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Abstract

In this paper, a discrete-time bidirectional associative memory (BAM)
neural network with time-varying delays is considered. The description
of the activation functions is more general than the recently commonly
used Lipschitz conditions. By using appropriate Lyapunov-Krasovskii
functional and linear matrix inequality (LMI) technique, a delay-dependent
sufficient condition is obtained to guarantee the global exponential sta-
bility of the addressed neural network. The condition is a LMI, hence
the stability of the neural network can be checked readily by resorting to
the Matlab LMI toolbox. In addition, the proposed stability criterion
does not require the monotonicity and differentiability of the activa-
tion functions, and a impose condition on the time-varying delays in
recent publication is removed. A simulation example is given to show
the effectiveness and less conservatism of the obtained condition.
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1 Introduction

Bidirectional associative memory (BAM) neural network, as an extension of
the traditional single layer neural network model, was first introduced in 1987
by Kosko [1] and since then, the two-layer interassociative neural network has
been extensively studied due to its potential for pattern recognition, signal
and image processing, solving optimization problems and automatic control
engineering [2]-[8]. In such applications, the stability of networks play an
important role.

As is well known, in both biological and man-made neural networks, time
delays occur due to finite switching speed of the amplifiers and communication
time. The delays are usually time-varying, and sometimes vary violently with
time. They slow down the transmission rate and can influence the stability
of designed neural networks by creating oscillatory or unstable phenomena
[9, 10]. So it is more in accordance with this fact to study the BAM neural
networks with time-varying delays. The circuits diagram and connection pat-
tern implementing for the delayed BAM neural networks can be found in [4].
In recent years, many useful results on the stability of the equilibrium point
and periodic solutions for the delayed BAM neural networks have been given,
for example, see [2]-[15] and references therein.

Note that, up to now, most BAM neural networks have been assumed to act
in a continuous-time manner. However, in implementing the continuous-time
BAM neural network for computer simulation, experimental or computational
purposes, it is essential to formulate a discrete-time system which is an ana-
logue of the continuous-time BAM neural network. Certainly, the discrete-time
analogue inherits the dynamical characteristics of the continuous-time BAM
neural network under mild or no restriction on the discretization step-size, and
also remain functional similarity to the continuous-time BAM neural network
and any physical or biological reality that the continuous-time BAM neural
network has [16]-[22]. Unfortunately, as pointed out in [17], the discretization
can not preserve the dynamics of the continuous-time counterpart even for a
small sampling period. Therefore, there is a crucial need to study the dynamics
of discrete-time neural networks.

Recently, the stability analysis of discrete-time neural networks without
time delays and with time delays has received considerable research interests,
and various stability criteria have been proposed, for example, see [16]-[25]
and references therein. In [17, 21, 22, 23], the global exponential stability has
been investigated for discrete-time delayed Hopfield neural networks, cellular
neural networks and recurrent neural networks, several sufficient conditions for
checking global exponential stability of equilibrium point were obtained. In
[20], the global robust stability problem was considered for a general class of
discrete-time interval neural networks which contain time-invariant uncertain
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parameters with their values being unknown but bounded in given compact
sets, three sufficient conditions ensuring global robust stability were given. In
[24, 25], authors studied the stability and bifurcation for discrete-time cellular
neural network and Cohen-Grossberg neural network. In [16, 18, 19], discrete-
time BAM neural network was considered, several sufficient conditions were
derived to ensure the existence, uniqueness and global exponential stability of
the equilibrium point for discrete-time BAM neural networks with constant
and variable delays. In [26]-[30], authors investigated the existence and global
exponential stability of periodic solutions for discrete-time Hopfield neural
networks, cellular neural networks and BAM neural networks, and gave some
sufficient conditions for checking the existence and global exponential stability
of periodic solutions.

It should be pointed out that, in all the papers concerning discrete-time
BAM neural networks with delay mentioned above, the activation functions are
assumed to satisfy the Lipschitz conditions, and the derived stability criteria
are conservative. There is still room for improvement, for example, reducing
the conservatism under milder constraints.

Motivated by the above discussions, the objective of this paper is to study
the exponential stability of discrete-time BAM neural network with time-
varying delays by employing a new Lyapunov-Krasovskii functional and using
a unified linear matrix inequality (LMI) approach. Under more general de-
scription on the activation functions, we obtain a sufficient condition, which
can be checked numerically using the effective LMI toolbox in MATLAB. A
simulation example is given to show the effectiveness and less conservatism of
the proposed criterion.

Notations: The notations are quite standard. Throughout this paper,
Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and the
set of all n ×m real matrices. The superscript “T” denotes matrix transpo-
sition. The notation X ≥ Y (respectively, X > Y ) means that X and Y
are symmetric matrices, and that X − Y is positive semidefinite (respectively,
positive definite). ‖ · ‖ is the Euclidean norm in Rn. If A is a matrix, denote

by ‖A‖ its operator norm, i.e., ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} =
√
λmax(ATA),

where λmax(A) (respectively, λmin(A)) means the largest (respectively, small-
est) eigenvalue of A. Sometimes, the arguments of a function or a matrix will
be omitted in the analysis when no confusion can arise. For integers a, b, and
a < b, N [a, b] denotes the discrete interval givenN [a, b] = {a, a+1, · · · , b−1, b}.
C(N [−τ, 0], Rn) denotes the set of all functions φ: N [−τ, 0] → Rn.
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2 Model description and preliminaries

In this paper, we consider the following model{
x(k + 1) = Cx(k) + Af̃(y(k)) +Bf̃(y(k − τ(k))) + I,
y(k + 1) = Dy(k) +Wg̃(x(k)) +Hg̃(x(k − σ(k))) + J

(1)

for k = 1, 2, · · ·, where x(k) = (x1(k), x2(k), · · · , xn(k))T ∈ Rn,
y(k) = (y1(k), y2(k), · · · , ym(k))T ∈ Rm, xi(k) and yj(k) are the state of the
ith neurons from the neural field FX and the jth neurons from the neu-
ral field FY at time k, respectively; f̃(y(k)) = (f̃1(y1(k)), · · · , f̃m(ym(k)))T ,
g̃(x(k)) = (g̃1(x1(k)), · · · , g̃n(xn(k)))T , f̃j , g̃i denote the activation functions
of the jth neurons from FY and the ith neurons from FX at time k, respec-
tively; I = (I1, I2, · · · , In)T ∈ Rn, J = (J1, J2, · · · , Jm)T ∈ Rm, Ii and Jj

denote the external inputs on the ith neurons from FX and the jth neurons
from FY , respectively; the positive integer τ(k) and σ(k) correspond to the
transmission delays and satisfy τ ≤ τ(k) ≤ τ̃ and σ ≤ σ(k) ≤ σ̃ (τ ≥ 0,
τ̃ ≥ 0, σ ≥ 0 and σ̃ ≥ 0 are known integers); C = diag(c1, c2, · · · , cn) and
D = diag(d1, d2, · · · , dm), where 0 ≤ ci < 1 and 0 ≤ dj < 1 represent the rate
with which the ith neuron from FX and the jth neurons from FY will reset
their potential to the resting state in isolation when disconnected from the
networks and external inputs, respectively; A = (aij)n×m and W = (wji)m×n

are the connection weight matrix, B = (bij)n×m and H = (hji)m×n are the
delayed connection weight matrix.

The initial conditions associated with model (1) are given by{
xi(s) = φxi

(s), s ∈ N [−σ̃, 0], i = 1, 2, · · · , n,
yj(s) = φyj

(s), s ∈ N [−τ̃ , 0], j = 1, 2, · · · , m. (2)

Throughout this paper, we make the following assumptions:
(H1) The activation functions are continuous and bounded.
(H2) There exist constants F−

j , F+
j , G−

i andG+
i (j = 1, 2, · · · , m; i = 1, 2, · · · , n)

such that

F−
j ≤ f̃j(α1) − f̃j(α2)

α1 − α2
≤ F+

j , G−
i ≤ g̃i(α1) − g̃i(α2)

α1 − α2
≤ G+

i

for all α1 �= α2.
Since activation functions are bounded, by employing the well-known Brouwer’s

fixed point theorem, one can easily prove that there exists an equilibrium point
for model (1). In the sequel we shall analyze the global exponential stability of
the equilibrium point, which in turn implies the uniqueness of the equilibrium
point.

To simplify the stability analysis of model (1), we let (x∗, y∗)T be the equi-
librium point of model (1), and shift the intended equilibrium point (x∗, y∗)T
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to the origin by letting u(k) = x(k) − x∗ and v(k) = y(k) − x∗. Thus model
(1) can be transformed into:{

u(k + 1) = Cu(k) + Af(v(k)) +Bf(v(k − τ(k))),
v(k + 1) = Dv(k) +Wg(u(k)) +Hg(u(k − σ(k)))

(3)

for k = 1, 2, 3, · · ·, where f(v(k)) = (f1(v1(k)), · · · , fm(vm(k)))T , g(u(k)) =
(g1(u1(k)), · · · , gn(un(k)))T , fj(vj(k)) = f̃j(vj(k) + y∗j ) − f̃j(y

∗
j ), gi(ui(k)) =

g̃i(ui(k) + x∗i ) − g̃i(x
∗
i ).

It follows from assumption (H2) that

F−
j ≤ fj(vj)

vj

≤ F+
j , G−

i ≤ gi(ui)

ui

≤ G+
i , j = 1, 2, · · · , m; i = 1, 2, · · · , n.

(4)

Definition 1. The equilibrium point (0, 0)T of model (3) is said to be globally
exponentially stable, if there exist two positive constants M > 0 and 0 < ε < 1
such that every solution (u(k), v(k))T of model (3) satisfies

‖u(k)‖2 + ‖v(k)‖2 ≤ Mεk( sup
s∈N [−σ̃,0]

‖u(s)‖2 + sup
s∈N [−τ̃ ,0]

‖v(s)‖2)

for all k = 1, 2, · · ·.

3 Main result

In this section, we shall establish our stability criterion based on the LMI
approach.

For presentation convenience, in the following, we denote

F1 = diag(F−
1 F

+
1 , F

−
2 F

+
2 , · · · , F−

mF
+
m),

F2 = diag(
F−

1 + F+
1

2
,
F−

2 + F+
2

2
, · · · , F

−
m + F+

m

2
), (5)

G1 = diag(G−
1 G

+
1 , G

−
2 G

+
2 , · · · , G−

nG
+
n ),

G2 = diag(
G−

1 +G+
1

2
,
G−

2 +G+
2

2
, · · · , G

−
n +G+

n

2
). (6)

Theorem 1. Under assumptions (H1) and (H2), the equilibrium point (0, 0)T

of model (3) is globally exponentially stable if there exist four symmetric pos-
itive definite matrices P , Q, R and S, and four positive diagonal matrices Λ,
Γ, Υ and Θ such that the following LMI holds:

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ω1 0 G2Λ G2Γ 0 0 CPA CPB
0 −R 0 0 0 0 0 0

ΛG2 0 W T QW − Λ W T QH W T QD 0 0 0
ΓG2 0 HT QW HT QH − Γ HT QD 0 0 0

0 0 DQW DQH Ω2 0 F2Υ F2Θ
0 0 0 0 0 −S 0 0

AT PC 0 0 0 ΥF2 0 AT PA − Υ AT PB
BT PC 0 0 0 ΘF2 0 BT PA BT PB − Θ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
< 0,

(7)
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where Ω1 = CPC − P + (1 + σ̃ − σ)R−G1Λ −G1Γ, Ω2 = DQD −Q+ (1 +
τ̃ − τ)S − F1Υ − F1Θ.

Proof. Consider the following Lyapunov-Krasovskii functional candidate for
model (3) as

V (k) = V1(k) + V2(k) + V3(k), (8)

where
V1(k) = uT (k)Pu(k) + vT (k)Qv(k), (9)

V2(k) =
k−1∑

i=k−σ(k)

uT (i)Ru(i) +
k−1∑

j=k−τ(k)

vT (j)Sv(j), (10)

V3(k) =
k−σ∑

l=k−σ̃+1

k−1∑
i=l

uT (i)Ru(i) +
k−τ∑

l=k−τ̃+1

k−1∑
j=l

vT (j)Sv(j). (11)

Calculating the difference of V1(k) along the trajectories of model (3), we
obtain

ΔV1(k) = V1(k + 1) − V1(k)

=

(
Cu(k) + Af(v(k)) + Bf(v(k − τ(k)))

)T

P

(
Cu(k) + Af(v(k)) + Bf(v(k − τ(k)))

)
+

(
Dv(k) + Wg(u(k)) + Hg(u(k − σ(k)))

)T

Q

(
Dv(k) + Wg(u(k)) + Hg(u(k − σ(k)))

)
−uT (k)Pu(k) − vT (k)Qv(k)

= uT (k)(CPC − P )u(k) + 2uT (k)CPAf(v(k)) + 2uT (k)CPBf(v(k − τ(k)))

+fT (v(k))AT PAf(v(k)) + 2fT (v(k))AT PBf(v(k − τ(k)))

+fT (v(k − τ(k)))BT PBf(v(k − τ(k)))

+vT (k)(DQD − Q)v(k) + 2vT (k)DQWg(u(k)) + 2vT (k)DQHg(u(k − σ(k)))

+gT (u(k))WT QWg(u(k)) + 2gT (u(k))WT QHg(u(k − σ(k)))

+gT (u(k − σ(k)))HT QHg(u(k − σ(k))). (12)

Evaluating the difference of V2(k), we get

ΔV2(k) = V2(k + 1) − V2(k)

=
k∑

i=k+1−σ(k+1)

uT (i)Ru(i) +
k∑

j=k+1−τ(k+1)

vT (j)Sv(j)

−
k−1∑

i=k−σ(k)

uT (i)Ru(i) −
k−1∑

j=k−τ(k)

vT (j)Sv(j)

=
k−σ∑

i=k+1−σ(k+1)

uT (i)Ru(i) +
k−1∑

i=k−σ+1

uT (i)Ru(i) + uT (k)Ru(k)

+
k−τ∑

j=k+1−τ(k+1)

vT (j)Sv(j) +
k−1∑

j=k−τ+1

vT (j)Sv(j) + vT (k)Sv(k)



LMI approach to stability analysis 617

−
k−1∑

i=k−σ(k)+1

uT (i)Ru(i) − uT (k − σ(k))Ru(k − σ(k))

−
k−1∑

j=k−τ(k)+1

vT (j)Sv(j) − vT (k − τ(k))Sv(k − τ(k))

≤
k−σ∑

i=k+1−σ(k+1)

uT (i)Ru(i) + uT (k)Ru(k) − uT (k − σ(k))Ru(k − σ(k))

+
k−τ∑

j=k+1−τ(k+1)

vT (j)Sv(j) + vT (k)Sv(k) − vT (k − τ(k))Sv(k − τ(k))

≤
k−σ∑

i=k+1−σ̃

uT (i)Ru(i) + uT (k)Ru(k) − uT (k − σ(k))Ru(k − σ(k))

+
k−τ∑

j=k+1−τ̃

vT (j)Sv(j) + vT (k)Sv(k) − vT (k − τ(k))Sv(k − τ(k)).(13)

Calculating the difference of V3(k), we have

ΔV3(k) = V3(k + 1) − V3(k)

=

k+1−σ∑
l=k−σ̃+2

k∑
i=l

uT (i)Ru(i) +

k+1−τ∑
l=k−τ̃+2

k∑
j=l

vT (j)Sv(j)

−
k−σ∑

l=k−σ̃+1

k−1∑
i=l

uT (i)Ru(i) −
k−τ∑

l=k−τ̃+1

k−1∑
j=l

vT (j)Sv(j)

=

k−σ∑
l=k−σ̃+1

k∑
i=l+1

uT (i)Ru(i) +

k−τ∑
l=k−τ̃+1

k∑
j=l+1

vT (j)Sv(j)

−
k−σ∑

l=k−σ̃+1

k−1∑
i=l

uT (i)Ru(i) −
k−τ∑

l=k−τ̃+1

k−1∑
j=l

vT (j)Sv(j)

=

k−σ∑
l=k−σ̃+1

(
uT (k)Ru(k) − uT (l)Ru(l)

)
+

k−τ∑
l=k−τ̃+1

(
vT (k)Sv(k) − vT (l)Sv(l)

)

= (σ̃ − σ)uT (k)Ru(k) −
k−σ∑

l=k−σ̃+1

uT (l)Ru(l) + (τ̃ − τ)vT (k)Sv(k) −
k−τ∑

l=k−τ̃+1

vT (l)Sv(l).(14)

It follows from (8), (12)-(14) that

ΔV (k) ≤ uT (k)
(
CPC − P + (1 + σ̃ − σ)R

)
u(k) + 2uT (k)CPAf(v(k))

+2uT (k)CPBf(v(k − τ(k))) + fT (v(k))AT PAf(v(k))
+2fT (v(k))AT PBf(v(k − τ(k))) + fT (v(k − τ(k)))BT PBf(v(k − τ(k)))

+vT (k)
(
DQD − Q + (1 + τ̃ − τ)S

)
v(k) + 2vT (k)DQWg(u(k))



618 Ming Lei, Yun Wu and Qiankun Song

+2vT (k)DQHg(u(k − σ(k))) + gT (u(k))WT QWg(u(k))
+2gT (u(k))WT QHg(u(k − σ(k))) + gT (u(k − σ(k)))HT QHg(u(k − σ(k)))
−uT (k − σ(k))Ru(k − σ(k)) − vT (k − τ(k))Sv(k − τ(k))

= ξT (k)Πξ(k), (15)

where ξ(k) = (u(k) u(k − σ(k)) g(u(k)) g(u(k − σ(k))) v(k) v(k −
τ(k)) f(v(k)) f(v(k − τ(k))))T ,

Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1 0 0 0 0 0 CPA CPB
0 −R 0 0 0 0 0 0
0 0 W TQW W TQH W TQD 0 0 0
0 0 HTQW HTQH HTQD 0 0 0
0 0 DQW DQH Π2 0 0 0
0 0 0 0 0 −S 0 0

ATPC 0 0 0 0 0 ATPA ATPB
BTPC 0 0 0 0 0 BTPA BTPB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with Π1 = CPC − P + (1 + σ̃ − σ)R, Π2 = DQD −Q+ (1 + τ̃ − τ)S.
From (4), we have(

gi(ui(k)) − G−
i ui(k)

)(
gi(ui(k)) − G+

i ui(k)
)
≤ 0, i = 1, 2, · · · , n,

(
gi(ui(k−σ(k)))−G−

i ui(k−σ(k))
)(

gi(ui(k−σ(k)))−G+
i ui(k−σ(k))

)
≤ 0, i = 1, 2, · · · , n,(

fj(vj(k)) − F−
j vj(k)

)(
fj(vj(k)) − F+

j vj(k)
)
≤ 0, j = 1, 2, · · · , m,(

fj(vj(k−τ(k)))−F−
j vj(k−τ(k))

)(
fj(vj(k−τ(k)))−F+

j vj(k−τ(k))
)
≤ 0, j = 1, 2, · · · , m,

which are equivalent to

(
u(k)
g(u(k))

)T
⎛⎝ G−

i G
+
i eie

T
i −G−

i +G+
i

2
eie

T
i

−G−
i +G+

i

2
eie

T
i eie

T
i

⎞⎠( u(k)
g(u(k))

)
≤ 0, (16)

i = 1, 2, · · · , n,(
u(k)

g(u(k − σ(k)))

)T
⎛⎝ G−

i G
+
i eie

T
i −G−

i +G+
i

2
eie

T
i

−G−
i +G+

i

2
eie

T
i eie

T
i

⎞⎠( u(k)
g(u(k − σ(k)))

)
≤ 0,

(17)

i = 1, 2, · · · , n,(
v(k)

f(v(k))

)T
⎛⎝ F−

j F
+
j eje

T
j −F−

j +F+
j

2
eje

T
j

−F−
j +F+

j

2
eje

T
j eje

T
j

⎞⎠( v(k)
f(v(k))

)
≤ 0, (18)

j = 1, 2, · · · , m,
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(
v(k)

f(v(k − τ(k)))

)T
⎛⎝ F−

j F
+
j eje

T
j −F−

j +F+
j

2
eje

T
j

−F−
j +F+

j

2
eje

T
j eje

T
j

⎞⎠( v(k)
f(v(k − τ(k)))

)
≤ 0,

(19)

j = 1, 2, · · · , m,
where er denotes the unit column vector having 1 element on its rth row and
zeros elsewhere.

Let Λ = diag(λ1, λ2, · · · , λn), Γ = diag(γ1, γ2, · · · , γn), Υ = (η1, η2, · · · , ηm),
Θ = diag(δ1, δ2, · · · , δm), then it follows from (15)-(19) that

ΔV (k) ≤ ξT (k)Πξ(k) −
n∑

i=1

λi

(
u(k)

g(u(k))

)T

(
G−

i G+
i eie

T
i −G−

i
+G+

i
2

eie
T
i

−G−
i

+G+
i

2
eieT

i eieT
i

)(
u(k)

g(u(k))

)
−

n∑
i=1

γi

(
u(k)

g(u(k − σ(k)))

)T

(
G−

i G+
i eieT

i −G−
i

+G+
i

2
eieT

i

−G−
i

+G+
i

2
eieT

i eieT
i

)(
u(k)

g(u(k − σ(k)))

)
−

m∑
j=1

ηj

(
v(k)

f(v(k))

)T

(
F−

j F+
j ejeT

j −F−
j

+F+
j

2
ejeT

j

−F−
j

+F+
j

2
ejeT

j ejeT
j

)(
v(k)

f(v(k))

)

−
m∑

j=1

δj

(
v(k)

f(v(k − τ(k)))

)T

(
F−

j F+
j ejeT

j −F−
j

+F+
j

2
ejeT

j

−F−
j

+F+
j

2
ejeT

j ejeT
j

)(
v(k)

f(v(k − τ(k)))

)
= ξT (k)Πξ(k) −

(
u(k)

g(u(k))

)T (
G1Λ −G2Λ
−G2Λ Λ

)(
u(k)

g(u(k))

)
−
(

u(k)
g(u(k − σ(k)))

)T (
G1Γ −G2Γ
−G2Γ Γ

)(
u(k)

g(u(k − σ(k)))

)
−
(

v(k)
f(v(k))

)T (
F1Υ −F2Υ
−F2Υ Υ

)(
v(k)

f(v(k))

)
−
(

v(k)
f(v(k − τ(k)))

)T (
F1Θ −F2Θ
−F2Θ Θ

)(
v(k)

f(v(k − τ(k)))

)
= ξT (k)Ωξ(k)

≤ −λmin(−Ω)(‖u(k)‖2 + ‖v(k)‖2). (20)

From the definition of V (k), it is easy to verify that

V (k) ≤ λmax(P )‖u(k)‖2 + (1 + σ̃ − σ)λmax(R)
k−1∑

i=k−σ̃

‖u(i)‖2

+λmax(Q)‖v(k)‖2 + (1 + τ̃ − τ)λmax(S)
k−1∑

i=k−τ̃

‖v(i)‖2. (21)

For any scalar α > 1, it follows from (20) and (21) that

αj+1V (j + 1) − αjV (j) = αj+1ΔV (j) + αj(α− 1)V (j)

≤
[
αj(α− 1)λmax(P ) − αj+1λmin(−Ω)

]
‖u(j)‖2

+
[
αj(α− 1)λmax(Q) − αj+1λmin(−Ω)

]
‖v(j)‖2
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+αj(α− 1)(1 + σ̃ − σ)λmax(R)
j−1∑

i=j−σ̃

‖u(i)‖2

+αj(α− 1)(1 + τ̃ − τ)λmax(S)
j−1∑

i=j−τ̃

‖v(i)‖2.(22)

Summing up both sides of (22) from 0 to k − 1 with respect to j, we have

αkV (k) − V (0) ≤
[
(α− 1)λmax(P ) − αλmin(−Ω)

] k−1∑
j=0

αj‖u(j)‖2

+
[
(α− 1)λmax(Q) − αλmin(−Ω)

] k−1∑
j=0

αj‖v(j)‖2

+(α− 1)(1 + σ̃ − σ)λmax(R)
k−1∑
j=0

j−1∑
i=j−σ̃

αj‖u(i)‖2

+(α− 1)(1 + τ̃ − τ)λmax(S)
k−1∑
j=0

j−1∑
i=j−τ̃

αj‖v(i)‖2. (23)

It is easy to compute that

k−1∑
j=0

j−1∑
i=j−σ̃

αj‖u(i)‖2 ≤
( −1∑

i=−σ̃

i+σ̃∑
j=0

+
k−1−σ̃∑

i=0

i+σ̃∑
j=i+1

+
k−1∑

i=k−σ̃

k−1∑
j=i+1

)
αj‖u(i)‖2

≤ σ̃

−1∑
i=−σ̃

αi+σ̃‖u(i)‖2 + σ̃

k−1−σ̃∑
i=0

αi+σ̃‖u(i)‖2 + σ̃

k−1∑
i=k−1−σ̃

αi+σ̃‖u(i)‖2

≤ σ̃ασ̃ sup
s∈N [−σ̃,0]

‖u(s)‖2 + σ̃ασ̃
k−1∑
i=0

αi‖u(i)‖2. (24)

Similarly, we have

k−1∑
j=0

j−1∑
i=j−τ̃

αj‖v(i)‖2 ≤ τ̃ατ̃ sup
s∈N [−τ̃ ,0]

‖v(s)‖2 + τ̃ατ̃
k−1∑
i=0

αi‖v(i)‖2. (25)

It follows from (23)-(25) that

αkV (k) ≤ V (0) + (α − 1)(1 + σ̃ − σ)σ̃ασ̃λmax(R) sup

s∈N[−σ̃,0]

‖u(s)‖2

+(α − 1)(1 + τ̃ − τ)τ̃ατ̃ λmax(S) sup

s∈N[−τ̃,0]

‖v(s)‖2

+

[
(α − 1)λmax(P ) − αλmin(−Ω) + (α − 1)(1 + σ̃ − σ)σ̃ασ̃λmax(R)

] k−1∑
j=0

αj‖u(j)‖2

+

[
(α − 1)λmax(Q) − αλmin(−Ω) + (α − 1)(1 + τ̃ − τ)τ̃ατ̃ λmax(S)

] k−1∑
j=0

αj‖v(j)‖2.(26)
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Let ρ = max{λmax(P ), (1 + σ̃ − σ)λmax(R)}, ω = max{λmax(Q), (1 + τ̃ −
τ)λmax(S)}, from (21), we have

V (0) ≤ ρσ̃ sup
s∈N [−σ̃,0]

‖u(s)‖2 + ωτ̃ sup
s∈N [−τ̃ ,0]

‖v(s)‖2. (27)

Let

ϕ(α) = (α− 1)λmax(P ) − αλmin(−Ω) + (α− 1)(1 + σ̃ − σ)σ̃ασ̃λmax(R),

ψ(α) = (α− 1)λmax(Q) − αλmin(−Ω) + (α− 1)(1 + τ̃ − τ)τ̃ατ̃λmax(S),

then ϕ(1) = 0 and ψ(1) = 0. By the continuity of functions ϕ(α) and ψ(α),
we can choose a scalar β > 1 such that ϕ(β) ≤ 0 and ψ(β) ≤ 0. That is{

(β − 1)λmax(P ) − βλmin(−Ω) + (β − 1)(1 + σ̃ − σ)σ̃βσ̃λmax(R) ≤ 0

(β − 1)λmax(Q) − βλmin(−Ω) + (β − 1)(1 + τ̃ − τ)τ̃ β τ̃λmax(S) ≤ 0
.

(28)
It follows from (26)-(28) that

βkV (k) ≤
[
ρσ̃ + (β − 1)(1 + σ̃ − σ)σ̃βσ̃λmax(R)

]
sup

s∈N [−σ̃,0]

‖u(s)‖2

+
[
ωτ̃ + (β − 1)(1 + τ̃ − τ)τ̃ β τ̃λmax(S)

]
sup

s∈N [−τ̃ ,0]

‖v(s)‖2. (29)

From the definition of V (k), we get

V (k) ≥ λmin(P )‖u(k)‖2 + λmin(Q)‖v(k)‖2. (30)

Let

κ = max{ρσ̃+(β−1)(1+σ̃−σ)σ̃βσ̃λmax(R), ωτ̃+(β−1)(1+τ̃−τ)τ̃ β τ̃λmax(S)},

ε =
1

β
, μ = min(λmin(P ), λmin(Q)), M =

κ

μ
,

then 0 < ε < 1, and

‖u(k)‖2 + ‖v(k)‖2 ≤ Mεk( sup
s∈N [−σ̃,0]

‖u(s)‖2 + sup
s∈N [−τ̃ ,0]

‖v(s)‖2)

for all k = 1, 2, · · ·. The proof is completed.

Remark 1. Discrete-time BAM neural network (1) is a discrete analog of the
well-known continuous-time BAM neural network of the form⎧⎪⎪⎨⎪⎪⎩

dxi(t)
dt

= −cixi(t) +
m∑

j=1
aijfj(yj(t)) +

m∑
j=1

bijfj(yj(t− τ(t))) + Ii, i = 1, 2, · · · , n,
dyj(t)

dt
= −djyj(t) +

n∑
i=0

wjigi(xi(t)) +
n∑

i=1
hjigi(xi(t− σ(t))) + Jj , j = 1, 2, · · · , m
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for t ≥ 0, which has been investigated intensively in recent years, for example,
see [4, 8, 9, 12, 13] and references therein.
Remark 2. In assumption (H2) of this paper, the constants F−

j , F+
j , G−

i

and G+
i (i = 1, 2, · · · , n;j = 1, 2, · · · , m) are allowed to be positive, negative or

zero. Hence, assumption (H2) is weaker than the following assumptions (H3)
and (H4):
(H3) There exists positive constant F+

j andG+
i (i = 1, 2, · · · , n;j = 1, 2, · · · , m)

such that

0 ≤ fj(u1) − fj(u2)

u1 − u2

≤ F+
j , 0 ≤ gi(u1) − gij(u2)

u1 − u2

≤ G+
i

for all u1 �= u2.
(H4) There exists positive constant F+

j andG+
i (i = 1, 2, · · · , n;j = 1, 2, · · · , m)

such that

|fj(u1) − fj(u2)| ≤ F+
j |u1 − u2|, |gi(u1) − gi(u2)| ≤ G+

i |u1 − u2|

for all u1, u2 ∈ R. Assumptions (H3) and (H4) were mostly used in literature
[1]-[19]. Obviously, the activation functions such as sigmoid type and piecewise
linear type are also the special case of the function satisfying assumption (H2).
Remark 3. In [16, 18], the given stability criteria for discrete-time BAM
neural network with constant delays were based upon certain diagonal domi-
nance or M-matrix conditions on weight matrices of the networks, which only
depend on absolute values of the weights and ignore the signs of the weights,
and hence are somewhat conservative.
Remark 4. In [19], authors studied respectively the exponential stability for
discrete-time BAM neural network with time-varying delays under assumption
(H3) and assumption (H4). However, two kinds of methods in [19] can be
unified by the method of this paper. In addition, this paper has also removed
the imposed conditions 1 < σ(k + 1) < 1 + σ(k) and 1 < τ(k + 1) < 1 + τ(k)
in [19].

4 An Example

Consider a discrete-time BAM neural network (1), where

C =
(

0.1 0
0 0.2

)
, A =

(
0.2 −0.1 0.1
−0.3 0.1 −0.2

)
, B =

( −0.2 0.3 −0.2
0.1 0.2 −0.1

)
, I =

(
0.2
−0.1

)
,

D =

⎛⎝ 0.2 0 0
0 0.1 0
0 0 0.1

⎞⎠ , W =

⎛⎝ 0.1 −0.1
0.3 0.2
−0.1 −0.3

⎞⎠ , H =

⎛⎝ 0.1 −0.2
−0.1 0.3
0.2 −0.1

⎞⎠ , J =

⎛⎝ −0.5
0.7
1.1

⎞⎠ ,

f1(y) = tanh(0.2y), f2(y) = tanh(−0.4y), f3(y) = tanh(−0.2y),
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g1(x) = tanh(−0.2x), g2(x) = tanh(0.2x),

τ(k) = 3 + sin(
kπ

2
), σ(k) = 4 + cos(kπ).

It can be verified that assumptions (H1) and (H2) are satisfied with F−
1 =

0, F+
1 = 0.2, F−

2 = −0.4, F+
2 = 0, F−

3 = −0.2, F+
3 = 0, G−

1 = −0.2, G+
1 = 0,

G−
2 = 0, G+

1 = 0.2, and τ = 2, τ̃ = 4, σ = 3, σ̃ = 5. Thus,

F1 =

⎛⎝ 0 0 0
0 0 0
0 0 0

⎞⎠ , F2 =

⎛⎝ 0.1 0 0
0 −0.2 0
0 0 −0.1

⎞⎠ , G1 =
(

0 0
0 0

)
, G2 =

( −0.1 0
0 0.1

)
.

By the Matlab LMI Control Toolbox, we find a solution to the LMI in (7) as
follows:

P =

(
2.6813 0.5353
0.5353 9.1009

)
, Q =

(
16.8938 1.5285 −1.5991
1.5285 12.3769 3.1933
−1.5991 3.1933 13.7147

)
, R =

(
0.1484 0.0994
0.0994 1.3683

)
,

S =

(
3.6134 0.4138 −0.4594
0.4138 2.7602 0.9247
−0.4594 0.9247 3.2971

)
, Λ =

(
5.2633 0

0 6.0038

)
, Γ =

(
4.1780 0

0 5.9303

)
,

Υ =

(
4.6292 0 0

0 7.5728 0
0 0 4.8229

)
, Θ =

(
3.6240 0 0

0 5.3464 0
0 0 4.5600

)
.

Therefore, by Theorem 1, we know that model (1) with above given param-
eters is globally exponentially stable, which is further verified by the simulation
given in Figure 1. It should be pointed out that the condition in [19] cannot
be applied to this example since it requires 1 < σ(k + 1) < 1 + σ(k) and
1 < τ(k + 1) < 1 + τ(k).

5 Conclusions

In this paper, the global exponential stability has been investigated for
the discrete-time BAM neural network with time-varying delays. The descrip-
tion of the activation functions was more general than the recently commonly
used Lipschitz conditions. By employing a appropriate Lyapunov-Krasovskii
functional and LMI technique, a delay-dependent sufficient condition has been
obtained to guarantee the global exponential stability of the addressed neural
network. The condition is a LMI, hence the stability of the neural network can
be checked readily by resorting to the Matlab LMI toolbox. In addition, the
proposed stability criterion has not required the monotonicity and differentia-
bility of the activation functions, and a impose condition on the time-varying
delays in recent publication has been removed. A simulation example is given
to show the effectiveness and less conservatism of the obtained condition.
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Figure 1: State responses of the discrete-time BAM neural network with initial conditions
(x1(s), x2(s), y1(s), y2(s), y3(s))T = (0,−0.3,−1, 0.5, 1)T .
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