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Abstract

The convex deficiency has been recently used to characterize the
convex kernel of a set. This kind of result, central for Visibility The-
ory, suggests to study the convex deficiency in terms of some Visibility
elements. The aim of this work is to provide some geometrical and
topological results about the convex deficiency of a compact set in the
n-dimensional euclidian space.
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1 Introduction

The convex deficiency of a set was studied by different authors (see for example
[1], [2], [3], [4]). In these articles it is presented a geometrical study of the
convex deficiency in relation with skeletal points and skeletons. These three
notions have been recently used in [5] to obtain a characterization of the convex
kernel of a closed set by means of the stars of certain spherical points.

In this paper we include some topological results referred to the convex
deficiency of a set in Rn, and some others in terms of Theory Visibility.
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Unless otherwise stated, all the points and sets considered here are included
in Rn the real n-dimensional euclidian space whose origin is denoted θ. The
open segment joining a and b is denoted (a, b), and the substitution of one
or both parenthesis by square brackets indicates the adjunction of the corre-
sponding extremes. The interior, closure, boundary, and complement of a set
K are denoted by: intK, clK, ∂K, KC respectively. The convex hull of a set
K is denoted convK, and the convex deficiency of a set K, denoted D(K),
is D(K) = convK\K. The closed ray issuing from x and going through y
is written R(x → y). A convex body is a closed convex set with intK �= ∅.
B(x, ε) denotes the open ball with x as center and having radius ε > 0.

A few basic definitions from Visibility Theory are included here. A point
x of a set K sees via K y ∈ K if [x, y] ⊂ K. The star of a point p ∈ K
is the set st(p, K) = {x ∈ K/[x, p] ⊂ K}. The convex kernel of a set K
is ker K = {x ∈ K/st(x, K) = K}. A point p of a convex set K is called
an extreme point of K if it does not belong to any open segment having its
endpoints lying on K. A point p ∈ K is a point of local convexity of K if there
exists a neighborhood U of p such that U∩K is a convex set. In other case it is
a local nonconvexity point. The set of all the points of local convexity and local
nonconvexity are denoted lcK and lncK respectively. A regular point p of a
set K is a point such that there exists an hyperplane which contains the star of
p in one of the closed half-spaces determined by it. The inscribed cone to a set
A from the point a (a ∈ A) is I(A, a) = {a}∪{t ∈ R(a → x)/R(a → x) ⊂ A}.
The infinitude cone of A is I(A) = {θ} ∪ {t ∈ R(a → x) − a/R(a → x) ⊂ A
for some a ∈ A}.

2 Main Results

We begin this section with a list of some topological results referred to the con-
vex deficiency of a set in Rn which can be easily proved by means of standard
arguments.

Lemma 2.1 Let K ⊂ Rn be a nonconvex compact set and K0 a connected
component of D(K). Let be x ∈ ∂K0 then it holds that: x /∈ (convK)C;
x ∈ ∂K or x ∈ ∂convK; x /∈ intK. Besides, if x /∈ ∂K then x ∈ KC.

Lemma 2.2 Let K ⊂ Rn be a bounded convex body, then KC is a path-
connected set.

Lemma 2.3 Let K ⊂ Rn be a nonconvex closed set and K0 connected com-
ponent of D(K) such that ∂K0 ⊂ ∂K. Then K0 is an open set.

Lemma 2.4 Let K ⊂ Rn be a nonconvex closed set. Any point of local
nonconvexity of K belongs to the boundary of the convex deficiency of the set.
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Theorem 2.5 Let K ⊂ Rn be a nonconvex compact set and K0 a connected
component of D(K). If there exists K1 a bounded connected component of KC

such that K1 contains K0, then it holds that: ∂K0 ⊂ ∂K and any closed ray
issuing from every x ∈ K0 verifies that it cannot be wholly included in KC .

Proof. It is immediate that ∂K0 ⊂ ∂K. Let x ∈ K0, as K0 is an open
set, there exists Ux = B(x, ε) ⊂ K0. Any closed ray issuing from x can be
described as R(x → q) where q ∈ ∂Ux. Suppose that R(x → q) ∩ K = ∅. The
fact that R(x → q) is wholly included in KC means that the points of K0 and
(convK)C would belong to the same path-connected component. Hence K0 will
be included in an unbounded connected component of KC , a contradiction.

The following theorem explores one relation between the convex deficiency
of a compact set and the useful tool of cones developed in its complement.
It is clear that the infinitude cone of the complement of a compact set is the
whole space. What we prove here is that some of the half-lines that compose
this cone have origin at a point of the convex deficiency of the compact set.

Theorem 2.6 Let K ⊂ Rn be a nonconvex compact set and K0 a connected
component of D(K). Let S be the connected component of KC such that S
contains K0. We suppose that ∂K0 �⊂ ∂K, then there exists x0 ∈ K0 such that
I(S, x0) �= {x0}.

Proof. The fact that ∂K0 �⊂ ∂K implies that we can take f : [0; 1] → KC

continuous such that f(0) = x and f(1) = q for any x ∈ K0 and q ∈ (convK)C .
Let x0 ∈ Imf ∩ ∂convK and H a support hyperplane of convK that passes
through x0. Denote H+ and H− the closed half-spaces determined by H where
H+ contains convK. Let t ∈ H−, it follows easily that R(x0 → t) ⊂ KC .
Then, R(x0 → t) ⊂ I(S, x0).

Next result follows easily by Milman‘s theorem (see [6] pg. 49).

Theorem 2.7 Let K ⊂ Rn be a nonconvex compact set and we denote P
the set of extreme points of convK. Then ∂convK ∩ (∂K)C ∩ P = ∅.

The convex deficiency of a nonconvex compact set presents a “flat part”,
what is precisely stated as follows.

Theorem 2.8 Let K ⊂ Rn be a nonconvex compact set and K0 a connected
component of D(K). If ∂K0 is not included in ∂K, then there exist y, z ∈
∂convK such that [y, z] ⊂ ∂convK.

Proof. Let x ∈ K0 and q ∈ (convK)C . The argument used in the proof
of theorem 2.6 lets us assert that there exists f : [0; 1] → KC continuous,
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such that f(0) = x and f(1) = q. Let us take x0 ∈ Imf ∩ ∂convK, then
x0 ∈ convK. We consider P the set of extreme points of convK. Recall that
the previous result implies that x0 /∈ P since x0 ∈ ∂convK ∩ (∂K)C . We
know by Minkowski‘s theorem that convK = convP , then being x0 in ∂convK
it results that x0 ∈ ∂convP. The fact that x0 /∈ P but it does belong to its
boundary implies that it lies in a certain segment with extremes in convP ,
then x0 ∈ [y, z] where y, z ∈ ∂convP. It follows easily that [y, z] ⊂ ∂convK.

This statement cannot be improved following this idea using simplices
instead of segments as the following example shows. The set proposed is
A = A1 ∪ A2 ∪ A3 where A1 = {(x, y, z) ∈ R3/x2 + y2 ≤ 4 and 0 ≤ z ≤ 1},
A2 = {(x, y, z) ∈ R3/x2 + y2 ≤ 4 and 2 ≤ z ≤ 3} and A3 = {(x, y, z) ∈
R3/x2 + y2 ≤ 1 and 0 ≤ z ≤ 3}. Notice that A is closed, connected and cl
intA = A and its convex deficiency is D(A) = {(x, y, z) ∈ R3/1 < x2 + y2 ≤ 4
and 1 < z < 2} which does not contain any simplex -except segments- in its
boundary.

This last result is connected with the well known problem “given two convex
sets A and B such that A ⊂ B, under which conditions there exists some set
S such that A = kerS and B = convS?”. Our theorem imposes a condition
for B, necessarily it has to present a flat part.

The next result characterizes the star of certain points of local nonconvexity
that lie in the closure of the convex deficiency of the set. It is related with
regular points because our theorem describes completely the star, instead of
stating in which half-space it lies.

Theorem 2.9 Let K ⊂ Rn be a nonconvex closed set whose convex defi-
ciency contains only one connected component K0. Suppose that there exists
p ∈ ∂convclK0 ∩ ∂K ∩intconvK. Let H be a support hyperplane of convclK0

through p. Denote H+ the closed half-space determined by H such that H+

does not contain K0. If p ∈ lcK, then H+ ∩ K = st(p, K).

Proof. Let p ∈ ∂convclK0 ∩ ∂K ∩intconvK. We take H a support hy-
perplane of convclK0 through p. Let H+ be the closed half-space determined
by H such that H+ �⊃ K0 and H− its closed complement. As p belongs to
intconvK, using a well known result, (theorem 3.11, pg. 40, [7]) intH+∩K �= ∅
and intH− ∩ K �= ∅.

Let us suppose that H+ ∩K is a convex set. Then it holds that st(p, H+ ∩
K) = H+ ∩ K. It is immediate that st(p, H+ ∩ K) ⊂ st(p, K). To prove
the other inclusion, suppose that there exists t ∈ st(p, K) such that [p, t] �⊂
(H+ ∩ K). As t belongs to st(p, K), it holds that [p, t] ⊂ K, but since this
segment is not included in H+ ∩ K, it results that [p, t] �⊂ H+. We state that
t ∈ H−. As p ∈ lcK we pick Up a closed neighborhood of p such that Up∩K is
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convex. Without loss of generality we assume that t ∈ ∂Up. Consider the set
D = conv({t}∪(Up∩K∩H+)) which is included in K. Then p ∈ intD ⊆ intK.
This produces a contradiction.

In short st(p, H+ ∩ K) = H+ ∩ K and st(p, H+ ∩ K) = st(p, K), then,
H+ ∩ K = st(p, K). It remains to prove that H+ ∩ K is a convex set. It is
immediate that intH+ is a convex set and so is intH+ ∩ convK. This set is
nonempty since intH+ ∩ K �= ∅ . The fact that K0 is the only connected
component of D(K) allows us to affirm that convK = K ∪ K0 and as K0

is included in H− it holds that intH+ ∩ K0 = ∅. Then intH+ ∩ convK =
intH+ ∩ K. This last statement implies that intH+ ∩ K is a convex set and
also is its closure and the assumption that H+ ∩ K is convex set holds.

Finally we make two remarks about the requirements for the point p trying
to show that the condition stated is not neither too general that every point
satisfies it, nor too restrictive, so that it is not satisfied by any point. Consider
the set A = {(x, y) ∈ R2/(x − 1)2 + y2 ≤ 1 and y ≤ 0} ∪ {(x, y) ∈ R2/y = 0
and 2 ≤ x ≤ 3}∪{(x, y) ∈ R2/x = 0 and −3 ≤ y ≤ 0}. In this case it does not
exist such a point p even though A is a compact set. On the other hand, even
considering a set that is not connected, there exist points p in the conditions
of the statement. Take for example the set C = [0, 2]× [0, 2]∪{(3, 1)} and the
point p = (2, 1).
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