in (S, T)$$
.

which completes the proof.

Since definition 2.1 and 2.3, knowing easily:

Lemma 3.2 b is essence, the sufficient and necessary condition of which is that A set-valued mapping $E: B \to 2^X$ is lower-continuity in b.

The important conclusion:

Theorem 3.2 there exists a dense residual set Q in B, for every $b \in Q$, b is essence.

Proof: by lemma 2.1 and 3.1,3.2,the theorem is proved easily.

So, we obtain the generalized quasi-variational inequalities is stability in the dense residual set, that is ,basing on Baire classify, the most absolutely of the generalized quasi-variational inequalities are stability.

4 on essential components of the solution set of GQVI

Theorem 4.1 for each $b \in B$, there exists a essential components of E(b).

In order to prove the theorem, we firstly present the following condition $((A): \text{let } B, X \text{ are metric spaces (the defined before }), E: B \to 2^X \text{ is a mapping,}$ for any two nonempty closed sets K_1, K_2 in $X, K_1 \cap K_2 = \phi$ and for any two points b_1, b_2 of B, if $E(b_1) \cap K_1 = \phi, E(b_2) \cap K_2 = \phi$. then there exists $b^* \in B$, such that

 $d(b^*, b_2) \le d(b_1, b_2), d(b_1, b^*) \le d(b_1, b_2), \text{ and } E(b^*) \cap (K_1 \cup K_2) = \phi \text{ by theorem } 3.1^{[3]}, \text{if } E \text{ satisfy } (A), \text{then}$

- (1) for any $b \in B$, then there exists a minimal essential set of E(b), and each minimal essential set of E(b) is connected.
- (2) for each $b \in B$, there exists at least a essential component of E(b).

In order to prove theorem 4.1.so we testify condition (A):

Proof: for any nonempty closed K_1, K_2 in $X, K_1 \cap K_2 = \phi$ and any point b_1, b_2 in B, if $E(b_1) \cap K_1 = \phi$, $E(b_2) \cap K_2 = \phi$, firstly we construct the new $b^* = (S^*(x), T^*(x))$, seeing

$$S^*(x) = \lambda(x)S_1(x) + \mu(x)S_2(x)$$

$$T^*(x) = \lambda(x)T_1(x) + \mu(x)T_2(x)$$

thereinto $b_1 = (S_1, T_1), b_2 = (S_2, T_2)$

$$\lambda(x) = \frac{d(x, K_2)}{d(x, K_1) + d(x, K_2)}$$

$$\mu(x) = \frac{d(x, K_1)}{d(x, K_1) + d(x, K_2)}$$

by all appearances $\lambda(x)$, $\mu(x)$ continuum, $\lambda(x) \geq 0$, $\mu(x) \geq 0$, and $\lambda(x) + \mu(x) = 1$. testify easily $b^* = (S^*, T^*) \in B$ then $\forall x \in X$,

$$h_1(S^*, S_1) \le h_1(S_1, S_2), \quad h_1(S^*, S_2) \le h_1(S_1, S_2)$$

$$h_2(T^*, T_1) \le h_2(T_1, T_2), \quad h_2(T^*, T_2) \le h_2(T_1, T_2)$$

so:

$$\sup h_1(S^*, S_1) \le \sup h_1(S_1, S_2), \quad \sup h_1(S^*, S_2) \le \sup h_1(S_1, S_2)$$

$$\sup h_2(T^*, T_1) \le \sup h_2(T_1, T_2), \quad \sup h_2(T^*, T_2) \le \sup h_2(T_1, T_2)$$

$$\sup h_1(S^*, S_1) + \sup h_2(T^*, T_1) \le \sup h_1(S_1, S_2) + \sup h_2(T_1, T_2)$$

$$\sup h_1(S^*, S_2) + \sup h_2(T^*, T_2) \le \sup h_1(S_1, S_2) + \sup h_2(T_1, T_2)$$

 \Longrightarrow

$$\rho_B(b^*, b_1) \le \rho_B(b_1, b_2)$$

$$\rho_B(b^*, b_2) \le \rho_B(b_1, b_2)$$

the following we testify $E(b^*) \cap (K_1 \cup K_2) = \phi$ *i*) if $x \in K_1$, then $\lambda(x) = 1, \mu(x) = 0$, so

$$S^* = \lambda(x)S_1(x) + \mu(x)S_2(x) = S_1$$
$$T^* = \lambda(x)T_1(x) + \mu(x)T_2(x) = T_1$$

then $b_1 = (S_1, T_1) = b^* = (S^*, T^*)$, by $E(b_1) \cap K_1 = \phi \Longrightarrow x \notin E(b_1) = E(b^*)$

$$ii$$
) if $x \in K_2$, then $\lambda(x) = 0$, $\mu(x) = 1$, so

$$S^* = \lambda(x)S_1(x) + \mu(x)S_2(x) = S_2$$

$$T^* = \lambda(x)T_1(x) + \mu(x)T_2(x) = T_2$$

then $b_2 = (S_2, T_2) = b^* = (S^*, T^*)$. by $E(b_2) \cap K_2 = \phi \Longrightarrow x \notin E(b_2) = E(b^*)$; that is $E(b^*) \cap (K_1 \cup K_2) = \phi$ which the condition (A) is satisfied. that is for each $b \in B$, there exists a essential components of E(b). which completes the proof.

References

- [1] F. Ky, A minimax inequality and applications, Inequalities III, ED. O. Shisha, 103-113, (Acadamic press, 1972).
- [2] J. P. Aubin, I. Ekeland, Applied Nonlinear Analysis, New York: John Wiley and Sons, 1984.
- [3] J. Yu, K. K. Tan & S.W.Xiang etc, the existence and stability of essential component, Journal of Applied Mathematical Sciences, 127(2004):201-209.
- [4] M. H. Shih and K. K. Tan, Generalized quasi-variational inequalities in locally convex topological vector spaces, Journal of Mathematical Analysis and Applications, 108 (1985): 333-343.

- [5] M. K. Fort, Point of continuity semicontinuous functions, Publ. Math. Debrecen, 1951, 2:100-102.
- [6] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [7] S. S. Zhang, The theory and application variational inequalities and complementarity problem, Science and technology publishing company in Shanghai, 1991.
- [8] X. H. Liu, X. J. Yu, H. Yang, The essential component of the solution to quasivariational inequalities, Journal of guizhou university (natural science edition), 21 (2004): 4-7.
- [9] X. P. Ding and K. K. Tan, Generalized variational inequalities and generalized quasi-variational inequalities, Journal of Mathmatical Analysis and Applications, 148 (1990): 497-508.

Received: September 14, 2007