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Abstract

The purpose of the paper is to investigate approximation methods
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lem but also a common solution for a finite family of inverse strongly-
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1. Introduction

Let H be a real Hilbert space with the scalar product and the norm
denoted by the symbols 〈., .〉 and ‖.‖, respectively, let C be a nonempty closed
(in the norm) and convex subset of H , and let F0 be a bifunction from C ×C
to R. The equilibrium problem for F0 is to find u∗ ∈ C such that

F0(u
∗, v) ≥ 0 ∀v ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP (F0). Assume that the bifunction
F0 satisfies the following set of standard properties.

Condition 1.1 The bifunction F is such that:
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(A1) F (u, u) = 0 ∀u ∈ C.

(A2) F (u, v) + F (v, u) ≤ 0 ∀(u, v) ∈ C × C.

(A3) For every u ∈ C, F (u, .) : C → R is lower semicontinuous and convex.

(A4) limt→+0F ((1 − t)u + tz, v) ≤ F (u, v) ∀(u, z, v) ∈ C × C × C.

Let Ti, i = 1, ..., N be a finite family of ki-strictly pseudo-contractions from
C into C with the nonempty set of fixed points F (Ti) (i.e., F (Ti) = {x ∈ C :
x = Tix}). Assume that

S̃ := ∩N
i=1F (Ti) ∩ EP (F0) �= ∅.

The problem of finding an element

u∗ ∈ S̃ (1.2)

is studied intensively in [1]-[6], [9]-[11], and [13]-[25].

Recall that a mapping T in H is said to be a k-strictly pseudo-contraction
in the terminology of Browder and Petryshyn [7] if there exists a constant
0 ≤ k < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + k‖(I − T )x − (I − T )y‖2

for all x, y ∈ D(T ), the domain of definition of T , where I is the identity
operator in H . Clearly, when k = 0, T is nonexpansive, i.e.,

‖T (x) − T (y)‖ ≤ ‖x − y‖.

It means that the class of k-strict pseudo-contractions strictly includes the
class of nonexpansive mappings.

In the case Ti ≡ I, (1.2) is the equilibrium problem (1.1) and shown in [5],
[21] to cover monotone inclusion problems, saddle point problems, variational
inequality problems, minimization problems, Nash equilibria in noncooperative
games, vector equilibrium problems, as well as certain fixed point problems
(see also [12]). For finding approximative solutions of (1.1) there exist several
aproaches: the regularization approach in [9], [11], [13], [22], the gap-function
approach in [13], [14], [16], and iterative procedure approach in [1]-[4], [6], [10],
[17]-[20].

In the case F0 ≡ 0 and N = 1, (1.2) is a problem of finding a fixed point
for a k-strictly pseudo-contraction in C and studied in [15] where it is proved

Theorem 1.1. Let C be a nonempty closed convex subset of H. Let T : C → C
be a k-strict pseudo-contraction for some 0 ≤ k < 1 and assume that the fixed
point set F (T ) of T is nonempty. Let {xn} be the sequence generated by the
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following (CQ) algorithm:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ Cchosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + (1 − αn)(k − αn)‖xn − Txn‖2},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0.

Assume that the control sequence {αn} is chosen so that αn < 1 for all n.
Then {xn} converges strongly to PF (T )x0, the projection of x0 onto F (T ).

In the case F0 ≡ 0 and N > 1, (1.2) is a problem of finding a common fixed
point for a finite family of ki-strictly pseudo-contraction Ti in C and studied
in [25] where the following algorithm is constructed:

Let x0 ∈ C and {αn}, {βn}, {γn} be three sequences in [0, 1] satisfying
αn + βn + γn = 1 for all n ≥ 1, and {un} be a sequence in C. Then the
sequence {xn} generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = α1x0 + β1T1x1 + γ1u1,

x2 = α2x1 + β2T2x2 + γ2u2,

...

xN = αNxN−1 + βNTNxN + γNuN ,

xN+1 = αN+1xN + βN+1T1xN+1 + γN+1uN+1,

...

(1.3)

is called the implicit iteration process with mean errors for a family of strictly
pseudo-contractions {Ti}N

i=1.
The scheme (1.3) can be expessed in the compact form as

xn = αnxn−1 + βnTnxn + γnun,

where Tn = Tn mod N . It is proved the following

Theorem 1.2. Let C be a nonempty closed convex subset of H. Let {Ti}N
i=1

be N strictly pseudo-contractive selfmaps of C such that F = ∩N
i=1F (Ti) �= ∅.

Let x0 ∈ C and {un} be a bounded sequence in C, let {αn}, {βn}, {γn} be three
sequences in [0, 1] satisfying the following conditions:

(i) {αn} + {βn} + {γn} = 1, ∀n ≥ 1,
(ii) there exist constants σ1, σ2 such that 0 < σ1 ≤ βn ≤ σ2 < 1, ∀n ≥ 1,
(iii)

∑∞
n=1 γn < ∞.

Then the implicit iterative sequence {xn} defined by (1.3) converges weakly to
a common fixed point of the maps {Ti}N

i=1. Moreover, in addition if there exists
i0 ∈ {1, 2, ..., N} such that Ti0 is demicompact then {xn} converges strongly.
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In the case F0 �= 0 and N = 1, (1.2) is a problem of finding a fixed point
for a k-strictly pseudo-contraction in C which is an equilibrium point for F ,
and studied in [24] where it is proved the following theorem.

Theorem 1.3. Let C be a nonempty closed convex subset of H. Let F be a
bifunction from C ×C to R satisfying (A1)-(A4) and let S be a nonexpansive
mapping of C into H such that F (S) ∩ EP (F ) �= ∅. Let f be a contraction of
H into itself and let {xn} and {un} be sequences generated by x1 ∈ H and{

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)Sun

for all n ∈ N, where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞,

∞∑
n=1

|αn+1 − αn| < ∞,

lim inf
n→∞

rn > 0,
∞∑

n=1

|rn+1 − rn| < ∞.

Then, {xn} and {un} converge strongly to z ∈ F (S) ∩ EP (F ), where z =
PF (S)∩EP (F )f(z).

Set Ai = I − Ti. Obviously, Ai are λi inverse strongly-monotone, i.e.,

〈Ai(x) − Ai(y), x− y〉 ≥ λi‖Ai(x) − Ai(y)‖2 ∀x, y ∈ D(Ai), λi =
1 − ki

2
.

From now on, let {Ai}N
i=1 be a finite family of λi inverse strongly-monotone

operators in H with C ⊂ ∩N
i=1D(Ai) and λi > 0, i = 1, ..., N.

Set S = ∩N
i=1Si, where Si = {x ∈ C : Ai(x) = 0} is called the solution set

of Ai in C.
Assume that EP (F0) ∩ S �= ∅.
Our problem of investigation is to find an element

u∗ ∈ EP (F0) ∩ S. (1.4)

Because every nonexpansive mapping is 1/2 inverse strongly-monotone, the
problem of finding an element u∗ ∈ C that is not only a solution of an inverse
strongly-monotone problem but also a fixed point of a nonexpansive mapping
is a particular case of (1.4) when F0 ≡ 0, N = 2 and studied in [23] where it is
proved the following theorem.

Theorem 1.4. Let C be a nonempty closed convex subset of H. Let λ > 0.
Let A be λ inverse strongly-monotone mapping of C into H, and let S be a
nonexpansive mapping of C into itself such that F (S) ∩ V I(C, A) �= ∅ where
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V I(C, A) denotes the solution set of the following variational inequality: find
x∗ ∈ C such that

〈A(x∗), x − x∗〉 ≥ 0, ∀x ∈ C.

Let {xn} be a sequence generated by

x0 ∈ C,

xn+1 = αnxn + (1 − αn)SPC(xn − λnA(xn)),

for every n = 0, 1, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 2λ) and {αn} ⊂
(c, d) for some c, d ∈ (0, 1). Then, {xn} converges weakly to z ∈ F (S) ∩
V I(C, A), where

z = lim
n→∞

PF (S)∩V I(C,A)xn.

In this paper, on the base of idea in [8] we present two methods of regularization
which are the Tikhonov regularization and the regularization inertial proximal
point algorithm for solving (1.4) where F0 �= 0 and {Ai}N

i=1 are λi(λi > 0)
inverse strongly-monotone with that condition (A3) is replaced by

(A3’) For every u ∈ C, F0(u, .) : C → R is weakly lower semicontinuous
and convex.

The strong and weak convergences of any sequence are denoted by → and
⇀, respectively.

2. Main results.
We formulate the following facts in [5], [21] which are necessary in the proof

of our results.
Proposition 2.1 (i) If F (., v) is hemicontinuous for each v ∈ C and F is
monotone, i.e., satisfies (A2) in condition 1.1, then U∗ = V ∗, where

U∗ is the solution set of F (u∗, v) ≥ 0 ∀v ∈ C,
V ∗ is the solution set of F (u, v∗) ≤ 0 ∀u ∈ C,

and it is convex and closed.
(ii) If F (., v) is hemicontinuous for each v ∈ C and F is strongly monotone,
i.e., there exists a positive constant τ such that

F (u, v) + F (v, u) ≤ −τ‖u − v‖2,

then U∗ contains a unique element.
Lemma 2.1 Let {an}, {bn}, {cn} be the sequences of positive numbers satisfying
the conditions:

(i) an+1 ≤ (1 − bn)an + cn, bn < 1,
(ii)

∑∞
n=0 bn = +∞, limn→+∞ cn

bn
= 0.

Then, limn→+∞ an = 0.
Let SA be a solution set of an inverse strongly-monotone operator A.
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Lemma 2.2 Let C1 be a closed convex subset of C with the property SA∩C1 �=
∅. Then, the solution set of the following variational inequality

〈A(ỹ), x − ỹ〉 ≥ 0 ∀x ∈ C1, ỹ ∈ C1, (2.1)

is coincided with SA ∩ C1.
Proof. Obviously, every element in SA ∩ C1 is a solution of (2.1). Let ỹ be
an arbitrary solution of (2.1). We have to prove that A(ỹ) = 0. Let x̃ be an
element in SA ∩C1. Since x̃ is a zero element of the monotone operator A and
ỹ is a solution of (2.1), then

0 = 〈A(x̃), x̃ − ỹ〉 ≥ 〈A(ỹ), x̃ − ỹ〉 ≥ 0.

Hence, 〈A(ỹ), x̃−ỹ〉 = 0 = 〈A(ỹ), ỹ−x̃〉. Consequently, 〈A(ỹ)−A(x̃), ỹ−x̃〉 = 0.
From the inverse strongly-monotone property of A it follows A(ỹ) = A(x̃) = 0.
It means that ỹ ∈ SA ∩ C1. Lemma is proved.

We construct the Tikhonov regularization solution uα by solving the single
equilibrium problem

Fα(uα, v) ≥ 0 ∀v ∈ C, uα ∈ C,

Fα(u, v) :=

N∑
i=0

αμiFi(u, v) + α〈u, v − u〉, α > 0,

Fi(u, v) = 〈Ai(u), v − u〉, i = 1, ..., N,

(2.2)

μ0 = 0 < μi < μi+1 < 1, i = 2, ..., N − 1,

and α is the regularization parameter.
We have the following results.

Theorem 2.1. (i)For each α > 0, problem (2.2) has a unique solution uα.
(ii) limα→+0 uα = u∗, u∗ ∈ EP (F0) ∩ S, ‖u∗‖ ≤ ‖y‖ ∀y ∈ EP (F0) ∩ S.
(iii)

‖uα − uβ‖ ≤ (‖u∗‖ + dN)
|α − β|

α
, α, β > 0,

where d is a positive constant.
Proof. It is not difficult to verify that Fi, i = 1, ..., N, all are the bifunctions.
Therefore, Fα(u, v) also is a bifunction, i.e. Fα(u, v) satisfies condition 1.1, and
strongly monotone with constant α > 0. Hence, (2.2) has a unique solution
uα for each α > 0.

Now we shall prove that

‖uα‖ ≤ ‖y‖ ∀y ∈ EP (F0) ∩ S. (2.3)

Since y ∈ EP (F0) ∩ S, then F0(y, uα) ≥ 0 and Ai(y) = 0, i = 1, ..., N. Conse-
quently, Fi(y, uα) = 0, i = 1, ..., N, and

N∑
i=0

αμiFi(y, uα) ≥ 0 ∀y ∈ EP (F0) ∩ S.
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This fact, uα is the solution of (2.2) and the properties of Fi give

〈uα, y − uα〉 ≥ 0 ∀y ∈ EP (F0) ∩ S,

that implies (2.3). It means that {uα} is bounded. Let uαk
⇀ u∗ ∈ H , as

k → +∞. Since C is closed in the norm and convex, then C is weak closed.
Hence, u∗ ∈ C. We prove that u∗ ∈ EP (F0). From (A2) and (2.2) it follows

F0(v, uαk
) +

N∑
i=1

αμi

k Fi(v, uαk
) ≤ αk〈v, v − uαk

〉 ∀v ∈ C.

Using the property (A3’) we obtain F0(v, u∗) ≤ 0 for any v ∈ C. By virtue
of the proposition 2.1, we have u∗ ∈ EP (F0). Now we show that u∗ ∈ Si, i =
1, ..., N. From (2.2), F0(y, uαk

) ≥ 0 for any y ∈ EP (F0), and the monotone
property of F0, i.e. F0(uαk

, y) + F0(y, uαk
) ≤ 0, it implies that

N∑
i=1

αμi

k Fi(uαk
, y) + αk〈uαk

, y − uαk
〉 ≥ 0 ∀y ∈ EP (F0).

Therefore,

F1(y, uαk
) +

N∑
i=2

αμi−μ1

k Fi(y, uαk
) ≤ αk

1−μ1〈y, y − uαk
〉 ∀y ∈ EP (F0).

By tending k → ∞, we have got

F1(y, u∗) ≤ 0 ∀y ∈ EP (F0)

that has the form

〈A1(y), y − u∗〉 ≥ 0 ∀y ∈ EP (F0).

The last inequality is equivalent to

〈A1(u
∗), y − u∗〉 ≥ 0 ∀y ∈ EP (F0).

Since EP (F0)∩F (T1) �= ∅ and A1 is an inverse strongly-monotone, from lemma
2.2 it follows u∗ ∈ S1.

Set S̃i = EP (F0) ∩ (∩i
l=1Sl). Then, S̃i is also closed convex, and S̃i �= ∅.

Now, suppose that we have proved that u∗ ∈ S̃i, and need to show that u∗

belongs to Si+1. Again, by virtue of (2.2 ) for y ∈ S̃i we can write

Fi+1(y, uαk
) +

N∑
l=i+2

α
μl−μi+1

k Fl(y, uαk
) ≤ α

1−μi+1

k 〈y, y − uαk
〉 ∀y ∈ S̃i.
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After passing k → ∞, we obtain

Fi+1(y, u∗) ≤ 0 ∀y ∈ S̃i.

By virtue of S̃i ∩ Si+1 �= ∅, u∗ also is an element of Si+1, i.e., Fi+1(y, u∗) ≤
0 ∀y ∈ S̃i. Inequality (2.3) and the weak convergence of {uαk

} to u∗ ∈
EP (F0)∩S, which is a closed convex subset in H , give the strong convergence
of {uαk

} to u∗ : ‖u∗‖ ≤ ‖y‖ ∀y ∈ EP (F0) ∩ S.
From (2.2) and the properties of Fi(u, v), for each α, β > 0 it follows

N∑
i=0

(αμi − βμi)Fi(uα, uβ) + α〈uα, uβ − uα〉 + β〈uβ, uα − uβ〉 ≥ 0

or

‖uα − uβ‖ ≤ |α − β|
α

‖uβ‖ +
1

α

N∑
i=1

|αμi − βμi ||Fi(uα, uβ)|,

because μ0 = 0. All Fi, i = 1, ..., N, are bounded, because the operators Ai

all are Lipschitzian with Lipschitz constants Li = 1/λi. Using (2.3), the
boundedness of Fi and the Lagrange’s mean-value theorem for the function
α(t) = t−μ, 0 < μ < 1, t ∈ [1, +∞), on [α, β] if α < β or [β, α] if β < α we have
conclusion (iii). Theorem is proved now.
Remark. Obviously, if uαk

→ ũ, where uαk
is the solution of (2.2) with

α = αk → 0, as k → +∞, then EP (F0) ∩ S �= ∅.
Further, we consider the regularization inertial proximal point algorithm

where zn+1 is defined by

c̃n

( N∑
i=0

αμi
n Fi(zn+1, v) + αn〈zn+1, v − zn+1〉

)
+〈zn+1 − zn, v − zn+1〉

− γn〈zn − zn−1, v − zn+1〉 ≥ 0 ∀v ∈ C, z0, z1 ∈ C,

(2.4)

and {c̃n} and {γn} are the sequences of positive numbers. Note that in the
case N = 0 algorithm (2.4) is considered in [18] without the regularized term
αn〈zn+1, v−zn+1〉, and the obtained result only is the weak convergence of the
sequence {zn} under some condition. By virtue of this term we shall obtain a
stronger result.

It is not difficult to verify that the bifunction

c̃n

( N∑
i=0

αμi
n Fi(u, v) + αn〈u, v − u〉

)
+〈u − zn, v − u〉 − γn〈yn, v − u〉,

where yn = zn − zn−1, is strongly monotone with constant c̃nαn. Therefore,
(2.4) possesses a unique solution zn+1 for each n.



Approximation methods for equilibrium problems 743

Theorem 2.2 Assume that the parameters c̃n, γn and αn are chosen such that:
(i) 0 < c0 < c̃n < C0, 0 ≤ γn < γ0,
(ii)

∑∞
n=1 bn = +∞, bn = c̃nαn/(1 + c̃nαn),

(iii)
∑∞

n=1 γnb−1
n ‖zn − zn−1‖ < +∞,

(iv) limn→∞ αn = 0, limn→∞
|αn−αn+1|

αnbn
= 0.

Then, the sequence {zn} defined by (2.4) converges strongly to the element u∗,
as n → +∞.
Proof. Denote by un and un+1 the solutions of (2.2) with α = αn and β = αn+1,
respectively. Then, we have the following inequality

‖un+1 − un‖ ≤ (‖u∗‖ + dN)
αn − αn+1

αn
,

d = max
1≤i≤N

{4‖u∗‖2

λi
}.

On the other hand, (2.4) and (2.2) can be rewritten in the equivalent forms

τn

N∑
j=0

αμi
n Fi(zn+1, v) + 〈zn+1, v − zn+1〉 ≥ βn〈zn, v − zn+1〉

+ βnγn〈zn − zn−1, v − zn+1〉 ∀v ∈ C,

τn

N∑
i=0

αμi
n Fi(un, v) + 〈un, v − un〉 ≥ βn〈un, v − un〉, ∀v ∈ C,

respectively, where τn = c̃nβn, βn = 1/(1 + c̃nαn). Replacing v = un and
v = zn+1 in the last two inequalities, respectively, and then summarizing the
results, we obtain the inequality

〈zn+1 − un,un − zn+1〉 ≥ βn〈zn − un, un − zn+1〉
+ βnγn〈zn − zn−1, un − zn+1〉.

Consequently,

‖zn+1 − un‖ ≤ βn‖zn − un‖ + βnγn‖zn − zn−1‖.
Hence,

‖zn+1 − un+1‖ ≤ ‖zn+1 − un‖ + ‖un+1 − un‖
≤ βn‖zn − un‖ + βnγn‖zn − zn−1‖

+ (‖u∗‖ + dN)
αn − αn+1

αn

≤ (1 − bn)‖zn − un‖ + cn,

cn = βnγn‖zn − zn−1‖ + (‖u∗‖ + dN)
αn − αn+1

αn
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Since the serie in (iii) is convergent, then βnγn‖zn − zn−1‖b−1
n ≤ γn‖zn −

zn−1‖b−1
n → 0, as n → ∞. This fact and (iv) follow limn→∞ cnb−1

n = 0. By
using the above lemma with an = ‖zn − un‖ we have

lim
n→∞

‖zn − un‖ = 0.

Since un → u∗, then zn → u∗, as n → ∞. Theorem is proved.
Remark The sequences {αn} and {γn} which are defined by

αn = (1 + n)−p, 0 < p < 1/2,

γn = (1 + n)−τ ‖zn − zn−1‖
1 + ‖zn − zn−1‖2

,

with τ > 1 + p satisfy all conditions in theorem 2.2.
This work was supported by the Vietnamese Fundamental Research Pro-

gram in Natural Sciences N. 100506.
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