Applied Mathematical Sciences, Vol. 2, 2008, no. 15, 735 - 746

Approximation Methods for Equilibrium Problems and Common Solution for a Finite Family of Inverse Strongly-Monotone Problems in Hilbert Spaces

Nguyen Buong

Vietnamse Academy of Science and Technology Institute of Information Technology 18, Hoang Quoc Viet, q. Cau Giay, Ha Noi, Vietnam nbuong@ioit.ac.vn

Abstract

The purpose of the paper is to investigate approximation methods for finding an element that is not only a solution of a equilibrium problem but also a common solution for a finite family of inverse stronglymonotone problems in Hilbert spaces.

Mathematics Subject Classification: 47H17

Keywords: Tikhonov regularization, proximal point method, contraction, weak lower semicontinuous and proper convex functional, and demicompact

1. Introduction

Let H be a real Hilbert space with the scalar product and the norm denoted by the symbols $\langle ., . \rangle$ and $\|.\|$, respectively, let C be a nonempty closed (in the norm) and convex subset of H, and let F_0 be a bifunction from $C \times C$ to **R**. The equilibrium problem for F_0 is to find $u^* \in C$ such that

$$F_0(u^*, v) \ge 0 \quad \forall v \in C.$$

$$(1.1)$$

The set of solutions of (1.1) is denoted by $EP(F_0)$. Assume that the bifunction F_0 satisfies the following set of standard properties.

Condition 1.1 The bifunction F is such that:

(A1) $F(u, u) = 0 \quad \forall u \in C.$ (A2) $F(u, v) + F(v, u) \leq 0 \quad \forall (u, v) \in C \times C.$ (A3) For every $u \in C$, $F(u, .) : C \to \mathbf{R}$ is lower semicontinuous and convex. (A4) $\overline{\lim_{t \to +0}} F((1-t)u + tz, v) \leq F(u, v) \quad \forall (u, z, v) \in C \times C \times C.$ Let $T_i, i = 1, ..., N$ be a finite family of k_i -strictly pseudo-contractions from

C into *C* with the nonempty set of fixed points $F(T_i)$ (i.e., $F(T_i) = \{x \in C : x = T_i x\}$). Assume that

$$\tilde{S} := \bigcap_{i=1}^{N} F(T_i) \cap EP(F_0) \neq \emptyset.$$

The problem of finding an element

$$u^* \in \tilde{S} \tag{1.2}$$

is studied intensively in [1]-[6], [9]-[11], and [13]-[25].

Recall that a mapping T in H is said to be a k-strictly pseudo-contraction in the terminology of Browder and Petryshyn [7] if there exists a constant $0 \le k < 1$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + k||(I - T)x - (I - T)y||^{2}$$

for all $x, y \in D(T)$, the domain of definition of T, where I is the identity operator in H. Clearly, when k = 0, T is nonexpansive, i.e.,

$$||T(x) - T(y)|| \le ||x - y||.$$

It means that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings.

In the case $T_i \equiv I$, (1.2) is the equilibrium problem (1.1) and shown in [5], [21] to cover monotone inclusion problems, saddle point problems, variational inequality problems, minimization problems, Nash equilibria in noncooperative games, vector equilibrium problems, as well as certain fixed point problems (see also [12]). For finding approximative solutions of (1.1) there exist several aproaches: the regularization approach in [9], [11], [13], [22], the gap-function approach in [13], [14], [16], and iterative procedure approach in [1]-[4], [6], [10], [17]-[20].

In the case $F_0 \equiv 0$ and N = 1, (1.2) is a problem of finding a fixed point for a k-strictly pseudo-contraction in C and studied in [15] where it is proved

Theorem 1.1. Let C be a nonempty closed convex subset of H. Let $T : C \to C$ be a k-strict pseudo-contraction for some $0 \le k < 1$ and assume that the fixed point set F(T) of T is nonempty. Let $\{x_n\}$ be the sequence generated by the following (CQ) algorithm:

 $\begin{cases} x_0 \in C \ chosen \ arbitrarily, \\ y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C : \|y_n - z\|^2 \le \|x_n - z\|^2 + (1 - \alpha_n) (k - \alpha_n) \|x_n - T x_n\|^2 \}, \\ Q_n = \{ z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x_0. \end{cases}$

Assume that the control sequence $\{\alpha_n\}$ is chosen so that $\alpha_n < 1$ for all n. Then $\{x_n\}$ converges strongly to $P_{F(T)}x_0$, the projection of x_0 onto F(T).

In the case $F_0 \equiv 0$ and N > 1, (1.2) is a problem of finding a common fixed point for a finite family of k_i -strictly pseudo-contraction T_i in C and studied in [25] where the following algorithm is constructed:

Let $x_0 \in C$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ be three sequences in [0, 1] satisfying $\alpha_n + \beta_n + \gamma_n = 1$ for all $n \geq 1$, and $\{u_n\}$ be a sequence in C. Then the sequence $\{x_n\}$ generated by

$$\begin{cases} x_{1} = \alpha_{1}x_{0} + \beta_{1}T_{1}x_{1} + \gamma_{1}u_{1}, \\ x_{2} = \alpha_{2}x_{1} + \beta_{2}T_{2}x_{2} + \gamma_{2}u_{2}, \\ \dots \\ x_{N} = \alpha_{N}x_{N-1} + \beta_{N}T_{N}x_{N} + \gamma_{N}u_{N}, \\ x_{N+1} = \alpha_{N+1}x_{N} + \beta_{N+1}T_{1}x_{N+1} + \gamma_{N+1}u_{N+1}, \\ \dots \end{cases}$$
(1.3)

is called the implicit iteration process with mean errors for a family of strictly pseudo-contractions $\{T_i\}_{i=1}^N$.

The scheme (1.3) can be expressed in the compact form as

$$x_n = \alpha_n x_{n-1} + \beta_n T_n x_n + \gamma_n u_n,$$

where $T_n = T_n \mod N$. It is proved the following

Theorem 1.2. Let C be a nonempty closed convex subset of H. Let $\{T_i\}_{i=1}^N$ be N strictly pseudo-contractive selfmaps of C such that $F = \bigcap_{i=1}^N F(T_i) \neq \emptyset$. Let $x_0 \in C$ and $\{u_n\}$ be a bounded sequence in C, let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ be three sequences in [0, 1] satisfying the following conditions:

(i) $\{\alpha_n\} + \{\beta_n\} + \{\gamma_n\} = 1, \forall n \ge 1,$

(ii) there exist constants σ_1, σ_2 such that $0 < \sigma_1 \leq \beta_n \leq \sigma_2 < 1, \forall n \geq 1$, (iii) $\sum_{n=1}^{\infty} \gamma_n < \infty$.

Then the implicit iterative sequence $\{x_n\}$ defined by (1.3) converges weakly to a common fixed point of the maps $\{T_i\}_{i=1}^N$. Moreover, in addition if there exists $i_0 \in \{1, 2, ..., N\}$ such that T_{i_0} is demicompact then $\{x_n\}$ converges strongly. In the case $F_0 \neq 0$ and N = 1, (1.2) is a problem of finding a fixed point for a k-strictly pseudo-contraction in C which is an equilibrium point for F, and studied in [24] where it is proved the following theorem.

Theorem 1.3. Let C be a nonempty closed convex subset of H. Let F be a bifunction from $C \times C$ to **R** satisfying (A1)-(A4) and let S be a nonexpansive mapping of C into H such that $F(S) \cap EP(F) \neq \emptyset$. Let f be a contraction of H into itself and let $\{x_n\}$ and $\{u_n\}$ be sequences generated by $x_1 \in H$ and

$$\begin{cases} F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in C, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S u_n \end{cases}$$

for all $n \in \mathbf{N}$, where $\{\alpha_n\} \subset [0,1]$ and $\{r_n\} \subset (0,\infty)$ satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty,$$
$$\lim_{n \to \infty} \inf_{n \to \infty} r_n > 0, \quad \sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty.$$

Then, $\{x_n\}$ and $\{u_n\}$ converge strongly to $z \in F(S) \cap EP(F)$, where $z = P_{F(S) \cap EP(F)}f(z)$.

Set $A_i = I - T_i$. Obviously, A_i are λ_i inverse strongly-monotone, i.e.,

$$\langle A_i(x) - A_i(y), x - y \rangle \ge \lambda_i ||A_i(x) - A_i(y)||^2 \quad \forall x, y \in D(A_i), \lambda_i = \frac{1 - k_i}{2}.$$

From now on, let $\{A_i\}_{i=1}^N$ be a finite family of λ_i inverse strongly-monotone operators in H with $C \subset \bigcap_{i=1}^N D(A_i)$ and $\lambda_i > 0, i = 1, ..., N$.

Set $S = \bigcap_{i=1}^{N} S_i$, where $S_i = \{x \in C : A_i(x) = 0\}$ is called the solution set of A_i in C.

Assume that $EP(F_0) \cap S \neq \emptyset$.

Our problem of investigation is to find an element

$$u^* \in EP(F_0) \cap S. \tag{1.4}$$

Because every nonexpansive mapping is 1/2 inverse strongly-monotone, the problem of finding an element $u^* \in C$ that is not only a solution of an inverse strongly-monotone problem but also a fixed point of a nonexpansive mapping is a particular case of (1.4) when $F_0 \equiv 0, N = 2$ and studied in [23] where it is proved the following theorem.

Theorem 1.4. Let C be a nonempty closed convex subset of H. Let $\lambda > 0$. Let A be λ inverse strongly-monotone mapping of C into H, and let S be a nonexpansive mapping of C into itself such that $F(S) \cap VI(C, A) \neq \emptyset$ where VI(C, A) denotes the solution set of the following variational inequality: find $x_* \in C$ such that

$$\langle A(x_*), x - x_* \rangle \ge 0, \quad \forall x \in C.$$

Let $\{x_n\}$ be a sequence generated by

$$x_0 \in C,$$

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) SP_C(x_n - \lambda_n A(x_n)),$$

for every $n = 0, 1, ..., where \{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 2\lambda)$ and $\{\alpha_n\} \subset (c, d)$ for some $c, d \in (0, 1)$. Then, $\{x_n\}$ converges weakly to $z \in F(S) \cap VI(C, A)$, where

$$z = \lim_{n \to \infty} P_{F(S) \cap VI(C,A)} x_n.$$

In this paper, on the base of idea in [8] we present two methods of regularization which are the Tikhonov regularization and the regularization inertial proximal point algorithm for solving (1.4) where $F_0 \neq 0$ and $\{A_i\}_{i=1}^N$ are $\lambda_i(\lambda_i > 0)$ inverse strongly-monotone with that condition (A3) is replaced by

(A3') For every $u \in C$, $F_0(u, .) : C \to \mathbf{R}$ is weakly lower semicontinuous and convex.

The strong and weak convergences of any sequence are denoted by \rightarrow and \rightarrow , respectively.

2. Main results.

We formulate the following facts in [5], [21] which are necessary in the proof of our results.

Proposition 2.1 (i) If F(.,v) is hemicontinuous for each $v \in C$ and F is monotone, i.e., satisfies (A2) in condition 1.1, then $U^* = V^*$, where

 U^* is the solution set of $F(u^*, v) \ge 0 \quad \forall v \in C$,

 V^* is the solution set of $F(u, v^*) \leq 0 \quad \forall u \in C$,

and it is convex and closed.

(ii) If F(.,v) is hemicontinuous for each $v \in C$ and F is strongly monotone, i.e., there exists a positive constant τ such that

$$F(u, v) + F(v, u) \le -\tau ||u - v||^2$$
,

then U^* contains a unique element.

Lemma 2.1 Let $\{a_n\}, \{b_n\}, \{c_n\}$ be the sequences of positive numbers satisfying the conditions:

(i)
$$a_{n+1} \leq (1-b_n)a_n + c_n, b_n < 1,$$

(ii) $\sum_{n=0}^{\infty} b_n = +\infty, \quad \lim_{n \to +\infty} \frac{c_n}{b_n} = 0$
Then, $\lim_{n \to +\infty} a_n = 0.$

Let S_A be a solution set of an inverse strongly-monotone operator A.

Lemma 2.2 Let C_1 be a closed convex subset of C with the property $S_A \cap C_1 \neq \emptyset$. Then, the solution set of the following variational inequality

$$\langle A(\tilde{y}), x - \tilde{y} \rangle \ge 0 \quad \forall x \in C_1, \tilde{y} \in C_1,$$

$$(2.1)$$

is coincided with $S_A \cap C_1$.

Proof. Obviously, every element in $S_A \cap C_1$ is a solution of (2.1). Let \tilde{y} be an arbitrary solution of (2.1). We have to prove that $A(\tilde{y}) = 0$. Let \tilde{x} be an element in $S_A \cap C_1$. Since \tilde{x} is a zero element of the monotone operator A and \tilde{y} is a solution of (2.1), then

$$0 = \langle A(\tilde{x}), \tilde{x} - \tilde{y} \rangle \ge \langle A(\tilde{y}), \tilde{x} - \tilde{y} \rangle \ge 0.$$

Hence, $\langle A(\tilde{y}), \tilde{x} - \tilde{y} \rangle = 0 = \langle A(\tilde{y}), \tilde{y} - \tilde{x} \rangle$. Consequently, $\langle A(\tilde{y}) - A(\tilde{x}), \tilde{y} - \tilde{x} \rangle = 0$. From the inverse strongly-monotone property of A it follows $A(\tilde{y}) = A(\tilde{x}) = 0$. It means that $\tilde{y} \in S_A \cap C_1$. Lemma is proved.

We construct the Tikhonov regularization solution u_{α} by solving the single equilibrium problem

$$F_{\alpha}(u_{\alpha}, v) \geq 0 \quad \forall v \in C, u_{\alpha} \in C,$$

$$F_{\alpha}(u, v) := \sum_{i=0}^{N} \alpha^{\mu_{i}} F_{i}(u, v) + \alpha \langle u, v - u \rangle, \alpha > 0,$$

$$F_{i}(u, v) = \langle A_{i}(u), v - u \rangle, i = 1, ..., N,$$

$$\mu_{0} = 0 < \mu_{i} < \mu_{i+1} < 1, i = 2, ..., N - 1,$$
(2.2)

and α is the regularization parameter.

We have the following results.

Theorem 2.1. (i) For each $\alpha > 0$, problem (2.2) has a unique solution u_{α} .

(*ii*) $\lim_{\alpha \to +0} u_{\alpha} = u^*, u^* \in EP(F_0) \cap S, ||u^*|| \le ||y|| \quad \forall y \in EP(F_0) \cap S.$ (*iii*)

$$||u_{\alpha} - u_{\beta}|| \le (||u^*|| + dN) \frac{|\alpha - \beta|}{\alpha}, \quad \alpha, \beta > 0,$$

where d is a positive constant.

Proof. It is not difficult to verify that F_i , i = 1, ..., N, all are the bifunctions. Therefore, $F_{\alpha}(u, v)$ also is a bifunction, i.e. $F_{\alpha}(u, v)$ satisfies condition 1.1, and strongly monotone with constant $\alpha > 0$. Hence, (2.2) has a unique solution u_{α} for each $\alpha > 0$.

Now we shall prove that

$$||u_{\alpha}|| \le ||y|| \quad \forall y \in EP(F_0) \cap S.$$
(2.3)

Since $y \in EP(F_0) \cap S$, then $F_0(y, u_\alpha) \ge 0$ and $A_i(y) = 0, i = 1, ..., N$. Consequently, $F_i(y, u_\alpha) = 0, i = 1, ..., N$, and

$$\sum_{i=0}^{N} \alpha^{\mu_i} F_i(y, u_\alpha) \ge 0 \quad \forall y \in EP(F_0) \cap S.$$

This fact, u_{α} is the solution of (2.2) and the properties of F_i give

$$\langle u_{\alpha}, y - u_{\alpha} \rangle \ge 0 \quad \forall y \in EP(F_0) \cap S,$$

that implies (2.3). It means that $\{u_{\alpha}\}$ is bounded. Let $u_{\alpha_k} \rightarrow u^* \in H$, as $k \rightarrow +\infty$. Since C is closed in the norm and convex, then C is weak closed. Hence, $u^* \in C$. We prove that $u^* \in EP(F_0)$. From (A2) and (2.2) it follows

$$F_0(v, u_{\alpha_k}) + \sum_{i=1}^N \alpha_k^{\mu_i} F_i(v, u_{\alpha_k}) \le \alpha_k \langle v, v - u_{\alpha_k} \rangle \quad \forall v \in C.$$

Using the property (A3') we obtain $F_0(v, u^*) \leq 0$ for any $v \in C$. By virtue of the proposition 2.1, we have $u^* \in EP(F_0)$. Now we show that $u^* \in S_i, i =$ 1, ..., N. From (2.2), $F_0(y, u_{\alpha_k}) \geq 0$ for any $y \in EP(F_0)$, and the monotone property of F_0 , i.e. $F_0(u_{\alpha_k}, y) + F_0(y, u_{\alpha_k}) \leq 0$, it implies that

$$\sum_{i=1}^{N} \alpha_k^{\mu_i} F_i(u_{\alpha_k}, y) + \alpha_k \langle u_{\alpha_k}, y - u_{\alpha_k} \rangle \ge 0 \quad \forall y \in EP(F_0).$$

Therefore,

$$F_1(y, u_{\alpha_k}) + \sum_{i=2}^N \alpha_k^{\mu_i - \mu_1} F_i(y, u_{\alpha_k}) \le \alpha_k^{1 - \mu_1} \langle y, y - u_{\alpha_k} \rangle \quad \forall y \in EP(F_0).$$

By tending $k \to \infty$, we have got

$$F_1(y, u^*) \le 0 \quad \forall y \in EP(F_0)$$

that has the form

$$\langle A_1(y), y - u^* \rangle \ge 0 \quad \forall y \in EP(F_0).$$

The last inequality is equivalent to

$$\langle A_1(u^*), y - u^* \rangle \ge 0 \quad \forall y \in EP(F_0).$$

Since $EP(F_0) \cap F(T_1) \neq \emptyset$ and A_1 is an inverse strongly-monotone, from lemma 2.2 it follows $u^* \in S_1$.

Set $\tilde{S}_i = EP(F_0) \cap (\cap_{l=1}^i S_l)$. Then, \tilde{S}_i is also closed convex, and $\tilde{S}_i \neq \emptyset$.

Now, suppose that we have proved that $u^* \in \tilde{S}_i$, and need to show that u^* belongs to S_{i+1} . Again, by virtue of (2.2) for $y \in \tilde{S}_i$ we can write

$$F_{i+1}(y, u_{\alpha_k}) + \sum_{l=i+2}^{N} \alpha_k^{\mu_l - \mu_{i+1}} F_l(y, u_{\alpha_k}) \le \alpha_k^{1 - \mu_{i+1}} \langle y, y - u_{\alpha_k} \rangle \quad \forall y \in \tilde{S}_i.$$

After passing $k \to \infty$, we obtain

$$F_{i+1}(y, u^*) \le 0 \quad \forall y \in \tilde{S}_i.$$

By virtue of $\tilde{S}_i \cap S_{i+1} \neq \emptyset$, u^* also is an element of S_{i+1} , i.e., $F_{i+1}(y, u^*) \leq 0 \quad \forall y \in \tilde{S}_i$. Inequality (2.3) and the weak convergence of $\{u_{\alpha_k}\}$ to $u^* \in EP(F_0) \cap S$, which is a closed convex subset in H, give the strong convergence of $\{u_{\alpha_k}\}$ to $u^* : ||u^*|| \leq ||y|| \quad \forall y \in EP(F_0) \cap S$.

From (2.2) and the properties of $F_i(u, v)$, for each $\alpha, \beta > 0$ it follows

$$\sum_{i=0}^{N} (\alpha^{\mu_i} - \beta^{\mu_i}) F_i(u_\alpha, u_\beta) + \alpha \langle u_\alpha, u_\beta - u_\alpha \rangle + \beta \langle u_\beta, u_\alpha - u_\beta \rangle \ge 0$$

or

$$\|u_{\alpha} - u_{\beta}\| \leq \frac{|\alpha - \beta|}{\alpha} \|u_{\beta}\| + \frac{1}{\alpha} \sum_{i=1}^{N} |\alpha^{\mu_i} - \beta^{\mu_i}| |F_i(u_{\alpha}, u_{\beta})|,$$

because $\mu_0 = 0$. All F_i , i = 1, ..., N, are bounded, because the operators A_i all are Lipschitzian with Lipschitz constants $L_i = 1/\lambda_i$. Using (2.3), the boundedness of F_i and the Lagrange's mean-value theorem for the function $\alpha(t) = t^{-\mu}, 0 < \mu < 1, t \in [1, +\infty)$, on $[\alpha, \beta]$ if $\alpha < \beta$ or $[\beta, \alpha]$ if $\beta < \alpha$ we have conclusion (iii). Theorem is proved now.

Remark. Obviously, if $u_{\alpha_k} \to \tilde{u}$, where u_{α_k} is the solution of (2.2) with $\alpha = \alpha_k \to 0$, as $k \to +\infty$, then $EP(F_0) \cap S \neq \emptyset$.

Further, we consider the regularization inertial proximal point algorithm where z_{n+1} is defined by

$$\tilde{c}_n \left(\sum_{i=0}^N \alpha_n^{\mu_i} F_i(z_{n+1}, v) + \alpha_n \langle z_{n+1}, v - z_{n+1} \rangle \right) + \langle z_{n+1} - z_n, v - z_{n+1} \rangle - \gamma_n \langle z_n - z_{n-1}, v - z_{n+1} \rangle \ge 0 \quad \forall v \in C, z_0, z_1 \in C,$$
(2.4)

and $\{\tilde{c}_n\}$ and $\{\gamma_n\}$ are the sequences of positive numbers. Note that in the case N = 0 algorithm (2.4) is considered in [18] without the regularized term $\alpha_n \langle z_{n+1}, v - z_{n+1} \rangle$, and the obtained result only is the weak convergence of the sequence $\{z_n\}$ under some condition. By virtue of this term we shall obtain a stronger result.

It is not difficult to verify that the bifunction

$$\tilde{c}_n \left(\sum_{i=0}^N \alpha_n^{\mu_i} F_i(u, v) + \alpha_n \langle u, v - u \rangle \right) + \langle u - z_n, v - u \rangle - \gamma_n \langle y_n, v - u \rangle,$$

where $y_n = z_n - z_{n-1}$, is strongly monotone with constant $\tilde{c}_n \alpha_n$. Therefore, (2.4) possesses a unique solution z_{n+1} for each n.

Theorem 2.2 Assume that the parameters \tilde{c}_n , γ_n and α_n are chosen such that:

(i)
$$0 < c_0 < \tilde{c}_n < C_0, 0 \le \gamma_n < \gamma_0,$$

(*ii*)
$$\sum_{n=1}^{\infty} b_n = +\infty, b_n = \tilde{c}_n \alpha_n / (1 + \tilde{c}_n \alpha_n),$$

$$\begin{array}{ccc} (ii) & & \sum_{n=1}^{n} b_n^n = +\infty, b_n^n = c_n \alpha_n / (1 + c_n \alpha_n) \\ (iii) & & \sum_{n=1}^{\infty} \gamma_n b_n^{-1} \| z_n - z_{n-1} \| < +\infty, \\ (iii) & & & \\ (iii) & & & \\ (iii) & & & \\ ($$

(*iv*)
$$\lim_{n \to \infty} \alpha_n = 0$$
, $\lim_{n \to \infty} \frac{|\alpha_n - \alpha_{n+1}|}{\alpha_n b_n} = 0$.

Then, the sequence $\{z_n\}$ defined by (2.4) converges strongly to the element u^* , as $n \to +\infty$.

Proof. Denote by u_n and u_{n+1} the solutions of (2.2) with $\alpha = \alpha_n$ and $\beta = \alpha_{n+1}$, respectively. Then, we have the following inequality

$$||u_{n+1} - u_n|| \le (||u^*|| + dN) \frac{\alpha_n - \alpha_{n+1}}{\alpha_n},$$
$$d = \max_{1 \le i \le N} \{\frac{4||u^*||^2}{\lambda_i}\}.$$

On the other hand, (2.4) and (2.2) can be rewritten in the equivalent forms

$$\tau_n \sum_{j=0}^N \alpha_n^{\mu_i} F_i(z_{n+1}, v) + \langle z_{n+1}, v - z_{n+1} \rangle \ge \beta_n \langle z_n, v - z_{n+1} \rangle + \beta_n \gamma_n \langle z_n - z_{n-1}, v - z_{n+1} \rangle \quad \forall v \in C,$$

$$\tau_n \sum_{i=0}^N \alpha_n^{\mu_i} F_i(u_n, v) + \langle u_n, v - u_n \rangle \ge \beta_n \langle u_n, v - u_n \rangle, \quad \forall v \in C,$$

respectively, where $\tau_n = \tilde{c}_n \beta_n, \beta_n = 1/(1 + \tilde{c}_n \alpha_n)$. Replacing $v = u_n$ and $v = z_{n+1}$ in the last two inequalities, respectively, and then summarizing the results, we obtain the inequality

$$\langle z_{n+1} - u_n, u_n - z_{n+1} \rangle \ge \beta_n \langle z_n - u_n, u_n - z_{n+1} \rangle + \beta_n \gamma_n \langle z_n - z_{n-1}, u_n - z_{n+1} \rangle.$$

Consequently,

$$||z_{n+1} - u_n|| \le \beta_n ||z_n - u_n|| + \beta_n \gamma_n ||z_n - z_{n-1}||.$$

Hence,

$$\begin{aligned} \|z_{n+1} - u_{n+1}\| &\leq \|z_{n+1} - u_n\| + \|u_{n+1} - u_n\| \\ &\leq \beta_n \|z_n - u_n\| + \beta_n \gamma_n \|z_n - z_{n-1}\| \\ &+ (\|u^*\| + dN) \frac{\alpha_n - \alpha_{n+1}}{\alpha_n} \\ &\leq (1 - b_n) \|z_n - u_n\| + c_n, \\ c_n &= \beta_n \gamma_n \|z_n - z_{n-1}\| + (\|u^*\| + dN) \frac{\alpha_n - \alpha_{n+1}}{\alpha_n} \end{aligned}$$

Since the serie in (iii) is convergent, then $\beta_n \gamma_n ||z_n - z_{n-1}||b_n^{-1} \leq \gamma_n ||z_n - z_{n-1}||b_n^{-1} \to 0$, as $n \to \infty$. This fact and (iv) follow $\lim_{n\to\infty} c_n b_n^{-1} = 0$. By using the above lemma with $a_n = ||z_n - u_n||$ we have

$$\lim_{n \to \infty} \|z_n - u_n\| = 0.$$

Since $u_n \to u^*$, then $z_n \to u^*$, as $n \to \infty$. Theorem is proved. **Remark** The sequences $\{\alpha_n\}$ and $\{\gamma_n\}$ which are defined by

$$\alpha_n = (1+n)^{-p}, 0
$$\gamma_n = (1+n)^{-\tau} \frac{\|z_n - z_{n-1}\|}{1+\|z_n - z_{n-1}\|^2},$$$$

with $\tau > 1 + p$ satisfy all conditions in theorem 2.2.

This work was supported by the Vietnamese Fundamental Research Program in Natural Sciences N. 100506.

References

- [1] A.S. Antipin, *Equilibrium programming: gradient methods*, t Automation and Remote Control. **58** (8) (1997), 1337-1347.
- [2] A.S. Antipin, Equilibrium programming: Proximal methods, Zhurnal Vychislite'lnoi Matematiki i Matematicheskoi Fiziki. 37(11) (1997), 1327-1339, Computational Mathematics and Mathematical Physics, 37 (11) (1997), 1285-1296.
- [3] A.S. Antipin, Solution methods for variational inequalities with coupled constraints, Computational Mathematics and Mathematical Physics, 40 (2000), n. 9, 1239-1254, Translated from Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 40(2000), n. 9, 1291-1307.
- [4] A.S. Antipin, Solving variational inequalities with coupling constraints with the use of differential equations, Differential Equations 36 (2000), n. 11, 1587-1596, Translated from Differentsial'nye Uravnenye. 2000. T. 36. N. 11. C. 1443-1451.
- [5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
- [6] Bounkhel M. and Al-Senan B.R, An iterative method for nonconvex equilibrium problems, Journal of Inequalities in Pure and Applied Mathematics 7 (2006), Issue 2, article 75.

- [7] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
- [8] Ng. Buong, Regularization for unconstrained vector optimization of convex functionals in Banach spaces, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 46(2006), n. 3, 372-378.
- [9] O. Chadli, S. Schaible, and J.C. Yao, Regularized equilibrium problems with an application to noncoercive hemivariational inequalities, Journal of Optim. Theory and Applications 121 (2004), 571-596.
- [10] O. Chadli, I.V. Konnov, and J.C. Yao, Descent methods for equilibrium problems in Banach spaces, Computer and Mathematics with Applications, 48 (2004), 609-616.
- [11] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, Journal of Nonlinear and Convex Analysis 6 (1)(2005), 117-136.
- [12] A. Göpfert, H. Riahi, C. Tammer, and C. Zalinescu, Variational Methods in Partially Ordered Spaces, New York: Springer-Verlag, 2003.
- [13] I.V. Konnov and O.V. Pinyagina, D-gap functions and descent methods for a class of monotone equilibrium problems, Lobachevskii Journal of Mathematics 13 (2003), 57-65.
- [14] I.V. Konnov and O.V. Pinyagina, *D-gap functions for a class of mono*tone equilibrium problems in Banach spaces, Computational Methods in Applied Mathematics 3 (2003), n. 2, 274-286.
- G. Marino and H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), n. 2, 336-346.
- [16] G. Mastroeni, *Gap functions for equilibrium problems*, Journal of Global Optimization 27 (2003), 411-426.
- [17] G. Mastroeni, On auxiliary principle for equilibrium problems, Technical Report of the Department of Mathematics of Pisa University, Italy 3.244.1258, 2000.
- [18] A. Moudafi, Second-order differential proximal methods for equilibrium problems, Journal of Inequalities in Pure and Applied Mathematics 4 (2003), Issue 1, article 18.
- [19] A. Moudafi and M. Théra, Proximal and dynamical approaches to equilibrium problems, Lecture Notes in Econom. and Math. Systems 477, Springer-Verlag, Berlin, 187-201, 1999.

- [20] M.A. Noor and K.I. Noor, On equilibrium problems, Applied Mathematics E-Notes (AMEN) 4 (2004).
- [21] W. Oettli, A remark on vector-valued equilibria and generalized monotonicity, Acta Math. Vietnamica 22 (1997), 215-221.
- [22] A.C. Stukalov, Regularization extragradient method for solving equilibrium programming problems in Hilbert Spaces, Zhurnal Vychislite'lnoi Matematiki i Matematicheskoi Fiziki 45 (2005), n. 9, 1538-1554.
- W. Takahashi and M. Toyota, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. of Optim. Theory and Appl. 118 (2003), n. 2, 417-428.
- [24] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. **331** (2007), n. 1, 506-515.
- [25] G. Wang, J. Peng, and H.J. Lee, Implicit iteration process with mean errors for common fixed point of a family of strictly pseudocontractive maps, Int. Journal of Math. Ana.1 (2007), n. 2, 89-99.

Received: September 16, 2007