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Abstract 

 
Epidemics that are either introduced into a population or fuelled by immigrating infective 
individuals are subject to dynamics that must include infectiveness external to the 
population itself. Immigration policies in developed countries are undertaken and 
modified according to socio-economic and demographic factors. Based on these facts and 
on the idea that a non-negligible portion of the inflowing individuals escapes official 
control, immigration dynamics are here introduced in an existing SIR model on the basis 
of the ability of a local population to control and select the admission of external 
individuals. Results show a peculiar behaviour of the epidemic dynamics and consequent 
public health measures for prevention or eradication of the infection are analyzed. 
 
Mathematics Subject Classification: 37N25, 92D30, 91D20, 91D10 
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1. Introduction 
 
The growing migration flows due to the socio-economic instability and enhanced 
by the globalization of mass transportation and by the constant (although not 
steady) growth of Western economies, have resulted in radical changes in the 
diffusion of infections, with direct effects on the contact mechanisms between the 
susceptible and the infective populations and a substantial modification of 
prevalences and incidences (see, among many others, [12], [10], [9], [8]). Some 
countries with a high immigration rate have appointed screening procedures on  
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perspective immigrants for infections with a long incubation time (see, as 
examples, [19] and [13]): such programs are, however, expensive and of limited 
efficacy and are put into effect only when there are clear emergencies (i.e., local 
epidemic outbursts in countries of origin, avian pneumonia, SARS, BSE for cattle 
from high prevalence countries, etc.). Moreover, screening and health counselling 
recommendations, derived from local epidemiological studies, are often rather 
contradictory and far from being conclusive (compare, for instance, [14] for UK 
and [16] for Italy). 
Until recently, theoretical models of infectious diseases essentially referred to 
populations which were either closed or had some “stable” relationship with the 
outer environment during an epidemic wave (known birth and death rates and 
known contact patterns) and their analysis and forecast results proved to be 
acceptable for most of the existing infections. However, starting around the mid 
80’s with the insurgence of  new “mysterious” infections, the theoretical 
knowledge and the validity of the available models proved increasingly 
inadequate and the scientific community had to start re-thinking principles, 
concepts and methodological structures. Infections such as HIV/AIDS, various 
forms of parentheral hepatitis, BSE and CJ disease have progressed, within a few 
years, to become global epidemics, most of them constituting a particularly 
serious threaten to less developed countries, where entire generations of 
individuals have been put at risk of survival. Microbiological studies have isolated 
new agents and investigated their mechanisms of diffusion and interactions with 
the human host, but the diffusion of the epidemics in the population still presents 
unknown aspects to which mathematical models have not been able to provide 
global and satisfactory answers. Substantial improvements can be brought to the 
epidemic modelling schemes by including immigration flows, both susceptible 
and infectious, in the demographic dynamics; however, their patterns are difficult 
to keep within reasonable modelling boundaries, because of the several socio-
economic aspects involved in their definition. 
In the present paper, a balance between the modelling reduction of the actual 
complexity of the processes and the inclusion of factors external to the 
demographic and epidemiological dynamics is attempted. In particular, the model 
aims at describing and analyzing the situation, common to most Western 
countries, where the efforts to regulate the growing immigration from less 
developed countries is coupled with the impossibility of keeping under full 
control the flows of migrating individuals. 
 
 
2. The Mathematical Model: Shaping the Immigration Flow 
 
Several models of infectious immigration are mentioned and commented in [15]: 
the demographic dynamics and the amount of resources available from time to 
time to the local population play a substantial role in determining the immigration 
flow. Therefore, in a more general setting, a model including an immigration flow 
should refer to time and other factors, such as local demographic and economic  
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dynamics, as influencing the quality and the quantity of the inflow, both directly 
and indirectly (a relevant analysis of these factors is in [6]). Under appropriate 
demographic and economic conditions, common to most developed countries, 
policies of expansive immigration are implemented and a quota w of “controlled”, 
or legal immigration is regularly admitted into the local population: this may be 
thought of as added to the “natural immigration” )(tG  of the previous section. It 
seems reasonable to think that this legal immigration is entirely made out of 
healthy or screened individuals, whereas the natural immigration )(tG , otherwise 
called illegal, joins the local population as a mixture of )()1( tGp− healthy and 

)(tpG  infectious individuals.  
Studies on legal and illegal immigration, conducted by specialized organizations 
and agencies in the U.S. (the Immigration and Naturalization Service, the Census 
Bureau, the Center for Immigration Studies) and in other countries (see [7]; [17]; 
[18]; [1] and several reports of the Population Activities Unit of the United 
Nations),  have explicitly reported the “intimate link between legal and illegal 
immigration” as “the legal immigration process embraces illegal immigration and 
encourages it” (see http://www.cis.org, but also “The Link: Legal and Illegal 
Immigration” by M. Krikorian in The New York Post, Feb. 16, 1997, among 
others). In this view, it seems then reasonable to divide the total immigration into 
a time-varying, natural immigration )(tG  and a regular immigration as 
proportional to the natural one, thus providing the following categories of 
immigrants 
 

• natural susceptible: ( ) )(1 tGp−  
• natural infectious : )(tpG  
• controlled healthy: )(twG   

i.e.,  
• total susceptible immigration: ( ) ( ) )(1)()(1 tGpwtwGtGp −+=+−  
• total infectious immigration: )(tpG  

 
so that we have a total number of immigrants given by ( ) )(1)( tGwtY += . 
Following these ideas, a modification of the SIR model already presented in [15] 
is here proposed: 
 
 

( )

( )⎪
⎩

⎪
⎨

⎧

+++−=

−+++−−=

)()()()()(

)(1)()()()(

tpGtItItkS
dt

tdI

tGpwNtStItkS
dt

tdS

ςξμ

νμ
    (1) 

 
 
whose flows are graphically represented in figure 1 (see further down for the 
model parameter definitions in Table 1). 
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Figure 1: schematic representation of the SIR epidemic 

model in (2) with inflows of susceptibles and 
infectives. 

 
 
The proportion w of controlled immigration is here constant with time: this is a 
restrictive hypothesis based on the idea that w is subject to relatively small 
changes with respect to the other quantities in the model. This is true in particular 
with respect to the natural immigration )(tG ; in other words, we have that a 
supposedly time-dependent proportion )(tW  of controlled immigration is such 
that ( ))()( tGwtW ο+=  and, therefore, can be thought of either as being 
approximated with w or as being in a quasi steady state. As mentioned above, the 
quota w of controlled individuals admitted into a local population depends on 
various exogenous factors: in modelling terms this amounts to saying that w 
depends on a vector of time-dependent covariates )(tX , whose values can be 
obtained by applying appropriate estimation methods to Official Statistics; 
however, this issue is not addressed here, supposing that the quasi-steady state 
condition also applies to the variability of )(tX . Various further hypotheses can 
be made on the model quantities in order to analyze the dynamics of the epidemic: 

i) if νμ ≈ , 0≈ς , 0≈w , the “natural immigration” )(tG  is 
“small” and approximately constant over time (say, a quasi 
steady state gtG =)(  and estimated from external sources) 
and )0()0()0( RISN ++≈ , then (1) can be reasonably 
approximated by 
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( )
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pgtItItkS
dt

tdI

gpNtStItkS
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)()()()(

1)()()()(

ξμ

μμ
 

 
if, following the hypotheses in the previous section, the 
“natural immigration” is given by 

)()()()()()( tNtRtItStG νμςμμ −+++=  
with the total population )(tN  corresponding to a variable 
saturation level. In this case the total population size )(tN  
varies according to 

[ ])()()()( tItNw
dt

tdN
⋅+−= ςνμ  

with )()()()( tRtItStN ++= . 
 
In case i) results from [3] can be usefully employed to study the equilibria 
of the system. In case ii) the whole epidemic system (1) is given by 
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( ) ( )[ ]

( ) ( )[ ]
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⎪
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dt

tdI

tItRtItSpw

tRtItStStItkS
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μξ

ςνμςξμ

ςνμ
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 (2) 
 
where the variable total population is given by )()()()( tRtItStN ++= ; the 
model parameter definitions are in Table 1. 
 

Table 1: Parameters of model (2) 
Parameter Definition 

k Transmission coefficient 
ν Birth rate 
μ Natural death rate 
ζ Disease mortality rate 
ξ Infective removal rate 
p Proportion of infectious immigration 
w Quota (proportion) of controlled immigration 
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Setting to zero the derivatives in (2) and using IR
μ
ξ

=  from the last equation, 

the solution of the following system of ordinary equations  
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 (3) 
 
provides the critical points of (2). 
In order to simplify the notation, let us divide the equations in (3) by 

( )ςξμ )1( pN −++ , where RISN ++= ; we thus have the new equations in 

terms of new variables 
N
Ss = , 

N
Ii =  and 

N
Rr = : 

( )( )

( )( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

=⋅−−+−

=⋅+⋅−+++−

01

01
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γβ
β
α

δγβ
β     (4) 

 
whose parameters are listed and defined in table 2. 
 

Table 2: new parameter definitions for model (4) 
 

New parameter Original Parameters

K 
ςξμ )1( p

Nk
−++

 

A ( )ςξμ
νμ
)1(
))((
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pw

−++
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By further setting 
μ

ξμ
β

γϕ +
=

−
=⋅

1 , equations (4) become: 

 
 

( )
( )⎩
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=⋅−+−
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0
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iisAiisK

ϕα
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     (5) 

 
 
The solutions of (5) provide the equilibrium point of (2):  
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    (6) 

 
 
and the following admissibility lemma holds: 
 
 
Lemma 1 – The steady state solutions ( ) ( ) ( )[ ]αα ;;;; AiAsis =  of (7) are real, 

positive iff 0<α  and α
ϕ
δα −<<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− A . 

 
Proof  
From (6), the conditions 0>i  and 0>s  are equivalent to 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−<<+−

ϕ
δαδα A1  and A<−α  for 

ϕ
α 1

> ; ( )δα
ϕ
δα +−<<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− 1A  

and A<−α  for 
ϕ

α 10 << ; ( )δα
ϕ
δα +−<<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− 1A  and α−<A  for 0<α . 

The thesis follows by putting together all these inequalities. 
 

 
A graphical summary of all the conditions above in the A×α -plane is sketched in 
figure 5 in the text. 
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Figure 5: graphic representation of the admissibility 

region (grey area) for the endemic equilibrium 
of the system (2) on the A×α -plane, where 

12=ϕ  and δ = 0.5. The equilibria, although 
admissible, are unstable everywhere on the 

A×α -plane. (see lemma 1). 
 
 
The quality and the stability of ( )is;  in (6) is determined by the eigenstructure of 
the jacobian matrix of (5): 

⎥
⎦

⎤
⎢
⎣

⎡
+−+

+++−+−
=

αϕα
δϕ

1
1

sKiK
AsKAiK

J     

 (7) 
 
and a complete characterization of the steady states of the model is provided by 
the following theorem 
 
Theorem 1 – The endemic steady state (6) is unstable for all admissible α  and A. 
Proof 
The determinant of the jacobian matrix in (7), written at the equilibrium point (6), 
is given by ( )δα ++= 1)( AJD  and, following the conditions in lemma 1, we 
have 0)( <JD  for 0>A  and  0>α  (for 0== Aα  see the proof of theorem 2); 
i.e., any admissible equilibrium point is a saddle point and, therefore, unstable. 

 
 
In spite of the results of theorem 1, the system (2) can be further manipulated in 
order to attain a “partial equilibrium”, as stated in the next theorem. 
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Theorem 2: Consider a solution vector [ ]′)();(),( tRtItS  of (2) and define 

)(
)()(
tR
tItQ = . 

 
i) If νμ = then the “quotient system” 
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has a locally asymptotically stable equilibrium at 
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ii) If νμ ≠ then the “quotient system”  
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has an approximate,  locally asymptotically stable equilibrium at 
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(10) 
where the approximation is [ ]( )1)( −tRο  as ∞→t .  
 
Proof  
i) If νμ =  then (2) becomes 
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By dividing the first equation by )(tR  we have the following “quotient system” of 
two equations 
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which, by setting 
)(
)()(
tR
tItQ = , using (11) and rearranging the terms, becomes 
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When the left-hand sides vanish, we have the following system of ordinary 
equations 
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whose real and positive solutions provide the admissible equilibria of (12); the 
“infection-free” equilibrium 0=Q  is here not admissible, as it leads to an 
undetermined solution for S , while the endemic equilibrium (real, positive 
solution) is given by 
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The jacobian matrix of (8) is given by 
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whose trace and determinant, computed at (13), are given by 
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local stability conditions 0)( <JT  and 0)( >JD  are then combined into 

( ) ⎭
⎬
⎫

⎩
⎨
⎧ −+

+
−+

+
+

>
ξ

ξςμ
ξ

ξςμ
ξ

μ
2

;
22

max w
k

w
kQ

Q  and, by noticing that ξ2<<k , 

the resulting condition ( ) ξ
ξςμ

ξ
μ

22 +
−+

+
+

>
k

w
kQ

Q  becomes 

 
( ) ( ) 022 >−+−−++ QwQQk ξςμμξξ  

 
Using the equation generating Q : ( ) 02 =−−+−⋅ μξςμξ QwQ  leads to 
( ) 02 >+ Qk ξ , which is always met.  
 
ii) If νμ ≠ , by dividing the first equation of (2) by )(tR  we have the following 
“quotient system” of two equations 
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which, by setting 
)(
)()(
tR
tItQ = , using (2) and rearranging the terms, becomes 
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By setting to 0 the derivatives of the left-hand sides of the equations and 
expressing the last term of the right-hand side by the symbol ο, we have a system 
of ordinary equations 
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Neglecting the ο terms when solving for S  and Q  corresponds to an 
approximation error of order of magnitude equal or less than [ ] 1)( −tR  which tends 
to 0 as t increases, since, by theorem 1, there is no stability in the system (2). The 
solutions of (14) are then approximated by 
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The solutions of the quadratic equation  
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are admissible only if real and positive and are therefore subject to both 
 

1. ( ) ( ) 0)(4)( 2 ≥−++−+−+ νμμξξςνμμ ww  

2. ( ) ( ) 0)(4)()( 2 ≥−++−+−+±−+−+ νμμξξςνμμξςνμμ www  



Effects of immigration policies                                                                           713 
 
These conditions are met in the following cases: 
 

1.    since we have that )( νμμ −>> w  then ±Q  are both always real 
2.1    if ξςνμμ ≥+−+ )(w  then +Q  (with + sign before the root) is positive 
2.2   if ξςνμμ <+−+ )(w  then  

( ) ( ))(4)()(0 2 νμμξξςνμμξςνμμ −++−+−++<−+−+< www
 
and +Q  (with + sign before the root) is positive 

 
The jacobian matrix is here given by  
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+−++−

+−++−−++−−
=

QpkSkQ
wpkSkQ

J
ξςνμςξ

ςνμςνμν
2)(

)())(1(
 

 
with trace and determinant, computed at S  and +Q , given by 
 

( )( )[ ] ( ) Qw
Q

pwQkJT ξξςνμμνμμ 21)( −−+−++−−++−=  

 
and [ ])(2)( ςνμμξξ +−−−+= wQQkJD . The local asymptotical stability 
conditions 0)( <JT  and 0)( >JD  are then combined into 
 

( )( )
( )

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −+−+

+
−+−+

+
+

+−−
>

ξ
ξςνμμ

ξ
ξςνμμ

ξ
μνμ

2
;

22
max w

k
w

kQ
pwQ  

 

If ( )( ) 0<+−− μνμpw  the condition becomes ( )
ξ

ξςνμμ
2

−+−+
>

wQ , which 

is always met (recall the expression of +Q ). 
If ( )( ) 0>+−− μνμpw  the condition becomes 
 

( )( )
( )

( )
ξ

ξςνμμ
ξ

μνμ
22 +

−+−+
+

+
+−−

>
k

w
kQ

pwQ  

 
i.e., ( ) ( ) ( ) ( )( ) 022 >−+−+−−−+−−++ QwpwQQk ξςνμμμνμνμξξ . By 
recalling the equation generating Q : 
 

( ) 0)()(2 =−−−−+−+− νμμξςνμμξ wQwQ  
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it is equivalent to ( )
ξ
νμ

+
−

−>
k

pQ 2 , which is always met, since, in general, we 

have that νμξ −>+ pk . 
 

 
Theorem 2 states the approximate stability of a partial equilibrium of (2): if the 
natural demography of the population is at equilibrium, then the stability in (9) is 
exact, while, if the natural demography is imbalanced, then an approximation, in 
the sense of a quasi-steady state, is stated in (10): in fact, neglecting a term of the 

form 
)(
)(

tR
tSC , with C constant (see (14) in the proof of theorem 2), corresponds to 

making an error which tends to 0 as ∞→t . In other words, as t increases, the 
trajectory of (2) in the IS ×  phase plane tends to the partial equilibrium point 
( )QS ; , after which the number of susceptibles S  remains constant, while the 
number of infectives )(tI  keeps increasing with time, as in figure (6). Thus, 
although the majority of the immigrant individuals enters the system as 
controlled/screened for the disease under analysis, the increase of the population 
tends to be made out almost entirely of infective (and removed) individuals: this 
constitutes a relevant public health issue which cannot be ignored when shaping 
immigration policies. 
 
 

 
          a)                                    b) 

 

 
 
Figure 6: an example of a trajectory (graph a) ) of the system (2) in the IS ×  

phase plane (see theorem 2) and its time series curves of infectives 
and susceptibles (graph b) ). Note the different Y-axis scale in the 
two graphs and the ordinates corresponding to the equilibrium 
( )QS ;  in the time series graph; moreover, the time lag in the second 
graphs is shorter than the first one in order to better visualize the 
oscillations of the time series. 
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3. Public Health, Local Demography and Immigration Policies 
 
 
A mixture of politics, public health, economic and demographic policies is 
encountered when dealing with immigration. A whole repertoire of measures in 
each of these fields is, in turn, applied to migrations to analyze and to variously 
control the flows of individuals into a local population. In particular, the existence 
of a current, major epidemic in the host population and/or in the immigrants is 
often a reason for policy adjustment measures. If, on the one hand, economic and 
political issues have a say on the immigration regulation that is often beyond 
epidemiological reasons (the calibration of the quota w of controlled immigration 
or the amount of local resources attracting individuals from outside) and 
determined on an emotional rather than an analytical basis, on the other hand, 
demography and public health are directly involved in the epidemiological 
process and dynamics. A small, relatively isolated community in a poor area, 
when hit by epidemic outbursts, can experience a significant reduction in the 
number of individuals (see [15]) and new entries contribute to sustain the 
epidemics either directly (infected immigration) or indirectly (healthy immigrants, 
susceptible to infection by locals). An open community, subject to exogenous 
demographic pressure, is likely to accept selected and controlled immigration for 
several reasons (fresh labour forces, refugees, other); here again support to a local 
epidemic is provided through two separated routes: the infectious immigration 
(unavoidable, under the hypothesis that part of the immigrants escape public 
health control) and the susceptible immigration. However, in this case the 
epidemic dynamics follow a very peculiar pattern, since, after a period of 
demographic and epidemiological instability, the population steadily increases 
and the increase is almost only made up of present or former infectives. 
In details, the number of susceptible individuals in the population tends to 
approximately stabilize at S , while the number of infectives exponentially 
increases. Analyzing the path followed by the trajectories of (2), a critical time 

instant for the system can be detected at t̂ , such that, for some 0>ε , ε>
dt

tdS )(  

tt ˆ <∀  and  ε<
dt

tdS )(  tt ˆ ≥∀ : a straightforward, graphical/heuristic proof of the 

existence and uniqueness of t̂  (under weak conditions) is omitted, as it does not 
substantially affect the whole argument of this section..  
The value of t̂  thus provides a time threshold for planning direct policy 
interventions on infectious immigration: usual public health control measures for 
immigration must be carefully calibrated, in order to avoid inefficacies and, 
moreover, to avoid investments with a negative cost-benefit balance. The role of 
the virulence of the infection becomes now irrelevant with respect to the  
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demographic balance of the local, healthy population (as a matter of fact, in this 
case, it seems not possible to determine the fundamental parameter 0R ) and the 
epidemic spread can be divided into two clearly separated phases: a first one, with 
a pattern similar to the model in [15] and a second one where the diffusion pattern 
becomes rather rigid and very little can be directly done to reduce the infection. 
While, in the first phase of the spread, the screening and cure of local infectives 
and some forms of quarantine and screening of immigrations may prove effective 
(see [15] for more details), in the second phase, even when the proportion of 
infectious immigration is vanishing, the number of infectives in the population 
increases and the number of healthy individuals remains more or less constant 
(see figure 6). Thus, it is important to act promptly, before the epidemic reaches 
the second phase at t̂ : after that, a decrease in the spread of the infection can be 
reached only by promoting a decrease of the total population (obtained by 
immigration and birth control). It becomes, therefore, essential to determine t̂ , 
i.e., the threshold when the phase transition of the epidemic spread occurs. 
Unfortunately, the vector function ( )′)();( tItS  does not have a closed inverse 
form to derive { }StStt ≈= )(:minˆ  corresponding to the quasi-steady level of 
susceptibles in (10). and the determination of t̂  (and of related issues such as the 
velocity of increase of )(tI , tt ˆ>∀ ) must, therefore, proceed by numerical 
approximations  
Once t̂  is reached, quarantine, screening or any other attempt to act directly on 
the infectious immigration becomes ineffective and the infection tends to 
exponentially invade the population: only unlikely and radical control measures 
on birth and total immigration may have some effects on the local diffusion of the 
infection. 
 
 
4. Conclusions 
 
The epidemiologically meaningful parameter 0R , called basic reproduction 
number, determines a bifurcation point at 10 =R  between an infection-free and an 
endemic equilibrium in epidemic models that are closed or whose demography 
only depends on local dynamics. However, if an immigration flow is introduced in 
the modelling scheme, then 0R  is no longer alone in determining the bifurcation 
(as an example see [15]) and if, furthermore, the total population varies with time 
(according to all the factors listed in this paper), then no infection-free equilibrium 
is admissible and 0R  completely loses its epidemiological relevance. In this latter 
case a peculiar behaviour of the system dynamics is observed and other factors 
must be taken into consideration to analyze the course of the epidemics, such as 
the proportion of susceptibles entering the population and the point-wise  
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progression of the infective time-series: a thorough investigation of these factors 
becomes therefore essential before undertaking public health policies. 
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