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Abstract. PCA under Linear Constraints (PCA-LC) is a PCA in which
we impose to the principal axis and components to belong to some sub-spaces.
The Idea is to look for the principal axis and components by the optimization
of a function defined on a special set of orthogonal basis.
The aim of this paper is to use some specifications and characterestics of PCA-
LC in order to study multivariate temporal data as particular case of thre-way
data.
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1. Introduction

Linear Constrained PCA(PCA-LC)[8], is a generalization of the classic PCA
to the case where linear constraints are introduced. Contrary to the traditional
PCA, the PCA-LC gives different solutions all depends on the space on which
we introduce the constraints firstly.

A three-way data is a data array with three indices, the first for the indi-
viduals, the second for the variables and the third for the occasions[1]. In the
last 40 years, a large numbers of methods was developed to study them. We
distinguish two large types of methods[5]: those which regard them as a cube
of data, and those which pile up or juxtapose the tables. In this work we will
study multivariate temporal data (where the third index corresponds to the
time) by using the method of the PCA-LC.

In the first section we will give the notations used in this paper, after we
will give a fast overview of the method of PCA-LC where some definitions are
explained in the appendix. In the last section we will apply the method of
PCA-LC in the study of multivariate temporal data.
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2. Notation

Data are presented as a matrix Xn×p, p ≤ n, where each row corresponds to
an object (a total of n), and each column to a variable. We consider individuals
as elements of a vectorial space E = R

p and the variables as elements of another
vectorial space F = R

n. In this paper we assume that all variables have zero
means. We can summarize our data in the next duality diagram:

E
Xt←−−−−− F ∗

V

�⏐⏐⏐⏐
⏐⏐⏐⏐� M W

⏐⏐⏐⏐�
�⏐⏐⏐⏐ N

E∗ X−−−−−→ Im(X) ⊂ F

where:

• M and N are respectively the metrics defined on E and F.
• V = X tNX and W = XMX t are semi-metrics.
• We often consider N to be equal to Dp the diagonal weights matrix, in

this case V is the variance-covariance matrix of the columns of X, and
when the variables are standardized V become the correlation matrix.

We assume X to be a full rank matrix, this condition is equivalent to assume
that X is injective, its implies that V is inversible.

The PCA of (X, M, N) consists to look for:

• principal axis ui in the individuals space E, by the extraction of the eigen
vectors of the M-symmetric operator V M , as result of the optimization
of the inertia. To these axis we can associate:
– principal factors u∗

i = Mui in E∗.
– principal components U i = XMui in F .

• principal components U j in the variables space F , by the spectral analysis
of the N -symmetric operator WN ,as result of the optimization of the
variance. To these components we can associate:

– principal axis ui =
X tNU j

||U j||N in E.

– principal factors u∗
i = Mui in E∗.

The classical approach use the inertia as a criterion to find the principal axis
or the variance one to get the principal components, in both cases we get the
same solutions.
Since RAO[6], many other criteria were proposed for the same goal. Croquette[2]
have done a synthesis of these criteria where the major part, called R-criteria,
was a function of a Rayleigh quotient depending on a symmetric operator.

3. The Linear Constrained PCA (PCALC)

PCA under Linear Constraints (PCA-LC) is a PCA in which we impose to
the principal axis and components to belong to some sub-spaces.
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Let
r⊕
1

Ek be a decomposition in direct sum of the individuals space E, and

r⊕
1

Fk

⊕
F0 a decomposition in direct sum of the variables space F where

r⊕
1

Fk = Im(X) and F0 an additional space of Im(X) in F . We denote by:

• Pk (resp. P M
k ) the cartesian projector on Ek (resp. The M-orthogonal

projector on Ek).
• Qk (resp. QN

k ) the cartesian projector on Fk (resp. The N-orthogonal
projector on Fk).
• ∀k = 1, . . . , r: pk = dim(Ek) = dim(Fk),

∑
pk = p.

Definition 1. Introduce r linear constraints into E amounts forcing dim(E1)
principal axes to belong to the subspace E1, and dim(E2) principal axes to be-
long to E2 and so on.
With the same manner we will define linear constraints in F . Introducing r
linear constraints into Im(X) amounts forcing dim(F1) principal components
to belong to the subspace F1, and dim(F2) principal components to belong to
F2 and so on.

In order to obtain the solutions that take into account the linear constraints,
in E or F , we will define a class of functions, called weak R-criteria, when
optimized gives us the required solutions.

Let (H, T ) be an euclidian space of dimension m, and

r⊕
1

Hk be a decom-

position to direct sum of H . We denote by Sk the cartesian projector in Hk

and ST
k the T -orthogonal projector in Hk.

Definition 2.R-weak criteria
Let be A a T -symmetric operator. We denote by Δ(H, T ) the set of T orthog-
onal basis in H .

• A T -orthogonal basis of H , u, is said compatible with the decomposition

in direct sum

r⊕
1

Hk if and only if:

∀k ∈ {1, . . . , r}, ∃u(k) ⊂ u : u(k) is a basis of Hk.

The set of such basis is denoted: Δ(
r⊕
1

Hk, T ).
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• Let u ∈ Δ(
r⊕
1

Hk, T ). The metric T̃ in H is defined by:

∀ ui, uj ∈ u : T̃ (ui, uj) =

{
T (ui, uj) if ∃k : ui, uj ∈ Hk

0 else

By construction T̃ is an euclidean metric over H , and it coincide with T

in each sub-space Hk. T̃ is a diagonal bloc matrix, its diagonal blocs are
exactly the restriction Tii of T on Hi.
• We call R-weak criterion associated to the T -symmetric operator A, every

numeric function FA defined on Δ(
r⊕
1

Hk, T ) by:

Δ(
r⊕
1

Hk, T )
FA−−−−−→ R

u 	−→ FA(u) = f(qA(u))

with:
f ∈ F(Cm) and qA the rayleigh quotient associated to A. More details
about f ∈ F(Cm) and qA can be found in the Appendix.

Property 3.1. The maximum of an R-weak criterion FA is reached only and
only for a T -orthogonal basis compound of the eigen vectors corresponding to

the largest eigen values of the operator A =
r∑
1

ST
k ASk.

We notice that the maximum of an R-weak criterion is independent of the
form of the R-weak criterion, it depends only on the T -orthogonal operator A.

3.1. M-PCA-LC and N-PCA-LC. Definition 3.M-PCA-LC
An M-PCA-LC of (X, M, N) specified by the decomposition in direct sum

r⊕
1

Ek and in the sens of the M-symmetric operator A, consists on looking

for an M-orthonormal basis u of E maximising the R-weak criterion FA. The
basis u allow us to extract the eigen values and eigen vectors of the operator

A =

r∑
1

P M
k APk.

The basis U of Im(X) corresponding to u is obtained by the spectral analysis of

the operator C = XM̃AX tW̃−1, where: M̃ = (Mii), Ṽ = (Vii), W̃ = X tM̃X.
This M-PCA-Cl is denoted: M-PCA(X,M, N, ; FA/E1, . . . Er).

Definition 4.N-PCA-LC
An N-PCA-LC of (X, M, N) specified by the decomposition in direct sum

1W̃− = NXṼ −1M̃−1Ṽ −1XtÑ is a g-inverse of W̃ with W̃−W̃ is N−1-symmetric and
W̃W̃− is N-symmetric
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r⊕
1

Fk and in the sens of the N -symmetric operator A, consists on looking for

an N -orthogonal basis U of Im(X) maximising the R-weak criterion GC by the

extraction of eigen values and eigen vectors of the operator C =
r∑
1

QN
k CQk.

The basis u of E corresponding to U is obtained by the spectral analysis of

the operator A = X tÑCXṼ −1, where: Ñ = (Nii).
This N-PCA-CL is denoted: N-PCA(X,M, N, ; GC/F1, . . . Fr)

Remark 3.1.
To have the ability to make a PCA-LC, we have to determine:

• The metrics M and N .
• The M-symmetric operator A if we start from the individuals space E, or

the N-symmetric operator C in the other case. The choice of A and C
depends on our goal behind the practice of the PCA-LC and require some
practice.

4. Multidimensional temporal data with PCA-LC

A multidimensional temporal data is a three-way data where the third index
is time. Its obtained when measuring the same group of variables on the same
group of individuals on many instants of time. The number of instants is less
than that can allow us to use the process theory or the time series one[5].
Let be X1, X2, . . . , Xr the data matrix such that: ∀k, Xk the matrix of the
data collected at the instant k.
To each matrix Xk corresponds a duality diagram:

Ek

Xt
k←−−−−− F ∗

Vkk

�⏐⏐⏐⏐
⏐⏐⏐⏐� Mkk

�⏐⏐⏐⏐ N

E∗
k

Xk−−−−−→ F

For two different matrix Xi et Xj, wa can associate the next duality diagram:

Ei

Xt
i←−−−−− F ∗ Xt

j−−−−−→ Ej

Vii

�⏐⏐⏐⏐
⏐⏐⏐⏐� Mii

�⏐⏐⏐⏐ N Vjj

�⏐⏐⏐⏐
⏐⏐⏐⏐� Mjj

E∗
i

Xi−−−−−→ F
Xj←−−−−− E∗

j

from this diagram wa can define a new application:

Vij : E∗
j−−−−−→Ei

such that: Vij = X t
i NXj .

We suppose ∀i, j : Ei ∩ Ej = φ.
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We pose: E =
r⊕
1

Ek.

and let X = (X1|X2| · · · |Xr) matrix obtained by the juxtaposition of X1 . . .Xr.
A new duality digram can summarize the new data matrix:

E
Xt←−−−−− F ∗

V

�⏐⏐⏐⏐
⏐⏐⏐⏐� M W

⏐⏐⏐⏐�
�⏐⏐⏐⏐ N

E∗ X−−−−−→ F

with:

• M = (Mij).
• V = (Vij).

We have: M̃ = (Mii), Ṽ = (Vii), W̃ = X tM̃X.

Once we determined the necessary elements to carry out a PCA-CL, it is
to be noticed that the goal is to obtain axis and principal components which
summarize the information of all the tables, from where the idea to impose lin-
ear constraints for which we reserve for each sub-space his part of the principal
elements.

The choice of a PCA-LC, specified by
r⊕
1

Ek and in the sens of an M-

symmetric operator, is adopted because the decomposition in direct sum is
introduced initially on the sub-space of the individuals E. The principal axes
are obtained by the extraction of the eigen values and eigen vectors of the
operator A =

∑
P M

k APk, and the principal components are obtained from the

operator C = XM̃AX tW̃−.

Appendix

Let (H, T ) be an Euclidean space of dimension m, and A a T -symmetric
operator on H . We denote by Δ(H, T ) the set of the T -orthogonal basis of
H . Each element of Δ(H, T )) can be considered as a vector containing the
elements of the basis ex: u = (u1, u2, . . . , um).

Definition 5. A Rayleigh quotient qA, associated to the T -symmetric operator
A, is a function defined from H − {0} to R by:

qA(h) =
T (Ah, h)

T (h, h)
∀h ∈ H − {0}



Study of multivariate temporal data 665

Property 4.1. [2] The Rayleigh quotient, associated to the T -symmetric op-
erator A, defined over Δ(H, T ) by:

Δ(H, T )
qA−−−−−→ R

m

u 	−→ qA(u) = (qA(u1), qA(u2), . . . , qA(um))

satisfies:
1) qA(Δ(H, T )) = Cm is a convex, compact and symmetric polyhedra of R

m

2) Cm =

⎧⎨
⎩(z1, . . . , zm) ∈ R

m, ∀J ⊂ {1, . . . , m} :

card(J)∑
j=1

λ<
j ≤

∑
j∈J

zj ≤
card(J)∑

j=1

λ>
j

⎫⎬
⎭

where {λ>
j , j = 1, . . . , m}(respectively {λ<

j , j = 1, . . . , m}) are the eigen values
of A set in decreasing order (respectively increasing order).

Definition 6. Let H1 be a convex and symmetric subset of R
m. A function

f from H1 to R is called ”strictly s-convex” function if:

• f is symmetric on H1

• ∀z = (z1, . . . , zm) ∈ H1 such that z1 �= z2, the function gz defined

by: [0, 1/2]
gz−−−→ R

t 	−→ gz(t) = f(z1 − t(z1 − z2), z2 + t(z1 − z2), z3, . . . , zm)
is a decreasing function.

The set of the strictly s-convex functions on H1 is denoted by: F(H1)

Definition 7. An R-criteria is a numerical function FA defined over Δ(H, T )
by:

Δ(H, T )
FA−−−−−→ R

u 	−→ FA(u) = f(qA(u))

with: f ∈ F(Cm) and qA the Rayleigh quotient associated to the T -symmetric
operator A.

The next property, given by Alain Croquette[2], is very important because
it gives the necessary and sufficient condition in order to get the maximum of
an R-criterion.

Property 4.2. [2] Let FA be an R-criterion associated to the T -symmetric
operator A defined by:

∀u ∈ Δ(H, T ) : FA(u) = FA(u1, . . . , um) = f(qA(u1), . . . , qA(um))

where: f ∈ F(Cm) and qA the rayleigh quotient associated to the operator A.
FA admit a maximum over Δ(H, T ) only and only for the T -orthogonal basis
of H composed of the m eigen vectors of A associated to the m biggest eigen
values of A.

Remark 4.1. From the property 4.2 we notice that the maximum of an R-
criterion FA is independent of the form of the strictly s-convex function f , it
depends only on the T -symmetric operator A.
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