Applied Mathematical Sciences, Vol. 2, 2008, no. 11, 545-550

An Inequality for the Psi Functions ${ }^{1}$

Lingli Wu
School of Educational Science and Technology
Huzhou Teachers College, Huzhou 313000, P. R. China
Yuming Chu ${ }^{2}$
Department of Mathematics
Huzhou Teachers College, Huzhou 313000, P. R. China chuyuming@hutc.zj.cn

Abstract

For $x>0$, let $\Gamma(x)$ be the Euler's gamma function, and $\psi(x)=$ $\Gamma^{\prime}(x) / \Gamma(x)$ the psi function. In this paper, we prove that $\mid \psi^{(n)}(b)-$ $\psi^{(n)}(a)|<(b-L(a, b))| \psi^{(n+1)}(b)|+(L(a, b)-a)| \psi^{(n+1)}(a) \mid$ for all $b>$ $a>0$ and $n=0,1,2, \cdots$, where $L(a, b)=(b-a) /(\log b-\log a)$.

Mathematics Subject Classification: 33B15, 26D15
Keywords: Gamma function, psi function, GA-convex function, GAconcave function

1. Introduction

For real and positive values of x, the Euler's gamma function and its logarithmic derivative ψ, the so-called psi function, are defined as

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t, \quad \psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} \tag{1.1}
\end{equation*}
$$

For extensions of these functions to complex variables and for basic properties see [19].

Over the past half century many authors have established inequalities for these important functions (see [1-5,7-9,11,13,14,16,18] and the references therein). It was shown in $[10,12]$ that gamma and psi functions inequalities have interesting applications in the theory of 0-1 matrices and in graph theory.

[^0]For $b>a>0$, the generalized logarithmic mean $L_{p}(a, b)$ of a and b is defined as

$$
L_{p}(a, b)= \begin{cases}\frac{\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{1 / p}}{\left(\frac{b-a}{},\right.} \begin{array}{l}
p \neq-1,0 \\
\frac{\log b-\log a}{}, \\
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)},
\end{array}, p=-1 \\
\end{cases}
$$

It is well-known that $L_{p}(a, b)$ is a increasing function on p for fixed a and b. Denote $A(a, b)=L_{1}(a, b)=(b+a) / 2, I(a, b)=L_{0}(a, b)=\left(b^{b} / a^{a}\right)^{1 /(b-a)} / e$, $L(a, b)=L_{-1}(a, b)=(b-a) /(\log b-\log a), G(a, b)=L_{-2}(a, b)=\sqrt{a b}$ are the arithmetic mean, identric mean, logarithmic mean and geometric mean of a and b, respectively.

Recently, N. Batir [6] proved

$$
\begin{equation*}
\left|\psi^{(n)}(b)-\psi^{(n)}(a)\right|<(b-a)\left|\psi^{(n+1)}\left(L_{-(n+2)}(a, b)\right)\right|, \quad n=1,2,3, \cdots . \tag{1.2}
\end{equation*}
$$

The purpose of this paper is to establish the following new upper bound for $\left|\psi^{(n)}(b)-\psi^{(n)}(a)\right|$:
Theorem. If $b>a>0, n=0,1,2, \cdots$, then

$$
\left|\psi^{(n)}(b)-\psi^{(n)}(a)\right|<(b-L(a, b))\left|\psi^{(n+1)}(b)\right|+(L(a, b)-a)\left|\psi^{(n+1)}(a)\right| .
$$

2. Lemmas and Proof of Theorem

First we introduce three definitions:
Definition 2.1. Let $I \subseteq R$ be an interval, $f: I \rightarrow R$ is called a convex(concave) function if $f(\alpha x+(1-\alpha) y) \leq(\geq) \alpha f(x)+(1-\alpha) f(y)$ for all $x, y \in I$ and $\alpha \in[0,1]$.
Definition 2.2. Let $I \subseteq R$ be an interval, $f: I \rightarrow(0,+\infty)$ is called a logarithmically convex(concave) function if $f(\alpha x+(1-\alpha) y) \leq(\geq) f(x)^{\alpha} f(y)^{1-\alpha}$ for all $x, y \in I$ and $\alpha \in[0,1]$.
Definition 2.3. Let $I \subseteq(0,+\infty)$ be an interval, $f: I \rightarrow R$ is called a $G A-$ convex (concave) function if $f\left(x^{\alpha} y^{1-\alpha}\right) \leq(\geq) \alpha f(x)+(1-\alpha) f(y)$ for all $x, y \in I$ and $\alpha \in[0,1]$.

Next we shall establish and introduce the following five lemmas, they are the key of the proof of our main result in this section.
Lemma 2.1. Let $b>a>0, c \in(a, b)$. If $f:[a, b] \rightarrow R$ is a differentiable GA-convex(concave) function, then

$$
\begin{gather*}
(b-a) f(c)+c f^{\prime}(c)((\log b-\log c)(b-L(c, b))-(\log c-\log a)(L(a, c)-a)) \\
\quad \leq(\geq) \int_{a}^{b} f(x) d x \leq(\geq)(b-L(a, b)) f(b)+(L(a, b)-a) f(a) \tag{2.1}
\end{gather*}
$$

with equality(for left or right hand side) if and only if $f(x)=p \log x+q$ for some $p, q \in R$.
Proof. To prove the left hand side inequality in (2.1). For $x \in[c, b]$, let $c_{1}=$ $\log c$ and $x_{1}=\log x$. Taking $g(t)=f\left(e^{t}\right)$, then $g:[\log a, \log b] \rightarrow R$ is a convex(concave) function because of f is a $G A$-convex(concave) function. This and the Lagrange mean value theorem yield

$$
\begin{equation*}
\frac{g\left(x_{1}\right)-g\left(c_{1}\right)}{x_{1}-c_{1}} \geq(\leq) g^{\prime}\left(c_{1}\right) \tag{2.2}
\end{equation*}
$$

this leads to

$$
\begin{equation*}
f(x)-f(c) \geq(\leq) c f^{\prime}(c)(\log x-\log c) \tag{2.3}
\end{equation*}
$$

Next let $h(x)=\int_{c}^{x} f(t) d t-(x-c) f(c)-c f^{\prime}(c)(x(\log x-\log c)-x+c), x \in[c, b]$. Then $h(c)=0$ and $h^{\prime}(x) \geq(\leq) 0$ for $x \in[c, b]$ by (2.3), this implies $h(x) \geq(\leq) 0$ for all $x \in[c, b]$. Hence $h(b) \geq(\leq) 0$, this yields

$$
\begin{gather*}
\int_{c}^{b} f(x) d x \geq(\leq)(b-c) f(c)+c f^{\prime}(c)(b(\log b-\log c)-b+c) \\
=(b-c) f(c)+c f^{\prime}(c)(\log b-\log c)(b-L(c, b)) . \tag{2.4}
\end{gather*}
$$

The similar argument as above gives

$$
\begin{equation*}
\int_{a}^{c} f(x) d x \geq(\leq)(c-a) f(c)+c f^{\prime}(c)(\log c-\log a)(a-L(a, c)) \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) we can get the left hand side inequality in (2.1).
To prove the right hand side inequality in (2.1). For any $x \in[a, b]$, taking $y=(\log x-\log a) /(\log b-\log a)$. Then $0 \leq y \leq 1$ and $x=a^{1-y} b^{y}$, by the definition of $G A$-convex(concave) function and the transformation to variable of integration, we have

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\int_{0}^{1} f\left(a^{1-y} b^{y}\right) d\left(a^{1-y} b^{y}\right) \\
\leq & (\geq) \quad a \int_{0}^{1}((1-y) f(a)+y f(b)) d\left(\frac{b}{a}\right)^{y} \\
& =b f(b)-a f(a)-L(a, b)(f(b)-f(a)) \\
& =(b-L(a, b)) f(b)+(L(a, b)-a) f(a) . \tag{2.6}
\end{align*}
$$

At last, from the above argument, it is easy to see that the left or right hand side inequality becomes equality if and only if $f\left(e^{x}\right)=p x+q$ for some $p, q \in R$, namely, $f(x)=p \log x+q$.
Lemma 2.2.(see[17]) Let $I \subseteq(0,+\infty)$ be an interval. If $f: I \rightarrow R$ is a twice differentiable function, then f is a GA-convex(concave) function in I if and only if $x f^{\prime}(x)+x^{2} f^{\prime \prime}(x) \geq(\leq) 0$ for all $x \in I$.

Lemma 2.3.(see[11,20]) For any $x>0$, the following statements are true:

$$
\begin{align*}
& \text { (a) } 2 \psi^{\prime}(x)+x \psi^{\prime \prime}(x)<\frac{1}{x} \tag{2.7}\\
& \text { (b) } \psi^{\prime}(x)>\frac{1}{x}+\frac{1}{2 x^{2}} . \tag{2.8}
\end{align*}
$$

Lemma 2.4.(see [15]) Let $x>0, n=0,1,2, \cdots$. If $0 \leq \alpha \leq n$, then

$$
\begin{equation*}
x\left|\psi^{(n+1)}(x)\right|-\alpha\left|\psi^{(n)}(x)\right|>0 . \tag{2.9}
\end{equation*}
$$

Lemma 2.5. If $b>a>0, n=0,1,2, \cdots$, then $(-1)^{n} \psi^{(n)}(x)$ is a $G A$-concave function in $[a, b]$.
Proof. If $n=0$, then (2.7) and (2.8) lead to

$$
\begin{aligned}
& x \psi^{\prime}(x)+x^{2} \psi^{\prime \prime}(x) \\
< & x\left(\frac{1}{x}-\psi^{\prime}(x)\right) \\
< & -\frac{1}{2 x}<0 .
\end{aligned}
$$

This and Lemma 2.2 imply that $\psi(x)$ is a $G A$-concave function.
Next we assume that $n \geq 1$. It is well-known that $\log \Gamma(x)=-c x+$ $\sum_{k=1}^{\infty}((x / k)-\log (1+(x / k)))-\log x$, where $c=0.577215 \cdots$ is the Euler's constant. From this we can get

$$
\begin{equation*}
\psi^{(n)}(x)=(-1)^{n+1} n!\sum_{k=0}^{\infty} \frac{1}{(k+x)^{n+1}} \tag{2.10}
\end{equation*}
$$

(2.10) and Lemma 2.4 lead to

$$
\begin{align*}
& x\left((-1)^{n} \psi^{(n)}(x)\right)^{\prime}+x^{2}\left((-1)^{n} \psi^{(n)}(x)\right)^{\prime \prime} \\
= & (n+1)!x \sum_{k=0}^{\infty} \frac{1}{(k+x)^{n+2}}-(n+2)!x^{2} \sum_{k=0}^{\infty} \frac{1}{(k+x)^{n+3}} \\
= & -x\left(x\left|\psi^{(n+2)}(x)\right|-\left|\psi^{(n+1)}(x)\right|\right) \\
< & 0 . \tag{2.11}
\end{align*}
$$

(2.11) and Lemma 2 imply that $(-1)^{n} \psi^{(n)}(x)$ is a $G A$-concave function in $[a, b]$. Now we can prove our Theorem.

Proof of Theorem. By Lemma 2.5 we know that $(-1)^{n} \psi^{(n+1)}(x)$ is a $G A-$ convex function in $[a, b]$, making use of Lemma 2.1 and (2.10) we get

$$
\left|\psi^{(n)}(b)-\psi^{(n)}(a)\right|
$$

$$
\begin{aligned}
& =\left|\int_{a}^{b} \psi^{(n+1)}(x) d x\right| \\
& =\int_{a}^{b}(-1)^{n} \psi^{(n+1)}(x) d x \\
& <(b-L(a, b))(-1)^{n} \psi^{(n+1)}(b)+(L(a, b)-a)(-1)^{n} \psi^{(n+1)}(a) \\
& =(b-L(a, b))\left|\psi^{(n+1)}(b)\right|+(L(a, b)-a)\left|\psi^{(n+1)}(a)\right| .
\end{aligned}
$$

References

[1] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp., 66(1997), 373-389.
[2] H. Alzer, On Ramanujan's double inequality for the gamma function, Bull. London Math. Soc., 35(2003), 601-607.
[3] H. Alzer, Some gamma functions inequalities, Math. Comp., 60(1993), 337-346.
[4] H. Alzer, A.Z. Grinshpan, Inequalities for the gamma and q-gamma functions, J. Approx. Theory, 144(2007), 67-83.
[5] G.D. Anderson, S.L. Qiu, A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125(1997), 3355-3362.
[6] N. Batir, On some properties of digamma and polygamma function, J. Math. Anal. Appl., 328(2007), 452-465.
[7] C. Berg, H.L. Pedersen, Pick function related to the gamma function, Rocky Mountain J. Math., 32(2002), 507-525.
[8] C.P. Chen, F. Qi, Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl., 321(2006), 405-411.
[9] W.E. Clark, M.E.H. Ismail, Inequalities involving gamma and psi functions, Anal. Appl., 1(2003), 129-140.
[10] W.E.Clark, M.E.H. Ismail, Binomial and q-binomial coeffcient inequalities related to the Hamiltonicity of the kneser graphs and their q-analogues, J. Combin. Theory, 76(1996), 83-98.
[11] Á. Elbert, A. Laforgia, On some properties of the gamma function, Proc. Amer. Math. Soc., 128(2000), 2667-2673.
[12] P.J. Grabner, R.F. Tichy, U.T. Zimmermann, Inequalities for the gamma function with applications to permanents, Discrete Math., 154(1996), 5362.
[13] P. Kumar, S.P. Singh, S.S. Dragomir, Some inequalities involving beta and gamma functions, Nonlinear Anal. forum, 6(2001), 143-150.
[14] J. Pečarić, G. Allasia, C. Giordano, Convexity and the gamma function, Indian J. Math., 41(1999), 79-93.
[15] F. Qi, S.L. Guo, B.N. Guo, Note on a class of completely monotonic functions involving the polygamma functions, Tamsui Oxf. J. Math. Sci., (2007), in press. RGMIA Res. Rep. Coll., 10(2007), no. 1, Article 5; Available online at http://rgmia.vu.edu.au/v10n1.html.
[16] S.L. Qiu, M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp., 74(2005), 722-742.
[17] R.A. Satnoianu, Improved GA-convexity inequalities, J. Inequal. Pure Appl. Math., 3(2002), Article 82.
[18] S. Simić, Inequalities for ψ function, Math. Inequal. Appl., 10(2007), 4548.
[19] E.T. Whittaker, G.N. Watson, A Course of Morden Analysis, Cambridge Univ. Press, Cambridge,1958.
[20] G.M. Von Fichtenholz, Differential-Und Integralrechnung, Vol. II, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964.

Received: August 16, 2007

[^0]: ${ }^{1}$ The research is partly supported by the NSF of China under Grant No. 10471039.
 ${ }^{2}$ Corresponding author

