Approximation Methods for Equilibrium Problems and Common Solution for a Finite Family of Inverse Strongly-Monotone Problems in Hilbert Spaces

Nguyen Buong
Vietnamse Academy of Science and Technology
Institute of Information Technology
18, Hoang Quoc Viet, q. Cau Giay, Ha Noi, Vietnam
nbuong@ioit.ac.vn

Abstract

The purpose of the paper is to investigate approximation methods for finding an element that is not only a solution of a equilibrium problem but also a common solution for a finite family of inverse stronglymonotone problems in Hilbert spaces.

Mathematics Subject Classification: 47H17

Keywords: Tikhonov regularization, proximal point method, contraction, weak lower semicontinuous and proper convex functional, and demicompact

1. Introduction

Let H be a real Hilbert space with the scalar product and the norm denoted by the symbols $\langle.,$.$\rangle and \|$.$\| , respectively, let C$ be a nonempty closed (in the norm) and convex subset of H, and let F_{0} be a bifunction from $C \times C$ to \mathbf{R}. The equilibrium problem for F_{0} is to find $u^{*} \in C$ such that

$$
\begin{equation*}
F_{0}\left(u^{*}, v\right) \geq 0 \quad \forall v \in C \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $E P\left(F_{0}\right)$. Assume that the bifunction F_{0} satisfies the following set of standard properties.
Condition 1.1 The bifunction F is such that:
(A1) $F(u, u)=0 \quad \forall u \in C$.
(A2) $F(u, v)+F(v, u) \leq 0 \quad \forall(u, v) \in C \times C$.
(A3) For every $u \in C, F(u,):. C \rightarrow \mathbf{R}$ is lower semicontinuous and convex.
(A4) $\varlimsup_{t \rightarrow+0} F((1-t) u+t z, v) \leq F(u, v) \quad \forall(u, z, v) \in C \times C \times C$.
Let $T_{i}, i=1, \ldots, N$ be a finite family of k_{i}-strictly pseudo-contractions from C into C with the nonempty set of fixed points $F\left(T_{i}\right)$ (i.e., $F\left(T_{i}\right)=\{x \in C$: $\left.x=T_{i} x\right\}$). Assume that

$$
\tilde{S}:=\cap_{i=1}^{N} F\left(T_{i}\right) \cap E P\left(F_{0}\right) \neq \emptyset .
$$

The problem of finding an element

$$
\begin{equation*}
u^{*} \in \tilde{S} \tag{1.2}
\end{equation*}
$$

is studied intensively in [1]-[6], [9]-[11], and [13]-[25].
Recall that a mapping T in H is said to be a k-strictly pseudo-contraction in the terminology of Browder and Petryshyn [7] if there exists a constant $0 \leq k<1$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}
$$

for all $x, y \in D(T)$, the domain of definition of T, where I is the identity operator in H. Clearly, when $k=0, T$ is nonexpansive, i.e.,

$$
\|T(x)-T(y)\| \leq\|x-y\|
$$

It means that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings.

In the case $T_{i} \equiv I,(1.2)$ is the equilibrium problem (1.1) and shown in [5], [21] to cover monotone inclusion problems, saddle point problems, variational inequality problems, minimization problems, Nash equilibria in noncooperative games, vector equilibrium problems, as well as certain fixed point problems (see also [12]). For finding approximative solutions of (1.1) there exist several aproaches: the regularization approach in [9], [11], [13], [22], the gap-function approach in [13], [14], [16], and iterative procedure approach in [1]-[4], [6], [10], [17]-[20].

In the case $F_{0} \equiv 0$ and $N=1$, (1.2) is a problem of finding a fixed point for a k-strictly pseudo-contraction in C and studied in [15] where it is proved

Theorem 1.1. Let C be a nonempty closed convex subset of H. Let $T: C \rightarrow C$ be a k-strict pseudo-contraction for some $0 \leq k<1$ and assume that the fixed point set $F(T)$ of T is nonempty. Let $\left\{x_{n}\right\}$ be the sequence generated by the
following (CQ) algorithm:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily, } \\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T x_{n} \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+\left(1-\alpha_{n}\right)\left(k-\alpha_{n}\right)\left\|x_{n}-T x_{n}\right\|^{2}\right\}, \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

Assume that the control sequence $\left\{\alpha_{n}\right\}$ is chosen so that $\alpha_{n}<1$ for all n. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x_{0}$, the projection of x_{0} onto $F(T)$.

In the case $F_{0} \equiv 0$ and $N>1,(1.2)$ is a problem of finding a common fixed point for a finite family of k_{i}-strictly pseudo-contraction T_{i} in C and studied in [25] where the following algorithm is constructed:

Let $x_{0} \in C$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three sequences in $[0,1]$ satisfying $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ for all $n \geq 1$, and $\left\{u_{n}\right\}$ be a sequence in C. Then the sequence $\left\{x_{n}\right\}$ generated by

$$
\left\{\begin{array}{l}
x_{1}=\alpha_{1} x_{0}+\beta_{1} T_{1} x_{1}+\gamma_{1} u_{1}, \tag{1.3}\\
x_{2}=\alpha_{2} x_{1}+\beta_{2} T_{2} x_{2}+\gamma_{2} u_{2}, \\
\ldots \\
x_{N}=\alpha_{N} x_{N-1}+\beta_{N} T_{N} x_{N}+\gamma_{N} u_{N}, \\
x_{N+1}=\alpha_{N+1} x_{N}+\beta_{N+1} T_{1} x_{N+1}+\gamma_{N+1} u_{N+1}, \\
\ldots
\end{array}\right.
$$

is called the implicit iteration process with mean errors for a family of strictly pseudo-contractions $\left\{T_{i}\right\}_{i=1}^{N}$.

The scheme (1.3) can be expessed in the compact form as

$$
x_{n}=\alpha_{n} x_{n-1}+\beta_{n} T_{n} x_{n}+\gamma_{n} u_{n}
$$

where $T_{n}=T_{n \bmod N}$. It is proved the following
Theorem 1.2. Let C be a nonempty closed convex subset of H. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be N strictly pseudo-contractive selfmaps of C such that $F=\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $x_{0} \in C$ and $\left\{u_{n}\right\}$ be a bounded sequence in C, let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ be three sequences in $[0,1]$ satisfying the following conditions:
(i) $\left\{\alpha_{n}\right\}+\left\{\beta_{n}\right\}+\left\{\gamma_{n}\right\}=1, \forall n \geq 1$,
(ii) there exist constants σ_{1}, σ_{2} such that $0<\sigma_{1} \leq \beta_{n} \leq \sigma_{2}<1, \forall n \geq 1$,
(iii) $\sum_{n=1}^{\infty} \gamma_{n}<\infty$.

Then the implicit iterative sequence $\left\{x_{n}\right\}$ defined by (1.3) converges weakly to a common fixed point of the maps $\left\{T_{i}\right\}_{i=1}^{N}$. Moreover, in addition if there exists $i_{0} \in\{1,2, \ldots, N\}$ such that $T_{i_{0}}$ is demicompact then $\left\{x_{n}\right\}$ converges strongly.

In the case $F_{0} \neq 0$ and $N=1,(1.2)$ is a problem of finding a fixed point for a k-strictly pseudo-contraction in C which is an equilibrium point for F, and studied in [24] where it is proved the following theorem.

Theorem 1.3. Let C be a nonempty closed convex subset of H. Let F be a bifunction from $C \times C$ to \mathbf{R} satisfying (A1)-(A4) and let S be a nonexpansive mapping of C into H such that $F(S) \cap E P(F) \neq \emptyset$. Let f be a contraction of H into itself and let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}
\end{array}\right.
$$

for all $n \in \mathbf{N}$, where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \alpha_{n}=0, & \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \\
\lim \inf _{n \rightarrow \infty} r_{n}>0, & \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty .
\end{aligned}
$$

Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $z \in F(S) \cap E P(F)$, where $z=$ $P_{F(S) \cap E P(F)} f(z)$.

Set $A_{i}=I-T_{i}$. Obviously, A_{i} are λ_{i} inverse strongly-monotone, i.e.,

$$
\left\langle A_{i}(x)-A_{i}(y), x-y\right\rangle \geq \lambda_{i}\left\|A_{i}(x)-A_{i}(y)\right\|^{2} \quad \forall x, y \in D\left(A_{i}\right), \lambda_{i}=\frac{1-k_{i}}{2} .
$$

From now on, let $\left\{A_{i}\right\}_{i=1}^{N}$ be a finite family of λ_{i} inverse strongly-monotone operators in H with $C \subset \cap_{i=1}^{N} D\left(A_{i}\right)$ and $\lambda_{i}>0, i=1, \ldots, N$.

Set $S=\cap_{i=1}^{N} S_{i}$, where $S_{i}=\left\{x \in C: A_{i}(x)=0\right\}$ is called the solution set of A_{i} in C.

Assume that $E P\left(F_{0}\right) \cap S \neq \emptyset$.
Our problem of investigation is to find an element

$$
\begin{equation*}
u^{*} \in E P\left(F_{0}\right) \cap S \tag{1.4}
\end{equation*}
$$

Because every nonexpansive mapping is $1 / 2$ inverse strongly-monotone, the problem of finding an element $u^{*} \in C$ that is not only a solution of an inverse strongly-monotone problem but also a fixed point of a nonexpansive mapping is a particular case of (1.4) when $F_{0} \equiv 0, N=2$ and studied in [23] where it is proved the following theorem.

Theorem 1.4. Let C be a nonempty closed convex subset of H. Let $\lambda>0$. Let A be λ inverse strongly-monotone mapping of C into H, and let S be a nonexpansive mapping of C into itself such that $F(S) \cap V I(C, A) \neq \emptyset$ where
$V I(C, A)$ denotes the solution set of the following variational inequality: find $x_{*} \in C$ such that

$$
\left\langle A\left(x_{*}\right), x-x_{*}\right\rangle \geq 0, \quad \forall x \in C
$$

Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\begin{aligned}
x_{0} & \in C \\
x_{n+1} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A\left(x_{n}\right)\right),
\end{aligned}
$$

for every $n=0,1, \ldots$, where $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \lambda)$ and $\left\{\alpha_{n}\right\} \subset$ (c, d) for some $c, d \in(0,1)$. Then, $\left\{x_{n}\right\}$ converges weakly to $z \in F(S) \cap$ $V I(C, A)$, where

$$
z=\lim _{n \rightarrow \infty} P_{F(S) \cap V I(C, A)} x_{n} .
$$

In this paper, on the base of idea in [8] we present two methods of regularization which are the Tikhonov regularization and the regularization inertial proximal point algorithm for solving (1.4) where $F_{0} \neq 0$ and $\left\{A_{i}\right\}_{i=1}^{N}$ are $\lambda_{i}\left(\lambda_{i}>0\right)$ inverse strongly-monotone with that condition (A3) is replaced by
(A3') For every $u \in C, F_{0}(u,):. C \rightarrow \mathbf{R}$ is weakly lower semicontinuous and convex.

The strong and weak convergences of any sequence are denoted by \rightarrow and \rightarrow, respectively.

2. Main results.

We formulate the following facts in [5], [21] which are necessary in the proof of our results.
Proposition 2.1 (i) If $F(., v)$ is hemicontinuous for each $v \in C$ and F is monotone, i.e., satisfies (A2) in condition 1.1, then $U^{*}=V^{*}$, where
U^{*} is the solution set of $F\left(u^{*}, v\right) \geq 0 \quad \forall v \in C$,
V^{*} is the solution set of $F\left(u, v^{*}\right) \leq 0 \quad \forall u \in C$,
and it is convex and closed.
(ii) If $F(., v)$ is hemicontinuous for each $v \in C$ and F is strongly monotone, i.e., there exists a positive constant τ such that

$$
F(u, v)+F(v, u) \leq-\tau\|u-v\|^{2}
$$

then U^{*} contains a unique element.
Lemma 2.1 Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be the sequences of positive numbers satisfying the conditions:
(ii) $\quad \sum_{n=0}^{\infty} b_{n}=+\infty, \quad \lim _{n \rightarrow+\infty} \frac{c_{n}}{b_{n}}=0$.

Then, $\lim _{n \rightarrow+\infty} a_{n}=0$.
Let S_{A} be a solution set of an inverse strongly-monotone operator A.

Lemma 2.2 Let C_{1} be a closed convex subset of C with the property $S_{A} \cap C_{1} \neq$ \emptyset. Then, the solution set of the following variational inequality

$$
\begin{equation*}
\langle A(\tilde{y}), x-\tilde{y}\rangle \geq 0 \quad \forall x \in C_{1}, \tilde{y} \in C_{1} \tag{2.1}
\end{equation*}
$$

is coincided with $S_{A} \cap C_{1}$.
Proof. Obviously, every element in $S_{A} \cap C_{1}$ is a solution of (2.1). Let \tilde{y} be an arbitrary solution of (2.1). We have to prove that $A(\tilde{y})=0$. Let \tilde{x} be an element in $S_{A} \cap C_{1}$. Since \tilde{x} is a zero element of the monotone operator A and \tilde{y} is a solution of (2.1), then

$$
0=\langle A(\tilde{x}), \tilde{x}-\tilde{y}\rangle \geq\langle A(\tilde{y}), \tilde{x}-\tilde{y}\rangle \geq 0 .
$$

Hence, $\langle A(\tilde{y}), \tilde{x}-\tilde{y}\rangle=0=\langle A(\tilde{y}), \tilde{y}-\tilde{x}\rangle$. Consequently, $\langle A(\tilde{y})-A(\tilde{x}), \tilde{y}-\tilde{x}\rangle=0$. From the inverse strongly-monotone property of A it follows $A(\tilde{y})=A(\tilde{x})=0$. It means that $\tilde{y} \in S_{A} \cap C_{1}$. Lemma is proved.

We construct the Tikhonov regularization solution u_{α} by solving the single equilibrium problem

$$
\begin{gather*}
F_{\alpha}\left(u_{\alpha}, v\right) \geq 0 \quad \forall v \in C, u_{\alpha} \in C, \\
F_{\alpha}(u, v):=\sum_{i=0}^{N} \alpha^{\mu_{i}} F_{i}(u, v)+\alpha\langle u, v-u\rangle, \alpha>0, \tag{2.2}\\
F_{i}(u, v)=\left\langle A_{i}(u), v-u\right\rangle, i=1, \ldots, N, \\
\mu_{0}=0<\mu_{i}<\mu_{i+1}<1, i=2, \ldots, N-1,
\end{gather*}
$$

and α is the regularization parameter.
We have the following results.
Theorem 2.1. (i) For each $\alpha>0$, problem (2.2) has a unique solution u_{α}.
(ii) $\lim _{\alpha \rightarrow+0} u_{\alpha}=u^{*}, u^{*} \in E P\left(F_{0}\right) \cap S,\left\|u^{*}\right\| \leq\|y\| \quad \forall y \in E P\left(F_{0}\right) \cap S$.
(iii)

$$
\left\|u_{\alpha}-u_{\beta}\right\| \leq\left(\left\|u^{*}\right\|+d N\right) \frac{|\alpha-\beta|}{\alpha}, \quad \alpha, \beta>0
$$

where d is a positive constant.
Proof. It is not difficult to verify that $F_{i}, i=1, \ldots, N$, all are the bifunctions. Therefore, $F_{\alpha}(u, v)$ also is a bifunction, i.e. $F_{\alpha}(u, v)$ satisfies condition 1.1, and strongly monotone with constant $\alpha>0$. Hence, (2.2) has a unique solution u_{α} for each $\alpha>0$.

Now we shall prove that

$$
\begin{equation*}
\left\|u_{\alpha}\right\| \leq\|y\| \quad \forall y \in E P\left(F_{0}\right) \cap S \tag{2.3}
\end{equation*}
$$

Since $y \in E P\left(F_{0}\right) \cap S$, then $F_{0}\left(y, u_{\alpha}\right) \geq 0$ and $A_{i}(y)=0, i=1, \ldots, N$. Consequently, $F_{i}\left(y, u_{\alpha}\right)=0, i=1, \ldots, N$, and

$$
\sum_{i=0}^{N} \alpha^{\mu_{i}} F_{i}\left(y, u_{\alpha}\right) \geq 0 \quad \forall y \in E P\left(F_{0}\right) \cap S
$$

This fact, u_{α} is the solution of (2.2) and the properties of F_{i} give

$$
\left\langle u_{\alpha}, y-u_{\alpha}\right\rangle \geq 0 \quad \forall y \in E P\left(F_{0}\right) \cap S
$$

that implies (2.3). It means that $\left\{u_{\alpha}\right\}$ is bounded. Let $u_{\alpha_{k}} \rightharpoonup u^{*} \in H$, as $k \rightarrow+\infty$. Since C is closed in the norm and convex, then C is weak closed. Hence, $u^{*} \in C$. We prove that $u^{*} \in E P\left(F_{0}\right)$. From (A2) and (2.2) it follows

$$
F_{0}\left(v, u_{\alpha_{k}}\right)+\sum_{i=1}^{N} \alpha_{k}^{\mu_{i}} F_{i}\left(v, u_{\alpha_{k}}\right) \leq \alpha_{k}\left\langle v, v-u_{\alpha_{k}}\right\rangle \quad \forall v \in C .
$$

Using the property (A3') we obtain $F_{0}\left(v, u^{*}\right) \leq 0$ for any $v \in C$. By virtue of the proposition 2.1, we have $u^{*} \in E P\left(F_{0}\right)$. Now we show that $u^{*} \in S_{i}, i=$ $1, \ldots, N$. From (2.2), $F_{0}\left(y, u_{\alpha_{k}}\right) \geq 0$ for any $y \in E P\left(F_{0}\right)$, and the monotone property of F_{0}, i.e. $F_{0}\left(u_{\alpha_{k}}, y\right)+F_{0}\left(y, u_{\alpha_{k}}\right) \leq 0$, it implies that

$$
\sum_{i=1}^{N} \alpha_{k}^{\mu_{i}} F_{i}\left(u_{\alpha_{k}}, y\right)+\alpha_{k}\left\langle u_{\alpha_{k}}, y-u_{\alpha_{k}}\right\rangle \geq 0 \quad \forall y \in E P\left(F_{0}\right)
$$

Therefore,

$$
F_{1}\left(y, u_{\alpha_{k}}\right)+\sum_{i=2}^{N} \alpha_{k}^{\mu_{i}-\mu_{1}} F_{i}\left(y, u_{\alpha_{k}}\right) \leq \alpha_{k}^{1-\mu_{1}}\left\langle y, y-u_{\alpha_{k}}\right\rangle \quad \forall y \in E P\left(F_{0}\right)
$$

By tending $k \rightarrow \infty$, we have got

$$
F_{1}\left(y, u^{*}\right) \leq 0 \quad \forall y \in E P\left(F_{0}\right)
$$

that has the form

$$
\left\langle A_{1}(y), y-u^{*}\right\rangle \geq 0 \quad \forall y \in E P\left(F_{0}\right)
$$

The last inequality is equivalent to

$$
\left\langle A_{1}\left(u^{*}\right), y-u^{*}\right\rangle \geq 0 \quad \forall y \in E P\left(F_{0}\right)
$$

Since $E P\left(F_{0}\right) \cap F\left(T_{1}\right) \neq \emptyset$ and A_{1} is an inverse strongly-monotone, from lemma 2.2 it follows $u^{*} \in S_{1}$.

Set $\tilde{S}_{i}=E P\left(F_{0}\right) \cap\left(\cap_{l=1}^{i} S_{l}\right)$. Then, \tilde{S}_{i} is also closed convex, and $\tilde{S}_{i} \neq \emptyset$.
Now, suppose that we have proved that $u^{*} \in \tilde{S}_{i}$, and need to show that u^{*} belongs to S_{i+1}. Again, by virtue of (2.2) for $y \in \tilde{S}_{i}$ we can write

$$
F_{i+1}\left(y, u_{\alpha_{k}}\right)+\sum_{l=i+2}^{N} \alpha_{k}^{\mu_{l}-\mu_{i+1}} F_{l}\left(y, u_{\alpha_{k}}\right) \leq \alpha_{k}^{1-\mu_{i+1}}\left\langle y, y-u_{\alpha_{k}}\right\rangle \quad \forall y \in \tilde{S}_{i}
$$

After passing $k \rightarrow \infty$, we obtain

$$
F_{i+1}\left(y, u^{*}\right) \leq 0 \quad \forall y \in \tilde{S}_{i}
$$

By virtue of $\tilde{S}_{i} \cap S_{i+1} \neq \emptyset$, u^{*} also is an element of S_{i+1}, i.e., $F_{i+1}\left(y, u^{*}\right) \leq$ $0 \forall y \in \tilde{S}_{i}$. Inequality (2.3) and the weak convergence of $\left\{u_{\alpha_{k}}\right\}$ to $u^{*} \in$ $E P\left(F_{0}\right) \cap S$, which is a closed convex subset in H, give the strong convergence of $\left\{u_{\alpha_{k}}\right\}$ to $u^{*}:\left\|u^{*}\right\| \leq\|y\| \quad \forall y \in E P\left(F_{0}\right) \cap S$.

From (2.2) and the properties of $F_{i}(u, v)$, for each $\alpha, \beta>0$ it follows

$$
\sum_{i=0}^{N}\left(\alpha^{\mu_{i}}-\beta^{\mu_{i}}\right) F_{i}\left(u_{\alpha}, u_{\beta}\right)+\alpha\left\langle u_{\alpha}, u_{\beta}-u_{\alpha}\right\rangle+\beta\left\langle u_{\beta}, u_{\alpha}-u_{\beta}\right\rangle \geq 0
$$

or

$$
\left\|u_{\alpha}-u_{\beta}\right\| \leq \frac{|\alpha-\beta|}{\alpha}\left\|u_{\beta}\right\|+\frac{1}{\alpha} \sum_{i=1}^{N}\left|\alpha^{\mu_{i}}-\beta^{\mu_{i}}\right|\left|F_{i}\left(u_{\alpha}, u_{\beta}\right)\right|
$$

because $\mu_{0}=0$. All $F_{i}, i=1, \ldots, N$, are bounded, because the operators A_{i} all are Lipschitzian with Lipschitz constants $L_{i}=1 / \lambda_{i}$. Using (2.3), the boundedness of F_{i} and the Lagrange's mean-value theorem for the function $\alpha(t)=t^{-\mu}, 0<\mu<1, t \in[1,+\infty)$, on $[\alpha, \beta]$ if $\alpha<\beta$ or $[\beta, \alpha]$ if $\beta<\alpha$ we have conclusion (iii). Theorem is proved now.
Remark. Obviously, if $u_{\alpha_{k}} \rightarrow \tilde{u}$, where $u_{\alpha_{k}}$ is the solution of (2.2) with $\alpha=\alpha_{k} \rightarrow 0$, as $k \rightarrow+\infty$, then $E P\left(F_{0}\right) \cap S \neq \emptyset$.

Further, we consider the regularization inertial proximal point algorithm where z_{n+1} is defined by

$$
\begin{gather*}
\tilde{c}_{n}\left(\sum_{i=0}^{N} \alpha_{n}^{\mu_{i}} F_{i}\left(z_{n+1}, v\right)+\alpha_{n}\left\langle z_{n+1}, v-z_{n+1}\right\rangle\right)+\left\langle z_{n+1}-z_{n}, v-z_{n+1}\right\rangle \tag{2.4}\\
-\gamma_{n}\left\langle z_{n}-z_{n-1}, v-z_{n+1}\right\rangle \geq 0 \quad \forall v \in C, z_{0}, z_{1} \in C
\end{gather*}
$$

and $\left\{\tilde{c}_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are the sequences of positive numbers. Note that in the case $N=0$ algorithm (2.4) is considered in [18] without the regularized term $\alpha_{n}\left\langle z_{n+1}, v-z_{n+1}\right\rangle$, and the obtained result only is the weak convergence of the sequence $\left\{z_{n}\right\}$ under some condition. By virtue of this term we shall obtain a stronger result.

It is not difficult to verify that the bifunction

$$
\tilde{c}_{n}\left(\sum_{i=0}^{N} \alpha_{n}^{\mu_{i}} F_{i}(u, v)+\alpha_{n}\langle u, v-u\rangle\right)+\left\langle u-z_{n}, v-u\right\rangle-\gamma_{n}\left\langle y_{n}, v-u\right\rangle,
$$

where $y_{n}=z_{n}-z_{n-1}$, is strongly monotone with constant $\tilde{c}_{n} \alpha_{n}$. Therefore, (2.4) possesses a unique solution z_{n+1} for each n.

Theorem 2.2 Assume that the parameters $\tilde{c}_{n}, \gamma_{n}$ and α_{n} are chosen such that:

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n}=+\infty, b_{n}=\tilde{c}_{n} \alpha_{n} /\left(1+\tilde{c}_{n} \alpha_{n}\right) \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
0<c_{0}<\tilde{c}_{n}<C_{0}, 0 \leq \gamma_{n}<\gamma_{0} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} b_{n}^{-1}\left\|z_{n}-z_{n-1}\right\|<+\infty \tag{iii}
\end{equation*}
$$

(iv) $\quad \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \lim _{n \rightarrow \infty} \frac{\left|\alpha_{n}-\alpha_{n+1}\right|}{\alpha_{n} b_{n}}=0$.

Then, the sequence $\left\{z_{n}\right\}$ defined by (2.4) converges strongly to the element u^{*}, as $n \rightarrow+\infty$.
Proof. Denote by u_{n} and u_{n+1} the solutions of (2.2) with $\alpha=\alpha_{n}$ and $\beta=\alpha_{n+1}$, respectively. Then, we have the following inequality

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\| & \leq\left(\left\|u^{*}\right\|+d N\right) \frac{\alpha_{n}-\alpha_{n+1}}{\alpha_{n}} \\
d & =\max _{1 \leq i \leq N}\left\{\frac{4\left\|u^{*}\right\|^{2}}{\lambda_{i}}\right\} .
\end{aligned}
$$

On the other hand, (2.4) and (2.2) can be rewritten in the equivalent forms

$$
\begin{aligned}
& \quad \tau_{n} \sum_{j=0}^{N} \alpha_{n}^{\mu_{i}} F_{i}\left(z_{n+1}, v\right)+\left\langle z_{n+1}, v-z_{n+1}\right\rangle \geq \beta_{n}\left\langle z_{n}, v-z_{n+1}\right\rangle \\
& \quad+\beta_{n} \gamma_{n}\left\langle z_{n}-z_{n-1}, v-z_{n+1}\right\rangle \quad \forall v \in C, \\
& \tau_{n} \sum_{i=0}^{N} \alpha_{n}^{\mu_{i}} F_{i}\left(u_{n}, v\right)+\left\langle u_{n}, v-u_{n}\right\rangle \geq \beta_{n}\left\langle u_{n}, v-u_{n}\right\rangle, \quad \forall v \in C,
\end{aligned}
$$

respectively, where $\tau_{n}=\tilde{c}_{n} \beta_{n}, \beta_{n}=1 /\left(1+\tilde{c}_{n} \alpha_{n}\right)$. Replacing $v=u_{n}$ and $v=z_{n+1}$ in the last two inequalities, respectively, and then summarizing the results, we obtain the inequality

$$
\begin{aligned}
\left\langle z_{n+1}-u_{n}, u_{n}-z_{n+1}\right\rangle & \geq \beta_{n}\left\langle z_{n}-u_{n}, u_{n}-z_{n+1}\right\rangle \\
+\beta_{n} \gamma_{n}\left\langle z_{n}\right. & \left.-z_{n-1}, u_{n}-z_{n+1}\right\rangle .
\end{aligned}
$$

Consequently,

$$
\left\|z_{n+1}-u_{n}\right\| \leq \beta_{n}\left\|z_{n}-u_{n}\right\|+\beta_{n} \gamma_{n}\left\|z_{n}-z_{n-1}\right\|
$$

Hence,

$$
\begin{aligned}
\left\|z_{n+1}-u_{n+1}\right\| \leq & \left\|z_{n+1}-u_{n}\right\|+\left\|u_{n+1}-u_{n}\right\| \\
\leq & \beta_{n}\left\|z_{n}-u_{n}\right\|+\beta_{n} \gamma_{n}\left\|z_{n}-z_{n-1}\right\| \\
& +\left(\left\|u^{*}\right\|+d N\right) \frac{\alpha_{n}-\alpha_{n+1}}{\alpha_{n}} \\
\leq & \left(1-b_{n}\right)\left\|z_{n}-u_{n}\right\|+c_{n}, \\
c_{n}= & \beta_{n} \gamma_{n}\left\|z_{n}-z_{n-1}\right\|+\left(\left\|u^{*}\right\|+d N\right) \frac{\alpha_{n}-\alpha_{n+1}}{\alpha_{n}}
\end{aligned}
$$

Since the serie in (iii) is convergent, then $\beta_{n} \gamma_{n}\left\|z_{n}-z_{n-1}\right\| b_{n}^{-1} \leq \gamma_{n} \| z_{n}-$ $z_{n-1} \| b_{n}^{-1} \rightarrow 0$, as $n \rightarrow \infty$. This fact and (iv) follow $\lim _{n \rightarrow \infty} c_{n} b_{n}^{-1}=0$. By using the above lemma with $a_{n}=\left\|z_{n}-u_{n}\right\|$ we have

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0
$$

Since $u_{n} \rightarrow u^{*}$, then $z_{n} \rightarrow u^{*}$, as $n \rightarrow \infty$. Theorem is proved.
Remark The sequences $\left\{\alpha_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ which are defined by

$$
\begin{aligned}
\alpha_{n} & =(1+n)^{-p}, 0<p<1 / 2 \\
\gamma_{n} & =(1+n)^{-\tau} \frac{\left\|z_{n}-z_{n-1}\right\|}{1+\left\|z_{n}-z_{n-1}\right\|^{2}}
\end{aligned}
$$

with $\tau>1+p$ satisfy all conditions in theorem 2.2 .
This work was supported by the Vietnamese Fundamental Research Program in Natural Sciences N. 100506.

References

[1] A.S. Antipin, Equilibrium programming: gradient methods, t Automation and Remote Control. 58 (8) (1997), 1337-1347.
[2] A.S. Antipin, Equilibrium programming: Proximal methods, Zhurnal Vychislite'lnoi Matematiki i Matematicheskoi Fiziki. 37(11) (1997), 13271339, Computational Mathematics anf Mathematical Physics, 37 (11) (1997), 1285-1296.
[3] A.S. Antipin, Solution methods for variational inequalities with coupled constraints, Computational Mathematics and Mathematical Physics, 40 (2000), n. 9, 1239-1254, Translated from Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 40(2000), n. 9, 1291-1307.
[4] A.S. Antipin, Solving variational inequalities with coupling constraints with the use of differential equations, Differential Equations 36 (2000), n. 11, 1587-1596, Translated from Differentsial'nye Uravnenye. 2000. T. 36. N. 11. C. 1443-1451.
[5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
[6] Bounkhel M. and Al-Senan B.R, An iterative method for nonconvex equilibrium problems, Journal of Inequalities in Pure and Applied Mathematics 7 (2006), Issue 2, article 75 .
[7] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
[8] Ng. Buong, Regularization for unconstrained vector optimization of convex functionals in Banach spaces, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 46(2006), n. 3, 372-378.
[9] O. Chadli, S. Schaible, and J.C. Yao, Regularized equilibrium problems with an application to noncoercive hemivariational inequalities, Journal of Optim. Theory and Applications 121 (2004), 571-596.
[10] O. Chadli, I.V. Konnov, and J.C. Yao, Descent methods for equilibrium problems in Banach spaces, Computer and Mathematics with Applications, 48 (2004), 609-616.
[11] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, Journal of Nonlinear and Convex Analysis 6 (1)(2005), 117-136.
[12] A. Göpfert, H. Riahi, C. Tammer, and C. Zalinescu, Variational Methods in Partially Ordered Spaces, New York: Springer-Verlag, 2003.
[13] I.V. Konnov and O.V. Pinyagina, D-gap functions and descent methods for a class of monotone equilibrium problems, Lobachevskii Journal of Mathematics 13 (2003), 57-65.
[14] I.V. Konnov and O.V. Pinyagina, D-gap functions for a class of monotone equilibrium problems in Banach spaces, Computational Methods in Applied Mathematics 3 (2003), n. 2, 274-286.
[15] G. Marino and H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), n. 2, 336-346.
[16] G. Mastroeni, Gap functions for equilibrium problems, Journal of Global Optimization 27 (2003), 411-426.
[17] G. Mastroeni, On auxiliary principle for equilibrium problems, Technical Report of the Department of Mathematics of Pisa University, Italy 3.244.1258, 2000.
[18] A. Moudafi, Second-order differential proximal methods for equilibrium problems, Journal of Inequalities in Pure and Applied Mathematics 4 (2003), Issue 1, article 18.
[19] A. Moudafi and M. Théra, Proximal and dynamical approaches to equilibrium problems, Lecture Notes in Econom. and Math. Systems 477, Springer-Verlag, Berlin, 187-201, 1999.
[20] M.A. Noor and K.I. Noor, On equilibrium problems, Applied Mathematics E-Notes (AMEN) 4 (2004).
[21] W. Oettli, A remark on vector-valued equilibria and generalized monotonicity, Acta Math. Vietnamica 22 (1997), 215-221.
[22] A.C. Stukalov, Regularization extragradient method for solving equilibrium programming problems in Hilbert Spaces, Zhurnal Vychislite'lnoi Matematiki i Matematicheskoi Fiziki 45 (2005), n. 9, 1538-1554.
[23] W. Takahashi and M. Toyota, Weak convergence theorems for nonexpansive mappings and monotone mappings,J. of Optim. Theory and Appl. 118 (2003), n. 2, 417-428.
[24] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), n. 1, 506-515.
[25] G. Wang, J. Peng, and H.J. Lee, Implicit iteration process with mean errors for common fixed point of a family of strictly pseudocontractive maps, Int. Journal of Math. Ana. 1 (2007), n. 2, 89-99.

Received: September 16, 2007

