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Abstract

In this paper, we firstly study the classical Lie symmetries of the
Benjamin-Bona-Mahony (BBM) equation which is obtained through
the Lie group method of infinitesimal transformations. Secondly us-
ing the classical symmetries of the equation, similarity reductions are
obtained and it is shown that one of these similarity reductions has no
the Painlevé property.
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1 Introduction

The Benjamin-Bona-Mahony (BBM) equation

ut + ux + uux − uxxt = 0, (1)

like the Korteweg-de Vries (KdV) equation

ut + ux + uux + uxxx = 0, (2)

was originally derived as approximation for surface water waves in a uniform
channel [1,2].

Both (1) and (2) also cover cases of the following type: surface waves
of long wavelength in liquids, acoustic-gravity waves in compressible fluids,
hydromagnetic waves in cold plasma, acoustic waves in anharmonic crystals,
etc. The wide applicability of these equations is the main reason why, during
the last decades, they have attracted so much attention from mathematicians.
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The main mathematical difference between KdV and BBM models can
be most readily appreciated by comparing the dispersion relation for the re-
spective linearized equations. It can be easily seen that these relations are
comparable only for small wave numbers (i.e., long waves) and they generate
drastically different responses to short waves (which are irrelevant to its role
as a physical model). This is one of the reasons why, whereas existence and
regularity theory for the KdV equation is difficult, the theory of the BBM
equation is comparatively simple. The computing is also much easier for (1)
than for (2).

The application of Lie transformations group theory for the construction
of solutions of nonlinear partial differential equations (PDEs) is one of the most
active fields of research in the theory of nonlinear PDEs and applications.
The fundamental basis of the technique is that when a differential equation
is invariant under a Lie group of transformations, a reduction transformation
exists. In order to determine solutions of PDE (1) that are not equivalent by
the action of group, we must calculate the one dimensional optimal system.
Most of the required theory and description of method can be found in [3,4,5,6].

In Section 2, we find the Lie symmetry algebra of the BBM equation and
present the optimal systems of one dimensional subalgebras of Lie symmetry
algebra. In Section 3, we use these subalgebras to perform similarity reductions
and to obtain the similarity solutions. In Section 4, we give the Painlevé
analysis for ordinary differential equations (ODEs) and apply to the similarity
reduction of the BBM equation. Some conclusions are drawn in Section 5.

2 Lie Symmetries and Optimal Systems

2.1 Lie Symmetries

In this sub section, we want to present the most general Lie group of point
transformations, which leaves BBM equation (1) invariant.

To apply the classical Lie symmetry group method to BBM equation
(1), we consider the one-parameter Lie group of infinitesimal transformations
in (x, t, u). The associated Lie algebra of the infinitesimal system involves the
set of vector fields of the form

v = ξx ∂

∂x
+ ξt ∂

∂t
+ ηu ∂

∂u
. (3)

The symmetry condition

pr(3)v�|� = 0. (4)

yields an overdetermined system of PDE for the unknown functions ξx(x, t, u),
ξt(x, t, u) and ηu(x, t, u) where � is the manifold defined by (1) in jet space
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J
(3)
x,t;u and pr(3)v is the third prolongation of v. By solving this system, we

found the unknown functions ξx, ξt and ηu. The Lie algebra admitted by (1)
is

L3 =

{
v1 =

∂

∂x
, v2 =

∂

∂t
, v3 = t

∂

∂t
− (1 + u)

∂

∂u

}
. (5)

2.2 Optimal System of Lie Symmetries

We define a relation between two invariant solutions to hold true if the first
one can be mapped to the other by applying a transformation group generated
by a linear combinations of the operators in (5). Since these mappings are
reflexive, symmetric and transitive, the relation is an equivalence relation,
which induces a natural partition on the set of all group invariant solutions into
equivalence classes. We need only present one solution from each equivalence
class, as the rest may be found by applying appropriate group symmetries; a
complete set of such solutions is referred to as an ”optimal system” of group
invariant solutions.

The problem of deriving an optimal system of group invariant solutions is
equivalent to find an optimal system of Lie symmetries (or subalgebras spanned
by these operators). The method used here is given by Olver in [4], which
basically consists of taking linear combinations of the generators in (5), and
reducing them to their simplest equivalent form by applying carefully chosen
adjoint transformations.

Ad(exp(ε vi))vj = vj − ε [vi, vj ] + 1
2
ε2[vi, [vi, vj]] − · · · .

Here [vi, vj] is the usual commutator, given by

[vi, vj ] = vivj − vjvi .

For brevity we omit the details, and just state the result that an optimal
system of generators is

{L1,1 = {v1} , L1,2 = {αv1 + v2} , L1,3 = {αv1 + v3}} , (6)

where α denote arbitrary real constant.

3 Reductions to ODEs and exact solutions

In this section we use the method of characteristics to determine the in-
variants and reduced ODEs corresponding to each subalgebra given in (6).
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Symmetry variables and the invariants of the subalgebras of the Lie algebra
L3 are given in table 1. The result of this can be summarized as follows, where
ξ is the symmetry variable, F (ξ) is invariant function related to u, and have
to be determined using the reduced ODEs

Subalgebra Symmetry variable Function u(x, t)
L1,1 ξ = t u = F (ξ)

L1,2(α) ξ = αt − x u = F (ξ)

L1,3(α) ξ = ext−α u = F (ξ)
t

− 1

Table 1
Invariants of the subalgebras of the Lie algebra L3

3.1 Solutions

3.1.1 L1,1 = {v1} =

{
∂

∂x

}

The reduced equation of L1,1 is

F ′ = 0 (7)

and gives the constant solutions of (1).

3.1.2 L1,2(α) = {αv1 + v2} =

{
α

∂

∂x
+

∂

∂t

}

The reduced equation for the subalgebra L1,2(α) is

αF ′′′ + (α − 1)F ′ − FF ′ = 0. (8)

For α �= 0, equation (8) integrating twice with respect to ξ, we obtain

α(F ′)2 =
1

3
F 3 − (α − 1)F 2 + c1F + c2. (9)

where c1 and c2 denote arbitrary constants. Choosing c2 = 0, we find the
solution of this equation as follows.

F (ξ) = β2sn2

(√
3α

γ
ξ

)
, (10)

where
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β = 1
2

(√
9(α − 1)2 − 4c1 − 3(α − 1)

)
,

γ = −1
2

(√
9(α − 1)2 − 4c1 + 3(α − 1)

)

and sn denotes Jacobi’s elliptic function [7].

3.1.3 L1,3(α) = {αv1 + v3} =

{
α

∂

∂x
+ t

∂

∂t
− (1 + u)

∂

∂u

}

The reduced equation for the subalgebra L1,3(α) is

αξ3F ′′′ + (3α + 1)ξ2F ′′ + (2α + 1)ξF ′ − ξFF ′ + F = 0. (11)

Changing the variable as τ = ln ξ, we obtained

αF ′′′ + F ′′ + αF ′ + F − FF ′ = 0. (12)

4 Painlevé Analysis for ODEs

According to the Ablowitz, Ramani and Segur (ARS) conjecture [8], ev-
ery ordinary differential equation obtained by an exact reduction of a nonlin-
ear partial diferential equation solvable by Inverse Scattering Transform (IST)
method, has the Painlevé property. This conjecture therefore provides a nec-
essary condition for the integrability of a given partial differential equation.

The Painlevé property for ODEs is defined as follows. The solutions of
a system of ODEs are regarded as (analytic) functions of a complex variable.
The ”movable” singularities of the solution are the singularities of the solution
(as a function of τ) whose location depends on the initial conditions and are,
hence, movable. (Fixed singularities occur at points where the coefficients of
the equation are singular). The ODE system is said to possess the Painlevé
property when all the movable singularities are single-valued (simple poles) [9].

The ARS algorithm was developed in order to determine whether or not
a nonlinear ODE (or a system of ODE’s) admits movable branch points, either
algebraic or logarithmic. It is important to keep in mind that the occurrence
of movable essential singularities can not be detected by this procedure.

The ARS algorithm proceeds in three steps, dealing with the dominant
behaviors, the resonances, respectively [8,10].

To applied The Painlevé analysis following to [8,10] for the equation
(12), we look for a solution of (12) in the form

F = F0(τ − τ0)
β + O

(
(τ − τ0)

β−1
)

(13)
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where τ0 is arbitrary. Substituting (13) in to (12) shows that for certain
values of β, two or more terms in the equation may balance (depending on F0),
and the rest can be ignored as τ → τ0. For each such choice of β, the terms
which can balance are called the leading terms. Requiring that the leading
terms do balance (usually) determines F0.

Here for α = 0 we find β = −1 and F0 = −2, but for α �= 0 we find
beta = −2 and F0 = 12α. The corresponding resonances can be found as for
α = 0, n1 = −1, 2 and for α �= 0, n2 = −1, 4, 6. At the resonances n1 = 2
and n2 = 4, the compatibility conditions can not be satisfied and therefore the
equation (12) does not pass the Painlevé test.

5 Conclusions

Using the Lie group method, we obtained the similarity reductions and solu-
tions to the BBM equation. Considering the one of the similarity reduction, we
showed that it does not pass the Painlevé test. Acording to the ARS conjecture
BBM equation is not solvable by IST.
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