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Abstract

We shall show that every quasi-continuous mapping g : Z −→ X of
a topological space Z into a topological space X which has countable
base can be discontinuous only on a set of first category. Also it is shown
that every quasi-continuous map g : Z −→ X of a Baire space Z into a
fragmentable compact space X in a dense Gδ-subset is continuous.
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1 Introduction

In the paper [1] Kempisty introduced a notion similar to continuity for real-

valued functions defined in R. For general topological spaces this notion can

be given the following equivalent formulation.

Definition 1.1. The mapping g : Z −→ X between the topological spaces Z

and X is said to be quasi-continuous at z0 ∈ Z if for every neighborhood U of

g(x0), there exists some open set V ⊂ Z such that

(a) z0 ∈ V (the closure of V in Z), and

(b) g(V ) ⊂ U .
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The mapping g is called quasi-continuous if it is quasi-continuous at each

point of Z.

Remark 1.2. Continuity implies quasi-continuity, of course, but not con-

versely; consider, in fact,

Example 1.3. Let Z = X = [0, 1]. Let g : Z −→ X as follows:

f(x) =

{
1 if 0 ≤ x ≤ 1/2

0 if 1/2 < x ≤ 1

The example below shows that a quasi-continuous mapping need not be

continuous at any point.

Example 1.4. Take Z = [0, 1] with the usual topology, X = [0, 1] with

the Sorgenfrey topology and the identity mapping g : Z −→ X. The map g

is quasi-continuous but nowhere continuous. We left the easy details to the

reader.

Nevertheless, under some mild requirements imposed on the spaces Z and

X, every quasi-continuous map becomes continuous at many points of the

space Z (see Theorem 3.2 and Corollary 3.5).

2 Quasi-open sets

Definition 2.1. A set A in a topological space Z will be called quasi-open

(written q.o.) if there exists an open set O such that O ⊂ A ⊂ clO where cl

denotes the closure operator in Z. Q.O.(Z) will denote the quasi-open sets in

Z.

Theorem 2.2. Let Z be a topological space. Then the following are true:

(1) A subset A in Z is q.o. if and only if A ⊂ clIntA, where Int denotes the

interior operator.

(2) Let {Aα}α∈Δ be a collection of q.o. sets in Z. Then ∪α∈ΔAα is q.o.

(3) Let A be q.o. in Z and A ⊂ B ⊂ clA. Then B is q.o.

(4) If O is open in Z, then O is q.o. in Z. The converse is clearly false.

proof. (⇒) Let A be q.o. Then O ⊂ A ⊂ clO for some open set O. But

O ⊂ IntA and thus clO ⊂ clIntA. Hence A ⊂ clO ⊂ clIntA.

(⇐) Let A ⊂ clIntA. Then for O = IntA, we have O ⊂ A ⊂ clO.

(2) For each α ∈ Δ, we have an Oα such that Oα ⊂ Aα ⊂ clOα. Then

∪α∈ΔOα ⊂ ∪α∈ΔAα ⊂ ∪α∈ΔclOα ⊂ cl ∪α∈Δ Oα. Hence let O = ∪α∈ΔOα.
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(3) There exists an open set O such that O ⊂ A ⊂ clO. Then O ⊂ B, But

clA ⊂ clO and thus B ⊂ clO. Hence O ⊂ B ⊂ clO and B is q.o.

(4) It is clear.�

Corollary 2.2. Let τ be the class of open sets in Z. Then

(1) τ ⊂ Q.O.(Z).

(2) for A ∈ Q.O.(Z) and A ⊂ B ⊂ ciA, then B ∈ Q.O.(Z).

proof. This follows from Theorem 2.1.�

Theorem 2.3. Let B = {Bα} be a collection of sets in Z such that

(1) τ ⊂ B,

(2) if B ∈ B and B ⊂ D ⊂ clB, then D ∈ B.

Then Q.O.(Z) ⊂ B. Thus Q.O.(Z) is the smallest class of sets in Z satisfying

(1) and (2).

proof. Let A ∈ Q.O.(Z). Then O ⊂ A ⊂ clO for some O ∈ τ . Therefore

O ∈ B by (1) and thus A ∈ B by (2).�

Theorem 2.4. Let A ⊂ W ⊂ Z where Z is a topological space and W a

subspace. Let A ∈ Q.O.(Z). Then A ∈ Q.O.(W ).

proof. O ⊂ A ⊂ clZO where O is open in Z and clZ denotes the closure

operator in Z. Now O ⊂ W and thus O = O ∩ W ⊂ A ∩ W ⊂ W ∩ clZO or

O ⊂ A ⊂ clZO. Since O = O∩W , O is open in W and the theorem is proved.

�

The converse of Theorem 2.4 is false, as shown by

Example 2.5. Let Z be the space of reals and W = A = {0}. Then A is

open in W and hence A ∈ Q.O.(W ). But A /∈ Q.O.(Z).

Theorem 2.6. Let A ∈ Q.O.(Z) where Z is a topological space. Then A =

O ∪ B where

(1) O ∈ τ ,

(2) O ∩ B = ∅ and

(3) B is nowhere dense.

proof. O ⊂ A ⊂ cl O for some O open in Z. But A = O ∪ (A \ O). Let

B = A \ O. Then B ⊂ cl O \ O and is nowhere dense by Theorem 2.1. Then
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A = O ∪ B, and (1) and (2) immediately follow. �

The converse of Theorem 2.6 is false, as shown by

Example 2.7. Let Z be the space of reals and A = {x : 0 < x < 1} ∪ {2}.
Then A /∈ Q.O.(Z) although (1), (2) and (3) in Theorem 2.6 hold.

The converse of Theorem 2.6 is false even when connectedness is imposed upon

A, as shown by

Example 2.8. Let Z be the plane and

A = {(x, y) : 0 < x < 1 and 0 < y < 1} ∪ {(x, y) : 1 ≤ x ≤ 2}.
It is clear that A � Q.O.(Z) although again (1), (2) and (3) in Theorem 2.9

are satisfied.

Remark 2.9. It is not true that components of quasi-open sets are quasi-

open, as shown by

Example 2.10. Let Z be the space of reals and

A = {0} ∪ (1/2, 1) ∪ (1/4, 1/2) ∪ · · · ∪ (1/2n+1, 1/2n) ∪ · · ·

Then A is quasi-open and {0} is a component of A which is not q.o. in Z.

In general the complement of a q.o. set is not q.o. nor is the intersection of

two q.o. sets q.o.

The Theorem below shows that a continuous map which is also open sends

quasi-open sets to quasi-open sets.

Theorem 2.11. Let g : Z −→ X be continuous and open where Z and X are

topological spaces. If A ∈ Q.O.(Z) then f(A) ∈ Q.O.(X).

proof. Let A = O ∪ B where O is open and B ⊂ clO \ O. Then f(O) ⊂
f(A) = f(O) ∪ f(B) ⊂ f(O) ∪ f(clO) ⊂ f(O) ∪ clf(O) = clf(O). Hence,

F (O) ⊂ f(A) ⊂ clf(O) and f(O) is open in X since g : Z −→ X is open. �

If ”open” is removed from Theorem 2.21, then the Theorem is in general false,

as shown by
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Example 2.12. Let Z and X both be the space of reals and g : Z −→ X

be the constant map 1. Then Z is quasi-open in Z but f(Z) = {1} is not

quasi-open in X.

Definition 2.13. Let Z be a topological space and B = {Bα} a collection of

subsets. Then IntB will denote {IntBα}.

Lemma 2.14. Let τ be the class of open sets in the topological space Z. Then

τ = IntQ.O.(Z).

proof. Let O ∈ τ . Then O ∈ Q.O.(Z) and since O = IntO, O ∈ IntQ.O.(Z).

�

Conversely let O ∈ Q.O.(Z). Then O = IntA for some A ∈ Q.O.(Z) and thus

O ∈ τ . �

Example 2.15. Let Z be the set of reals and τ the topology generated by

sets of the form (x, Y ) where x is less than y. Let τ ∗ be the topology generated

by the sets of the form [x, y) where again x is less than y. Then τ ⊂ τ ∗, but

Q.O.(Z, τ) �⊂ Q.O.(Z, τ ∗) since (x, y] ∈ Q.O.(Z, τ), but (x, y] /∈ Q.O.(Z, τ ∗).

3 Quasi-continuity revisited

Theorem 3.1. The mapping g : Z −→ X between the topological spaces Z

and X is quasi-continuous if and only if g−1(O) ∈ Q.O.(X) for every open

subset O of Z.

proof. (⇒) Let O be open in Z and p ∈ g−1(O). Then g(p) ∈ O and thus

there exists an Ap ∈ Q.O.(Z) such that p ∈ Ap and f(Ap) ⊂ O. Then p ∈ Ap ⊂
g−1(O) and g−1(O) = ∪p∈g−1(O)Ap. Then by Theorem 2.1, g−1(O) ∈ Q.O.(Z).

(⇐) Let g(p) ∈ O. Then p ∈ g−1(O) ∈ Q.O.(Z) since g : Z −→ X is quasi-

continuous. Let A = g−1(O). Then p ∈ A and g(A) ∈ O.�

Example 1.4 shows that a quasi-continuous map can be discontinuous ev-

erywhere. Also a quasi-continuous map from a topological space which has

countable base into another topological space could only be discontinuous in

a set of first category.

Theorem 3.2. Let g : Z −→ X be quasi-continuous and X a topological

space which has countable base. Let D be the set of points of discontinuity of

g. Then D is of first category.
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proof. Let p ∈ D. Then for any integer n, there exists an open set Onp in

the countable open basis for X such that g(U) ⊂ Onp for every open neigh-

borhood U of p. Now there exists an Anp ∈ Q.O.(Z) such that p ∈ Anp

and g(Anp) ⊂ Unp by discontinuity of g at p. But Anp = Unp ∪ Bnp where

Bnp ⊂ clUnp \ Unp. Hence p /∈ Unp and thus ‘p ∈ Bnp, a nowhere dense set.

It follows then that D ⊂ ∪p∈DBnp and since ∪p∈DBnp is of first category, it

follows that D is of first category.�

Definition 3.3. Let X be a topological space and ρ some metric defined on

X. The space X is said to be fragmented by the metric ρ if for every ε > 0 and

every subset A ⊂ X, there exists a non-empty relatively open subset B ⊂ A

with ρ − diam(B) ≤ ε.

In such a case the space X is called fragmentable.

The proof of the next result shows some techniques associated with quasi-

continuity of mappings and fragmentability of spaces.

Theorem 3.4. Let Z be a Baire space and g : Z −→ X a quasi-continuous

map from a topological space which is fragmented by some metric ρ. Then there

exists a Gδ-subset C ⊂ Z at the point of which g : Z −→ (X, ρ) is continuous.

In particular if the topology generated by the metric ρ contains the topology of

the space X, then g : Z −→ X is continuous at every point of the set C.

proof. Consider for every n = 1, 2, · · · the set Vn = ∪{V : V open in Z and

ρ − diam(g(V )) ≤ n−1}. The set Vn is open in Z.

Suppose W is a non-empty open subset of Z. Consider the set A = g(W )

by fragmentability of X, there is some relatively open subset B = A ∩ U =

g(W ) ∩ U where U is open in X such that ρ − diam(B) ≤ n−1. Quasi-

continuity of g implies that there exists some non-empty open V ⊂ W with

g(V ) ⊂ U ∩ g(W ) = B this shows that ∅ �= V ⊂ Vn ∩W . Hence Vn is dense in

Z. Obviously, at each point of C = ∩n≥1Vn the map g is ρ-continuous. �

Note that according to a result of Ribarska [3]-[4], if the space X is compact and

fragmentable, then it is also fragmentable by some metric that majorizes the

topology of X. I.e the metric topology generated by the new metric contains

the topology of the compact space X.

Corollary 3.5. Let Z be a Baire space and g : Z −→ X a quasi continuous

map from Z into the fragmentable compact space X. Then there exists a dense
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Gδ-subset C ⊂ Z at the point of which g : Z −→ X is continuous.
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