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Abstract

The subject of this work is the study of a value problem describing
the quasistatic evolution of semilinear retetype viscoplastic models with
internal state variables, and we suppose the problem of Tresca’s Friction
Law at the presence of recal forces.

The existence and uniqueness of the solution is proved using results
of evolutionary variational inequalities and a fixed point theorem.
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1 Introduction

For the bilateral contact problem studied in this paper, the friction is modelled
by tesca’s law with intarnal state variables.

So, in section 2 contains the basic notations on the functional spaces and some
hypothesis used in the following .

Section 3, mechanical problem a fixed is stated together with his variational
formulation, in section 4 using results of evolutionary variational inequalities

and a fixed point theorem , an existence and uniqueness result is obtained.
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2 Statement of the problem.Hypothesis

We assume the contact is bilateral, i.e. there is no loss of the contact during
the process. Thus, the normal displacement u, vanishes on I's at any time.
We model the friction with the tresca friction law.

Let Q CRY(N =1,2,3) a bounded domain and whose boundary I' assumed
to be sufficiently smooth, is partitionned into three disjoint measurable parts
I'y ,I's and I's . Let meas I'y > 0, let T" > 0 be a time .

Let M be a natural number; we cosider the follawing mixed problem:

(1) &= €(e(i) + G(o,u, k) in Q x [0, 7]
(2) k= ¢(e(u), 0, k) in Q x [0,7]

(3)  Divo+fo=0 in Q x [0,7)

(4) u=0 on Ty x[0,T]

(5)  ov+d(z)u=f on Ty x [0, 7]

u, =0, [[o-]| <y,
(6) lo-]| < g =1, =0, on I's x [0,T]
o7 =g = 3N >0, =X,

(7) w(0) =up, 0(0) = oo, k() =k i ©

in which the unknowns are the functions
u:Qx (0, 7T)->RY 0:Qx(0,T)— Syand k: Qx (0,7) - RM
in which k£ may be interpreted as an internal state variable and & , k and G
are given constituve functions.
In (1)-(7) w represents the displacement function, o represents the sress func-
tion, e(u) denotes the small strain tensor,fy is given body force, fs is given
boundary data, and ug, op and ko are the initial data. In (6), g > 0 is the
friction bound function, i.e magnitude of the limiting friction traction at which
slip begins. The strict inequality in (6) holds in the stick zone and the equality
holds in the slip zone. The equation (5) means that the Cauchy vector ov is
proportional on the displacement.
Viscoplastic models of the form (1),(2) are used in order to model the be-
haviour of real bodies for which the plastic rate of deformation depends also

on an internal state variable.
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Some of the internal state variables considered by many authors are the plastic
strain, a number of tensor variables that takes into account the spatial display
of dislocation for the internal state variables. Here we suppose that k is a
vector-valued function which satisfiers (2) were ¢ is agiven function.
In order to obtain variatinal formulations for the problem (1)-(7), let us con-
sider the following notations:

H={v=(v)/veL*),i=1,N }

Hy ={v=(v)/ v, € H(Q),i=1,N }

V={veH :v=0aeon I'}

Vi={veV/v,=0aeonls}

Q={r=(m): (rj) = (1) eL*(Q), 1 <i,j <p }

Qi={re€Q, DiwteH}
The spaces H, Hy, V, Vi, Q, Q)1 are real Hilbert spaces endowed with the
canonical inner products denoted by (., ) g, (v gy s ¢ vy G v (o Do

(., .)Q1 respectively.
We assume that the force and traction satisfy

(8) fo € WL(0,T,H), fo € W"™(0,T, Hr,).
and the friction bound satisfies

(9) g€ L*(Ts), g >0 on Ty
Denote by f(t) the element of V; giving by

(10) (f(t),v)y = [, fov ds+ fF2 f2vda Yv € Vi

For all t € [0,7] let j : Vi — R4 be the functional

ﬂm:/wmww

2

For all t € [0,T], we note that conditions (8) and (9) imply

(11) few"™0,T,V)
and
(12) J() <cllgllpmry vl Yo eW

We also introduce the notation () defined by:
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(13) Xt = {T €Q: (1,6(v))g + (Puo,v) o,y +5(v) = (f(E),v)y, Vv € Vl},
te0,7]

Finally, assume that the initial data satisfy
(14) ug € Vi, op € %(0)

We have the following result.

3 Variational formulation

Lemma 1 If u and o are regular functions satisfying (3)-(6) then for all
tel0,77],

(15) w(t) € Vi, (o(t),e(v) —e(u(t)))g + (Pu(t), v — u(t))y2r,~ +
j() = j(a(t) = (f(t),v —u(t)), YveW

Proof: Let t € [0,7] and v € V; be an arbitrary test function. Multiplying
the equation (3) by v — 4(t) and integrating by parts, we obtain:

(o(t), 2(v) — e (il /fo (v — it ))ds—i—/au (v — a(t))da

Using the boundary condition (4) and (5) we can replace the right band side
of the above equality by

(f(t),v—"1(t)), — / bu.(v — a(t))da + / ov.(v —u(t))da

From the contact boundary condition (6) we derive the relation
o-(t).0.(t) = —g [|u-(2)]| onl's

Thus, on I's,
ov.(v —u(t)) = o, (t).(vy — w(t)) + o7 (t).(vr — s (t))
= o, (t).v; — o (t). 1, (t)
= o, (t).vr + g [l (1)
> g(

[ ()] = [lv-[])-

Therefore,

/ ov.(v — i(t))da > j(a(t)) — (),

3
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and we have

(o), e(v) —e((t)) g + (Pw, v = wt))pzryn 2 (f(t), v —al(t))y +5(u(t) = j(v).
i.e the inequality in (12) holds.

The previous lemma leads us to consider the following weark formulations of
the frictional problem (1) — (7) .

Problem 2 Find a displacement field  u : [0,7] — Vi, a stress field o :
0,7] — Qiand k : [0,T] — RM

(16) o(t) = £(e(w) + G(o,u, k) aete (0,T)
(17) k= ¢(e(u), o, k)
(18)  (o(t),e(v) —e(u(?))q + (Pu(t), v — u(t))y 2y~ +
J(w) = j(a(®) = (f(t),v—ult), YveW
u(0) = uo, (0) = oo, k(0) = ko

4 Existence and Uniqueness results

In the study of the problem (1)-(7), we consider the following assuptions:

((€:Q xSy — Sy

(a) &gjen € L=(Q) for all 4,4, k,h =0, N
(b) ot =07 Yo, T € Sy.

(c) 3a>0/¢0.0 >alof’ Vo € Sy.

(19)

G:QOx Sy xSy xRM - Sy

(a) 3L > 0 that Yoy, 09,61,62 € Sn, ki, ks € RM aein Q

(20) |G(z, 01,1, k1) — G(x, 09,89, ka)| < I:J(\al — 0a| + |e1 — 2| + |k1 — k2l)
(b) = — G(z,0,¢,k) is mesurable function with respect to the Lebesgue

measure on () for all o,e € Sy, k € RM
| () = — G(x,0,0,0) € L*(Q)"*N.

[ $:Q x Sy x Sy x RM — RM and

(a)3C > 0 that Yoy, 09,61,69 € Sy, k1, ks € RM aein Q

|o(x, 01,61, k1) — @(x, 02,2, k2)| < C(lor — oa| + |e1 — &2| + |k1 — k2|)
(b) x — ¢(x,0,¢, k) is mesurabl function with respect to the Lebesgue

(21)

measure on () for all o,e € Sy, k € RM
(c)x — ¢(x,0,0,0) € L2(Q2)M.
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® : 'y — Sy such that :

(22) ¢(z)u.u >0 on I's.
Ppm € L(Ty) pour k,m=1,.., N
(23) ko € LM

The main result of this section is the following:

Theorem 1 (1) Assume (8), (9), (14), (19) and (20)-(23), the problem (2)
have a unique solution

(24) we W ™(0,T,V1), 0 € W"™(0,T,Q1), k € W"(0,T,L2(Q)M).

Proof: We start by the existence part.
Let X be the product Hilbert space X = Q x L2(Q)M and let n = (n*,n?) in
000, T, X).
We define the function Z, = Z} + Z? € C°(0,T, X) by

(25) Z,(t) = [y n(s)ds + Zy where
(26) Z() = (0'0 — €€<U0), ko)

Consider the following auxiliary variational problem
Problem 2 Find a displacement field — u, : [0,7] — Vi, a stress field
0, :[0,T] — Qiand k € W~ (0, T, L3(Q)M)

(27) oy(t) = E(=(w)) + ZHt) in Qx (0,T)

(28) (y(t), €(v) = e(tn(t))) g + (Pul(t), v — Wlt))y 2pyv +
J(W) = jlty(t) = (f(),v —iy(t)y,  YveEW

(29) un(0) = o, 7(0) = o, k(0) = ko.

Lemma 2. The variational problem (2) has a unique solution u, € W (0,7, V1),
o, € W"7(0,T, Q).
Proof: Define a bilinear form a : V; x V; — R by
a(u,v) = (§(e(u)), e(v)) g+ (Pu(t), v — ult))y 2,y Vu,v €V
it follows from the assumptions (19) on & that a(u,v) is continuous, symetric



Bilaleral contact with Tresca’s friction law 485

and Vi-elliptic. Also by (9) we see j is a continuous seminorm on Vj.
Let f, :[0,7] — V1 by

(f,v), = (f(t),v), — <Z$(t),5(v)>Q Yo € Vi.
Since f € W (0,77, V1) and Z} € W™ ([0, ],Q), we have f, € W"([0,T], V).
Moreover, since og = &e(uo) + Zg = e(uo) + Z1(0) by (26) and (25), the as-
sumtion oy € X(0) from (14) can be written as

(E=(wn). e + (2)(0).(0)) +i() = (FO)0)y W eV

Applying a theorem in ([3] page70) we see that there exists a unique solution
u, € Wl’oo(O, T, Vi) to the problem

(30)  a(uy(t), v — iy(t) +j(v) = j(itn(t) = (f,(t),v —t(t)),  VweEW

(31) un(0) = o

Let o, € Wl’w(O,T, Q) be given by (26). Then (uy,0o,) is a solution for
(27)-(29). From inequality (28) we obtain Divo,+ fo =0a.ein Qx (0,7)
. Therefore, o, € Wl’oo(O,T, Q1).

Let k, € L>(0,T,L*(Q)™) be the function defined by

(32) k=2

Finaly, the uniqueness part of the lemma follows from the unique solvability
of the variational inequality problem (30)-(31).
We consider next an operator A : L*>(0,7, X) — L*(0,T, X) defined by

(33) An(t) = (Gloy(t), (u,), ky(t)), ¢(on(t), e(u, ), ky(t))) for all £ € 0,T7].

n

Where (u,,0,,k,) is solution of problem (3).
Lemma 3. The operator A has a unique fized point n, € L>(0,T, X).
Proof.Let ny, o € L>°(0,7T, X) and denote
Wi = Uiy, 04y = Opisy iy = iy Zi = Z} + 22
and n; = (n},n?) for all i = 1,2. Rewrite (27) and (28) for u; and uy as

a(ui(t),v —uy(t)) + <Z11,5( —e(t(t >Q +j(v) — (i (t)) > (f(t),v — wi ()

a(ua(t), v — a(t)) + (Zy,e(v) — e(tia(t))), + 5 (v) —j(G2(t)) = (F(t), v —1ia(t))y
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For all v € Vi, a.e on (0,7T). we take v = 4 in the first inequality, v = s in
the second inequality, and add the two inequalities to obtain

a(ug — uy, iy — i) < — (Z' = Z}, e(in(t)) — e(iz(t))),, a.e. on (0,7).

Q

Let ¢t € [0,T]. Integrate the inequality from 0 to t:

%%a(m —u,uz =) < = (2] = Z},e(w (1) = e(ua(t)) +

+ / (n}(s) = m)(s),e(un(s)) — e(uz(s))), ds
Then,

cllus(t) w2y < (|2} () = Z ()| lua (8) = ua(®)]]y +

+/0 1 (s) = my ()| o lua () = wa(s)]ly ds.
So
|1z - Z: )], < /Ot [2(s) = n(s)]], s

Therefre, we have

Jn(£) = us(8) 2 < ¢ / i) - o) ds + / us(s) = uals) I ds.
Applying the Gronwal inequality, we obtain
(34) [us(t) = w5 < e fy [Inl(s) = i ()|, ds

By the definition (27) and (33) we have
(35) llon(t) — oa()1[5 < ¢ Jy [} (s) = ni(s)]7, ds

Finally,

Am(t) = Amp(t) = (Gloy,(t),e(u, ), K, (8)), ¢(on, (b), e(u, ), Ky, (1)) —
(G0, (1), €(uny ), Ky (1)), D05 (1), (U, ), Ky (1))

Using now (20), (21) , (34) and (33) we get
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(36) |Ami(t) — Ana(t)|5 < éfot 1m1(s) — n2(s)|x ds for all t € (0,7)

Lemma (3) follows from (36) and an application of banach’s fixed point
theorem.
Now we are ready to prove Theorem (1).
Proof of theorem (1)
Existence.
Let n* € L*(0,T,X) be the fixed point of A and let (u,,0 ., K;-) be the
solution of problem (3) for n = n*. Using (27) and (25) we have

G- (£) = E(e (- (1)) +1°(t) ace. t e (0,T).

Since

(1) = A (t) = (Gloy(t), (w,), Ky (1)), pon(t), e(u, ), Ky(1)))a-et € (0,T).

it follows that (u,-,0 ., K;-) satisfiers (16). Using now (28) and (29) we
coclude that is a solution of problem (2) with rigularity (24).

Uniqueness. The uniquencess part follows from the uniquencess of the fixed
point of the operator A.
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