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Abstract. Let C be a nonempty closed convex subset of a real reflexive
Banach space X that has weakly continuous duality mapping J. Let T": C —
C be a Mean non-expansive mapping with F/(7) # (). For any ¢ € (0, 1), there
exists a sequence {z;} € C satisfying x; = tf(x;)+(1—t)Tx;, where f : C — C
is a contraction mapping. Then it is proved that {z;} € C' converges strongly
to a fixed point of T" which is also a solution of certain variational inequality.
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1. INTRODUCTION

Let X be a real Banach space, and let .J denote the normalized duality from
X into 2% given by

J(@) ={f € X7: (@, f) = [l FIL 1A = ll=ll}, Vo e X,

where X* denotes the dual space of X and (-, -) denotes the generalized duality
pairing. In the sequel, we shall denote the single-valued duality mapping by j,
and denote F(T) = {x € X : Tx = z}. When {z,} is a sequence in X, then
x, — z(x, — z,z, — x) will denote strong(weak, weak star)convergence of
the sequence{x,} to z.

Let X be a real Banach space and 7' a mapping with domain D(7") and range
R(T) in X. T is called non-expansive(contractive) if for any x,y € D(T) such
that

1Tz =Tyl < lle = yl|(ITz = Tyl| < allz = y|| for some 0 <o <1).
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In 1967, Browder [2] considered an iteration in a Hilbert space as follows.
Let u be an arbitrary point of C and define a contraction by

T/ :x—tut+(1—t)Tz, z€C, (1)

where t € (0,1). it proved that the fixed point sequence {z,} of {T,'} converges
as t — 0 strongly to a fixed point of 7. In 1980, Reich [7] extended the result
of Browder to a uniformly smooth Banach spaces.

In 2000, Moudafi [6] introduced viscosity approximation methods and proved
that if X is a real Hilbert space, the sequence {z;} defined by the following:

xe=1tf(xs) + (1 — )Ty, (2)

converges strongly to a fixed point of the non-expansive self-mapping 7" in C'
which is the unique solution to the following variational inequality:

(I —=flu",J(p—u")) >0, Ve F(T).

In 2004, Xu [9] studied further the viscosity approximation methods for non-
expansive mappings in uniformly smooth Banach space, and proved that as
t | 0, {x;} defined by (2) converges to a point in F(T') that is the unique
solution of the variation inequality.

A Banach space X is said to admit a weakly sequentially continuous normal-
ized duality mapping J : X — X* if J is single-value and weak-weak™® contin-
uous, i.e., for any sequence{z,} in X, if z, — = in X, then J(z,) — J(z) in
X*.

In 2006, Xu [10] proved the strong convergence of {z;} defined by (1) in a
reflexive Banach space with a weakly continuous duality map J, with gauge
. And it also considered the following iterative scheme:

Tpi1 = (1 —ap)J,, xp + auu, n >0, (3)

where u € C' is arbitrarily fixed, {«,} is a sequence in (0,1), and {r,} is a
sequence of positive numbers. Xu proved that if X is a reflexive Banach space
with weakly continuous duality mapping, then the sequence {z,} given by (3)
converges strongly to a point in F(T) provided the sequences {«,} and {r,}
satisfy certain conditions.

Let X be a real Banach space, C' a bounded closed convex subset of X and
T :C — C be a mapping, T is called a mean non-expansive mapping if

[Tz =Tyl < allz =yl + bllz = Tyll, Yo,y € Ca,0>0,a+b<1. (4)

In 1975, Zhang [12] introduced this definition and proved that 7" has a
unique fixed point in C', where C' is a weakly compact closed convex subset
and has normal structure. In 2007, Wu [8] proved that If a+b < 1, then mean
non-expansive 7" defined by (4) has a unique fixed point.

The objective of this paper is to consider the following two iterations for
a mean non-expansive mapping 7' in a reflexive Banach space X which has a
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weakly continuous duality mapping:

re=1tf(xs) + (1 —t)Txy, t €(0,1),
Tpr1 = (1 — )T, + an f(z,), n>0. (5)

2. PRELIMINARIES

To this purpose, let us first recall the following some lemmas.

Lemma 1 [3] If X is a reflexive Banach space which admits a weakly se-
quentially continuous normalized duality mapping, then X satisfies the Opial's
condition, i.e., wheneven x, — x in X and y # x, then

liminf ||z,, — 2| < liminf ||z, — y||.

Lemma 2 [5] Let X be a real Banach space. For each x,y € X, the following
conclusions hold:

|z +ylI” < o) + 2y, j(x +y)), Vil@+y) €Jl@+y),
lz +yl> > |=]* +2 (. i(z)), Viz)e ().

Lemma 3 [4] Let {a,}, {b.}, {c.} be three nonnegative real sequences satis-
fying
Ap+1 S (1 - tn)&n + bn + Cn

with {t,} C [0,1], > t, = 00, b, = o(t,), and >_ ¢, < oo. Then a, — 0.
n=0 n=0

Lemma 4 Let X be a Banach space with a weakly sequentially continuous
normalized duality mapping, C' a bounded closed convex subset of X and let
{z,} be a bounded sequence of X and uw € C. Then

LIM|x, — u||* = min LIM |z, — y||?
yelC

if and only if
LIM (z — u,j(x, —u)) <0
for all z € C', where LIM 1s a Banach limit on €.

Proof. For zin C' and X : 0 < A <1, we have by Lemma 2 that
2n —ul® = [zn = Au—(1=Nz+ (1 =Xz —u)?
> g — du— (1= X)z?
+2(1 = N){(z —u, J(z, — Au— (1 — X\)z))
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Let ¢ > 0 be given. Since X is reflexive which admits a weakly sequentially
continuous duality mapping. Therefore,

[z —u, J(zn — Au— (1= XN)z2) = J(z, —u))| <e,
if A is close enough to 1. Consequently, we have
[z —u, J(z, —u)| < e+ (z—u,J(x, —Iu—(1—N)z))

< e+ {llzn = ull® = llon — Au— (1 = X)z]|*}

1
2(1 =)
and hence

LIM(z —u, J(x, — u))

<e+ ﬁ{LH\/[Hxn —ul|* = LIM||z, — M — (1 = \)z|*} < e
Since € > 0 is arbitary, we have LIM (z — u, j(z, —u)) < 0 for all z € C.
We prove the converse. Let z, u € C'. Then, by Lemma 2,
= 2017 = 2w — ull* = 2w — 2, J (20 — w)),
for all n > 1 and LIM(z — u, J(x, —u)) < 0 ,we have
LIM||z, — z||* = min LIM||z,, — z||*.
zeK

O

Remark 1. If we suppose that X be a Banach space with a uniformly
Gateaux differentiable norm, then the duality map is uniformly continuous on
bounded subset of X from the strong topology of X to the weak star topology
of X*(see [11]). Thus, it also satisfies the above result.

3. MAIN RESULTS

Let X be a Banach space, C' a closed convex subset of X, T : C' — C a
mean non-expansive mapping with F(T') # () and f : C' — C be a contraction
with contraction constant «. For given ¢ € (0, 1) define a napping 7; : C' — C
by

Ti(z) =tf(x)+ (1 —t)Tz, z € C.

Clearly, for each x; € C', we have that T; is mean non-expansive. Therefore,
by Lemma 2.1 of [8], T; has a unique fixed point(say) z; € C, that is

oy =tf(w) + (1= )Tz, (6)

Concerning the convergence problem of sequence {z;}, we can prove the fol-
lowing results.
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Theorem 1 Let X be a real reflexive Banach space with a weakly sequentially
continuous normalized duality mapping J : X — X*, C' a closed convexr subset
of X, T :C — C defined by (4) a mean non-expansive mapping with F(T) # 0,
and f : C'— C be a contraction with contraction constant a. Then {x;} defined
by (6) converges strongly to a point in F(T'). If we define Q : [[, — F(T) by

Q(f) = limz,

where [ [ == {f : C — C contraction with contraction constant a}, then Q(f)
solves the variational inequality

(I =NAQf), J(Q(f) —p)) <0, pe F(T) (7)

Proof. We first show that the sequence {z;} defined by (6) is bounded. In fact,
take a p € F(T), we have

e —pll < (=T —pll + ¢l f(z) — pll
< (1—=1t)(allze — pl| + bllze — Tp|)) + t]| f(z:) — pl|
= (1 —t)(allze — pll + llze — pl|) + tl| f(2:) — p|
< (=)l —pll + 1 f () = pll
It follows that
|z: — pl| 1f(z¢) — pl

<
< |f(@e) = f@I + 1 f(p) — 2|
< allz; —pll +[If(p) —pl

Hence
1

o llf ) =l (8)

and {z;} is bounded. Assume ¢, — 0. Let z, := x;,, then {z,} is bounded,
so are {fx,}. We claim that

lze = pll <

|n — Tp| — 0 (9)
Since
|20 = Tanll = |taf(zn) + (1 —t0)Tzn — Tyl
= tllf(zn) = Tzn
= tullf(zn) —p+p— T,

tn(llf (n) = pll + T2 — pll)
tn(lf (xn) = pll + allzn — pll + bllzn — Tpl])
tn(llf (n) = pll + llzn = pl)
Let M > 2max{||f(z,) — p||, ||zn — p||}, we have
|z, — Tx,|| < t,M — 0(as t, — 0).

VAN VANRVAN
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Now we define u: C' — R by
p(r) = LIM||x, — z||?, = € C,
Let
K={zeC:pulx)= gréingMHxn —z|*}.
It is easily seen that K is a nonempty closed convex bounded subset of X.
Since (note that ||z, — Tx,| — 0)
w(Tx) = LIM ||z, — Tz|* = LIM||Tx, — Tx|?
and
LIM||Tx, —Tz|* < LIM(a||z, — x| + b||x, — Tx|)?
= LIM(a*||z, — x|]* + b*||z,, — Tx|?
+2ab||x, — z||||z, — Tx|)
LIM (a®||x, — z|* + 2ab||z, — Tx||* + b*|z, — Tz||*)

IN

Hence
o2
Tr) < —————
e )
it follows that T'(K) C K, that is, K is invariant under 7. since X is reflexive,
we get that p attains its infimum over K(see [1]). That is there exists ay € K
such that

LIM |z, — z|* < LIM||lz, — @||* = pu(z),

LIM|x, —y|* = min LTM ||z, — z|)?
kS

We next proved that y = T(y). Suppose, by way of contradiction, that
y # T(y). Since {z,} is bounded, without lose of generality, we may assume
that {x,} converges weakly to a point z* € C, then

LIMinf|z, —T(y)|? < LIMinf||Tz, —T(y)|’

LIMinf(allz, — y|| + bllz, — T(y)ll)”
LIMinf(a?|zy — y||? + 2ab||z, — T(y)|?
+0* || — T(y)[1?)

VAN VAN VAN

Hence
a

< -
T V1 =02 —-2ab
< LIMinf|z, —y|
< LIMinf|z, — o*|

LIMinf|zn —T(y)| LIMinfl||lzn —yl|

on the other hand, From Lemma 1 we get that

LIMinf|x, —z*|| < LIMinf|z, — T(y)||,
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a contradiction. Thus y = T'(y). That is, y is a fixed point of T, we also have
by Lemma 4 that

LIM{x —y,J(x, —y)) <0, z€C (10)
Since
lze = yl* = t(f(we) —y) + (L= t)(Tz, = y)||
= ({t(f(z) —y) + A= t)(Tze — y), J(z — y))
< t(f(w) =y, J(@e—y)) + (1 = )Tz — ylllae — vl
< t(f(x) —y, J(we—y)) + (1 = t)(allz — y]
+bllze — ( ) D l[ze =yl
< t(f(w) =y, J(ze —y)) + (1 =) |lze — y?
then
lze = yll* < (fw) =y, I (2 =)
= (flze) =z, J(ze —y)) + (x =y, J(ze — y)) (11)
Hence, for all x € C
LIM||z, —y||> < LIM{f(xn) —2,J(xn —y)) + LIM{x —y, J(z, — y))
< LIM(f(zn) — @, J (20 — y))
< LIM|[f(zq) — l[[|zn — v

In particular, let z = f(y),
LIM|zy =yl < LIM|| f(z,) = f(W)lzn — yl| < aLIM |z, — yl|?
Hence,
LIM||z, —y|* =0,

and there exists a subsequence of {z;} which is still denoted {z,} such that
Tp — Y.
Now assume there exists another subsequence {x,,} of {x;} such that z,, —
y* e F(T).
It follows from (11) that
ly* = yllI* < (F(y") — v T (" —v))
Interchange y* and y to obtain
ly =l < (fy) —y" Ty — ")
Which implies that

2y —yl* < (fW) =y, J(y —y)) < QT+ a)|ly" —y*
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Since o € (0,1), this implies that y* = y. Consequently, z; — y as t — 0.
Now we show that Q(f) satisfies (7).
Define @ := [[, — F(T) by

Q(f) = lim . (12)
We have by (6) that
([—ﬁ@:—l%Q[—Tnp (13)
Hence for p € F(T),
(5 = f) (= ) =~ = T = (I = T)p, S~ p)) S0 (14)
Letting t — 0, we claim that
(I =HA), J(Q(f) —p)) <0 (15)

In fact, let 2™ = Q(f) and since X is a reflexive Banach space which admits
a weakly sequentially continuous normalized duality mapping. Hence

[(fa™) =2, Jp—a™)) — (f(@) — 2, J(p — 20))]
= [(f(@™) = 2™, J(p—a™) = J(p — x))
H((f (@) =a™) = (f(ze) = 20), J(p — 24))]|
< (fl@™) =2, J(p—2™) = J(p—x))
I (f (@) = a™) = (f(z) —z)lllp — 2l — 0
Thus, for any € > 0, there exists a 6 > 0 such that

(f@) =™, J(p — ™)) < (f(w) =, J (2, —p)) + € <e,
for any ¢t € (0,0) and for all n > 1. Since € > 0 is arbitrary, we have

(I = fz™, J(z™ —p)) <0.
O

Theorem 2 Let X be a real reflexive Banach space with a weakly sequentially
continuous normalized duality mapping J : X — X*, C a bounded closed
convez subset of X, T : C'— C defined by (4) a mean non-expansive mapping
with F(T) # 0 and f € [[,. For any given xy € C, let {x,} be the iterative
sequence defined by (5) and {«,} satisfies the following conditions:

(i) lim o, =0;

n—oo

.o OO

(i) > a, = o0;
n=0

(iii) either Y |api1 — o] < 00 or lim (apq1/an) = 1.

n=0 n—oo
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Then {z,} convergence strongly to Q(f), where Q =[], — F(T) is defined
by (12).

Proof. By (8), it is easy to prove that the sequence {z,} defined by (5) is
bounded, so are {T'z,} and {f(z,)}.
We claim that
[Zn1 — 2| — 0. (16)

Indeed we have(for some appropriate M > 0)
[2ni1 =zl = (1= an)(Ten = T2n) + (0n — an-1)(f (2n-1) = Tn1)
Fon(f(2n) = f(2n-1)|

< (I—an)(allzn — zpall + bllzn — Tznl])
+an = an || f(n-1) = Top || + aap ||z, — 2pa|

< (I —an)(allzn — zpall + an-a || f(@n-1) = Tpal])
e — ana|[[ f(@n-1) = Txpa || + anl|zn — 25|

< (I -anallzn — 2p|l + (1 = an)an—1 + |an — a1 )M
||y — o

= (1-01=a)l —a)llwn — znall + Moy, — ]
+M(1 — ap)o,_1.

If i |1 — | < 00, then we can let a,, = ||z, —zp_1]], by = M(1—ay,)ap,—1,
n=0

th, =1 —=a)(l—a), c, = M|a, — ap_1], for any n > 0, then by Lemma 3,
we have

|Zns1 — x| — 0(as n — o0).

If lim (apy1/a) =1, then let ¢, =0, a, = ||z — Tpo1l|, tn = (1 —a)(1 — )

and

Moy, — o
an an

Op—1

laon M + M (1 — o)1,

for any n > 0, then the conditions of Lemma 3 are also satisfied. Hence, we
have ||z,41 — x| — 0.
We now show that

|z — Tz,|| — 0.
Indeed this following from(16),
lzn = Tanll < flon — 2nll + (|20 — T
= lzn = 2ol + ol f(2n) — Tzal — 0.
We next show that
lim sup (z* — f(z*), J(z* — x,)) <0, (17)

n—oo
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where z* = Q(f). Indeed we can write
xp — xp = t(f(x) — ) + (1 — )Ty — ).
Putting
Bu(t) = [T — xall (2allze — @l + 20| T2, — 2| + [ T2 — 20]]) — 0(n — 00)
and using Lemma 2, we obtain

e = zal* < (1= 8)*|| T — wa||* + 26 (f(w2) — 2, T (20 — 7))
< (1 - t)2HT95t - flanQ + 2t<f(:1:t) — T, J(l’t - xn)>

+2t]| 2 — 2,
Since
Tz — zl* < (T2 — Tan|| + | T2y — 2,)?
< (allz = @ol| + 0| T2y — 2| + (| Tn — 2nl])?
= a*||z; — 2|2 + V|| Tz — 2 ||* + 2ab||2y — 2,||[| T2 — 20|
| Twn — 2all(2allze — @n |l + 26| Txy — 20| + [[T20 — 20 ])
< a®||lvy — wn|]? + 0| Txy — 2| + ab(||2; — 2,

Tz — 2,]|?) + Po(t).

Then
S Lo
Hence
oo =l < (= 0P~ +

+2t<f(xt) — T, J(xt - xn)) + Qtth - anQ

This implies
t 1
(xe — fl2e), J (v — 7)) < §H$t — || + 2—tPn(t).
It follows that
t
lim sup (z; — f(2¢), J (2 — 25)) < M§7

where M > 0 is a constant such that M > ||z; — x,||* for all n > 1 and
t € (0,1). Let t — 0, then according to inequality (15) proved in Theorem 1,
we obtain (17).

Now we let

Tn = max{(x* - f('r*)) ‘]('r* - xn)>70} > 0,
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for any n > 0, we can prove that lim 7, = 0. In fact, by (17), for given € > 0,

n—oo
there exists a natural n; € N such that

(" = f(z"), J (2" —2n)) <,

whenever n > ny, thus, 0 <, < €, this implies lim -, = 0.
n—oo

Finally we show that x,, — z*. Apply Lemma 2 to get
[z =277 = (1 = @) (Tan — 27) + an(f(@n) — 27|

< (1= 0)?|| Tz, — 2| + 200 (f (2,) — 2%, T (21 — 7))
< (L= an)?llon — 2| + 200 (f (20) — f(27), T (2041 — 27))
+2an<f(x*) - J}*, J(anrl - JJ*)>
< (= ap)llon — 27| + 2aap)|2n — 27||[J2ngs — 27|
20, (f(2%) — 2%, J(@ps1 — 27))
< (1= ap)?llzn — 27| + acn(l|lzn — 27| + [J2n — 2*]?)

2o (f(2") — 27, J(@n41 — 27))
< (1= an)llen — 2 |? + aan(l2n — 271 + [l — 2%
+200, Vng1-
It then follows that

. 1—(2—a)a, + o, . 200,
fona =t < TR Ty ey E
1—(2— n 20,
< 2= a)a 2n — 2%|% + —— i1 + May,
1 - aaqa, 1-aaqa,
1—(2—a)a,
B ) 4+ (et + Ma).
1 — oo, 1 n
Let
20,(1 — @)
* |12 n
n — n :tnziabn: nMn n 7n_07
on = N =[Pty = 2228 (M i),
then
= 2 20,(1 —a) &
Ztnzz T >22an(1—a):oo,
n=0 n=0 =0
and
b 1— o«
- = = M n T In
tn 2(1 — a)( on 1 —ozozn7 +1)
< Moy, n 1 0
— 0.
= 91—a) 1-a "

Finally apply Lemma 3 to conclude that z, — x*. O
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