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Abstract

In this paper, He’s variational iteration method (VIM) has been used
to obtain solutions of the seventh-order Sawada-Kotera equation (sSK)
and a Lax’s seventh order KdV equations(LsKdV).The numerical so-
lutions are compared with the Adomian decomposition method(ADM)
and the known analytical solutions.The work confirms the power of the
VIM in reducing the size of calculations w.r.t. ADM. Some illustrative
examples have been presented.
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1 Introduction

Analytical methods commonly used to solve nonlinear equations are very re-
stricted and numerical techniques involving discretization of the variables on
the other hand gives rise to rounding off errors.

Recently introduced variational iteration method by He[5, 6, 7, 8], which
gives rapidly convergent successive approximations of the exact solution if
such a solution exists, has proven successful in deriving analytical solutions
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of linear and nonlinear differential equations. This method is preferable over
numerical methods as it is free from rounding off errors and neither requires
large computer power/memory. He [6, 7, 13] has applied this method for
obtaining analytical solutions of autonomous ordinary differential equation,
nonlinear partial differential equations with variable coefficients and integro-
differential equations. The variational iteration method was successfully ap-
plied to Burger’s and coupled Burger’s equations [1], to Schruodinger-KdV,
generalized KdV and shallow water equations [2], to linear Helmholtz partial
differential equation [11]. Linear and nonlinear wave equations, KdV, K(2,2),
Burgers, and cubic Boussinesq equations have been solved by Wazwaz [14, 15]
using the variational iteration method.

In the present paper we employ VIM method for solving following equa-
tions.

ut + (63u4 + 63(2u2uxx + uu2
x) + 21(uuxxxx + u2

xx + uxuxxx) + uxxxxxx)x = 0, (1)
ut + (35u4 + 70(u2uxx + uu2

x) + 7(2uuxxxx + 3u2
xx + 4uxuxxx) + uxxxxxx)x = 0, (2)

Eq. (1) is known as the seventh order Sawada -Kotera equation [4, 9] and
Eq. (2) is known as the Lax’s seventh-order KdV equation [4, 12] respectively.
Further we compare the result with given solutions using ADM [4, 3]. The
paper has been organized as follows. Section II, gives a brief review of VIM.
Section III, consists of main results of the paper, in which variational iteration
method of the sSK and LsKdV equations has been developed. In Section IV,
illustrative examples are given. Conclusions are presented in Section V.

2 He’s variational iteration method

For the purpose of illustration of the methodology to the proposed method,
using variational iteration method, we begin by considering a differential equa-
tion in the formal form,

Lu + Nu = g(x, t), (3)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source
inhomogeneous term. According to the variational iteration method, we can
construct a correction functional as follow

un+1(x, t) = un(x, t) +

∫ t

0

λ(ξ) (Lun(ξ) + Nũ(ξ) − g(ξ)) dξ, n ≥ 0, (4)

where λ is a general Lagrangian multiplier [10], which can be identified opti-
mally via the variational theory, the subscript n denotes the nth order approx-
imation, ũn is considered as a restricted variation [7, 8, 10] i.e., δũn = 0.
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So, we first determine the Lagrange multiplier λ that will be identified opti-
mally via integration by parts. The successive approximations un+1(x, t), n ≥
0 of the solution u(x, t) will be readily obtained upon using the obtained La-
grange multiplier and by using any selective function u0. Consequently, the
solution

u(x, t) = lim
n−→∞

un(x, t). (5)

3 Applying VIM for sSK and LsKdV

Now for applying VIM, first we rewrite Eq. (1) in the following form

Lt(u) + (63N1(u) + 63(2N2(u) + N3(u)) + 21(N4(u)) + Lx(u))x = 0, (6)

where the notations N1(u) = u4, N2(u) = u2uxx, N3(u) = uu2
x,

N4(u) = uuxxxx + u2
xx + uxuxxx, symbolize the nonlinear terms, respectively.

The notation Lt = ∂
∂t

and Lx = ∂6

∂x6 symbolize the linear differential operators.
The correction functional for Eq.(6) reads

un+1(x, t) = un(x, t) +

∫ t

0

λ(ξ)

[
∂

∂ξ
(un) + (N(ũn))x

]
dξ, n ≥ 0, (7)

where, N(u) = (63N1(u) + 63(2N2(u) + N3(u)) + 21(N4(u)) + Lx(u). Taking
variation with respect to the independent variable un, noticing that δN(ũn) = 0

δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(ξ)

[
∂

∂ξ
(un) + (N(ũn))x

]
dξ

= δun(x, t) + λ δun|ξ=t −
∫ t

0

λ′(ξ) δundξ = 0, (8)

This yields the stationary conditions

1 + λ(ξ) = 0, λ′(ξ)|ξ=t = 0. (9)

This in turn gives λ(ξ) = −1. Substituting this value of the Lagrange multi-
plier into the functional (7) gives the iteration formula

un+1(x, t) = un(x, t) −
∫ t

0

[
∂

∂ξ
(un) + (N(un))x

]
dξ, n ≥ 0. (10)

Using the zeroth approximation u0(x, t) into (10) we obtain the successive
approximations.

In the same manner for LsKdV (2) we got the following iteration formula

un+1(x, t) = un(x, t) −
∫ t

0

[
∂

∂ξ
(un) + (F (un))x

]
dξ, n ≥ 0, (11)

where F (u) = 35u4 +70(u2uxx +uu2
x)+ 7(2uuxxxx +3u2

xx +4uxuxxx)+uxxxxxx.
Finally, we approximate the solution u(x, t) = lim

n−→∞
un(x, t).
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4 Illustrative Examples

To demonstrate the effectiveness of the method we consider here Eqs.(1) and
(2) with given initial condition.

Example 4.1 )[4] Consider the sSK equation (1) with the initial condition

u(x, 0) =
4k2

3
(2 − 3 tanh2(k x)). (12)

Substituting (12) into Eq.(10) we obtain the following successive approxima-
tions

u0(x, t) =
4

3
k2

(
2 − 3 tanh2(kx)

)
,

u1(x, t) = u0(x, t) +
1

9
k8sech2(kx) t[2176 − 896 cosh(2kx)],

u2(x, t) = u1(x, t) +
1

27
sech8(kx)k14 t2([6328576 − 6566144 cosh(2kx) +

1077248 cosh(4kx) + 24832 cosh(6kx) − 12544 cosh(8kx)] +
1

3
k6 t[2544812032 − 2746548224 cosh(2kx) + 305070080 cosh(4kx) +

41746432 cosh(6kx) − 5619712 cosh(8kx)] +
1

9
k12 t2[50980192256 −

23855104000 cosh(2kx) − 55593402368 cosh(4kx) +

17983078400 cosh(6kx) − 1258815488 cosh(8kx)]
1

135
k18t3[−238459436400640 + 291359575506944 cosh(2kx)

−82083401695232 cosh(4kx) + 10956730007552 cosh(6kx) −
563949338624 cosh(8kx)])

and so on. In Fig.1 and Fig. 2 we draw u3(x, t) and u(x, t) = 4k2

3
(2 −

3 tanh2(k(x− 256k6

3
t))) which is the exact solution [12] for k = 0.1 and −100 <

x < 100.
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Fig. 1. Approximate Solution u3(x, t) Fig. 2. Exact Solution u(x, t)
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Remark 1: sSK equation has been solved by ADM by El-Sayed and Kaya
[4]. It should be remarked that the graph drawn here using VIM is agreement
with that drawn using ADM [4] but just after 3 iteration.
Remark 2: In [4], for solving this equations using ADM they compute Ado-
mian polynomials for N1(u), N2(u), N3(u) and N4(u).

Example 4.2 )[4] Consider the LsKdV equation with given initial condi-
tion,

u(x, 0) = 2k2sech2(kx). (13)

Substituting (13) into Eq.(11) we obtain the following successive approxima-
tions

u0(x, t) = 2k2sech2(kx),

u1(x, t) = u0(x, t) − 128k8tsech2(kx),

u2(x, t) = u1(x, t) − 128

3
sech8(kx)k14t2(44040192t3k18 + 1720320t2k12 +

30464tk6 + (−3440640t2k12 − 7168tk6 + 1803) cosh(2kx) +

36(448k6t − 11) cosh(4kx) − 3 cosh(6kx) − 2004)

and so on. Using the above terms, in Fig.3, u3(x, t) is drawn for k = 0.1 and
x ∈ [−100, 100]. In Fig.4, exact solution u(x, t) = 2k2sech2(kx) [12] is drawn.
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Fig. 3.Approximate Solution u3(x, t) Fig. 4. Exact Solutionu(x, t)

Remark 3: It should be remarked that the graph drawn here using VIM is in
excellent agreement with that drawn using ADM [4]but just after 3 iteration.
Remark 4: In [4], for every nonlinear parts of F (u) they have calculated
Adomian polynomials.

5 Conclusion

Variational iteration method is a powerful tool which is capable of handling lin-
ear/nonlinear partial differential equations. The method has been successfully
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applied to sSK and LsKdV equations. Also, comparisons were made between
He’s variational iteration method and Adomian decomposition method (ADM)
for sSK and LsKdV equations. The VIM reduces the volume of calculations
without requiring to compute the Adomian polynomials. However, ADM re-
quires the use of Adomian polynomials for nonlinear terms, and this needs
more work. For nonlinear equations that arise frequently to express nonlinear
phenomenon, He’s variational iteration method facilitates the computational
work and gives the solution rapidly if compared with Adomian method.

Mathematica has been used for computations in this paper.
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