Applied Mathematical Sciences, Vol. 2, 2008, no. 16, 775-780

b-General Orthogonality in 2-Normed Spaces

H. R. Kamali
Department of Mathematics
Islamic Azad University, Ardekan Branch
ham-kamali@yahoo.com
H. Mazaheri
Department of Mathematics
Yazd University, Yazd, Iran
hmazaheri@yazduni.ac.ir

Abstract

In this paper, we investigate some properties of the b-General orthogonality in 2-normed spaces, and obtain some results on b-General orthogonality in 2-normed spaces similar to b-orthogonality of 2-normed spaces. In this paper we shall consider the relation between this concept in 2-smooth spaces and sense b-Brikhoff orthogonality.

Mathematics Subject Classification: 41A65, 41A15

Keywords: b-General orthogonality, 2-smooth spaces, b-Best approximation

1. Introduction

The concept of linear 2-normed spaces has been investigated by S. Gähler and has been developed extensively in different subjects by many authors (see [1-6]).

Let X be a linear space of dimension greater than 1 . Suppose $\|.,$.$\| is a$ real-valued function on $X \times X$ satisfying the following conditions:
a) $\|x, y\|=0$ if and only if x and y are linearly dependent vectors.
b) $\|x, y\|=\|y, x\|$ for all $x, y \in X$.
c) $\|\lambda x, y\|=|\lambda|\|x, y\|$ for all $\lambda \in \mathbf{R}$ and all $x, y \in X$.
d) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$ for all $x, y, z \in X$.

Then $\|.,$.$\| is called a 2-norm on X$ and $(X,\|.,\|$.$) is called a linear 2-normed$ space. Some of the basic properties of 2-norms, that they are non-negative and $\|x, y+\alpha x\|=\|x, y\|$ for all $x, y \in X$ and all $\alpha \in \mathbf{R}$.

Every 2-normed space is a locally convex topological vector space. In fact for a fixed $b \in X, p_{b}(x)=\|x, b\|, x \in X$, is a seminorm and the family $P=\left\{p_{b}: b \in X\right\}$ of seminorms generates a locally convex topology on X .

Let $(X,\|.,\|$.$) be a 2-normed space and let W_{1}$ and W_{2} be two subspaces of X. A map $f: W_{1} \times W_{2} \rightarrow \mathbf{R}$ is called a bilinear 2-functional on $W_{1} \times W_{2}$ whenever for all $x_{1}, x_{2} \in W_{1}, y_{1}, y_{2} \in W_{2}$ and all $\lambda_{1}, \lambda_{2} \in \mathbf{R}$;
(i) $f\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=f\left(x_{1}, y_{1}\right)+f\left(x_{1}, y_{2}\right)+f\left(x_{2}, y_{1}\right)+f\left(x_{2}, y_{2}\right)$,
(ii) $f\left(\lambda_{1} x_{1}, \lambda_{2} y_{1}\right)=\lambda_{1} \lambda_{2} f\left(x_{1}, y_{1}\right)$.

A bilinear 2-functional $f: W_{1} \times W_{2} \rightarrow \mathbf{R}$ is called bounded if there exists a non-negative real number M (called a Lipschitz constant for f) such that $|f(x, y)| \leq M\|x, y\|$ for all $x \in W_{1}$ and all $y \in W_{2}$. Also, the norm of a bilinear 2-functional f is defined by

$$
\|f\|=\inf \{M \geq 0: M \text { is a Lipschitz constant for } f\}
$$

It is known that ([4])

$$
\begin{aligned}
\|f\| & =\sup \left\{|f(x, y)|: \quad(x, y) \in W_{1} \times W_{2},\|x, y\| \leq 1\right\} \\
& =\sup \left\{|f(x, y)|: \quad(x, y) \in W_{1} \times W_{2},\|x, y\|=1\right\} \\
& =\sup \left\{|f(x, y)| /\|x, y\|: \quad(x, y) \in W_{1} \times W_{2},\|x, y\|>0\right\}
\end{aligned}
$$

For a 2 -normed space $(X,\|.,\|$.$) and 0 \neq b \in X$, we denote by X_{b}^{*} the Banach space of all bounded bilinear 2-functionals on $X \times\langle b\rangle$, where $\langle b\rangle$ be the subspace of X generated by b.

Let $(X,\|.,\|$.$) be a 2$-normed space, $x, y \in X$. If there exists $b \in X$ such that $\|x, b\| \neq 0$ and $\|x, b\| \leq\|x+\alpha y, b\|$ for all scalar $\alpha \in \mathbf{R}$. Then x is b-Brikhoff orthogonal to y and denoted by $x \perp_{B G}^{b} y$.

If W_{1} and W_{2} are subsets of X, if there exists $b \in X$ such that for all $y_{1} \in W_{1}, y_{2} \in W_{2}, y_{1} \perp^{b} y_{2}$, then we say that $W_{1} \perp_{B G}^{b} W_{2}$.

Let $(X,\|.,\|$.$) be a 2-normed space, W$ be a linear subspace of X and $b \in X$. $w_{0} \in W$ is b-best approximation for $x \in X$, if $x-w_{0} \perp_{B G}^{b} W$. The set of all b-best approximations of x in W is denoted by $P_{W}^{b}(x)$. Also W is called bproximinal if for every $x \in X \backslash(W+)$, there exists $w_{0} \in W$ such that $w_{0} \in P_{W}^{b}(x)$. (see [10])

Let X be a 2 -normed linear space. We say that X is a 2 -smooth if for any $x \neq 0$ and every $b \in X$ such that $\|x, b\| \neq 0$, there is a unique linear functional Λ_{b} such that

$$
\Lambda_{b}(x)=\|x, b\|, \quad\left\|\Lambda_{b}\right\|=1
$$

The following basic lemmas is important in the proof of main results.
Proposition 1.2 (3]) Let $(X,\|.,\|$.$) be a 2-normed space, W$ be a subspace of $X, b \in X$ and let $$ be the subspace of X generated by b. If $x_{0} \in X$ is such that

$$
\delta=\inf \left\{\left\|x_{0}-w, b\right\|: w \in W\right\}>0,
$$

then there exists a bounded bilinear functional $F: X \times\rightarrow \boldsymbol{R}$ such that $\left.F\right|_{W} \times=0, F\left(x_{0}, b\right)=1$ and $\|F\|=\frac{1}{\delta}$.

Lemma 1.2. Let X be a 2-normed linear space, $b \in X, y \in X$ and $x \in X \backslash(<$ $b>)$. Then the following statements are equivalent:

1) $x \perp^{b} y$.
2) There exists X_{b}^{*} such that $f(y, b)=0, f(x, b)=\|x, b\|$ and $\|f\|=1$.

Lemma 1.3. Let X be a 2-normed linear space. Let W be a linear subspace of $X, b \in X$ and $F \subseteq X \backslash(W+)$. Then the following statements are equivalent:

1) $F \perp^{b} W$.
2) There exists $f \in X_{b}^{*}$ such that $\left.f\right|_{W \times}=0,\|f\|=1$ and $f(x, b)=\|x, b\|$ for all $x \in F$.

Let X be a linear space of dimension greater then 1 over the filed $\mathbf{K}=\mathbf{R}$ of real numbers or the filed $\mathbf{K}=\mathbf{C}$ of complex numbers. Suppose that (.,.|.) is a \mathbf{K}-valued function defined on $X \times X \times X$ satisfying the following conditions:
a) $(x, x \mid z) \geq 0$ and $(x, x \mid z)=0$ if and only if x and z are linearly dependent;
b) $(x, x \mid z)=(z, z \mid x)$;
c) $(y, x \mid z)=\overline{(x, y \mid z)}$;
d) $(\alpha x, y \mid z)=\alpha(x, y \mid z)$ for any scalar $\alpha \in \mathbf{K}$;
e) $\left(x+x^{\prime}, y \mid z\right)=(x, y \mid z)+\left(x^{\prime}, y \mid z\right)$.
$(., . \mid$.$) is called a 2$-inner product on X and $(X,(., . \mid)$.$) is called a 2-inner product$ space. some basic properties of 2-inner products (., .|.) can be immediately obtained in [1-3].

Let $(X,(., \mid)$.$) be a 2$-inner product space. We can define a 2 -norm on $X \times X$ by

$$
\|x, y\|=\sqrt{(x, x \mid y)}
$$

we shall consider general orthogonality in the Banach spaces.

Definition 1.4. Let X be a 2-normed linear space and $x, y, b \in X . x$ is called b-general orthogonal to y and write $x \perp_{G}^{b} y$, if and only if there exists a unique $\phi_{x} \in X_{b}^{*}$ such that $\phi_{x}(x, b)=\|x, b\|^{2},\left\|\phi_{x}\right\|=\|x, b\|$ and $\phi(y, b)=0$.

2. Main Results

In this section we state and prove some characterizations of the b-general orthogonality in 2-normed spaces.

Theorem 2.1. Let X be a 2-normed linear space. Then the following statements are true:
a) For all $x \in X$ and all $\alpha>0, \phi_{\alpha x}=\alpha \phi_{x}$.
b) For all $x, y \in X$ and all $\alpha>0$, if $x \perp_{G}^{b} y$, then $\alpha x \perp_{G}^{b} y$.
c) For all $x \in X$, if $x \perp_{G}^{b} x$ then $x=0$.
d) For all $x, y \in X$, if $x \perp_{G}^{b} y$ and $x \neq 0$, then $\langle x>\cap<y>=\{0\}$.
e) For all $x \in X, 0 \perp{ }_{G}^{b} x$ and $x \perp_{G}^{b} 0$.

Proof. (a). Suppose $x \in X$ and $\alpha>0$. Then

$$
\alpha \phi_{x}(\alpha x)=\alpha^{2}\|x, b\|^{2}=\|\alpha x, b\|^{2},\left\|\alpha \phi_{x}, b\right\|=\alpha\left\|\phi_{x}, b\right\|=\alpha\|x, b\|=\|\alpha x, b\|,
$$

also $\alpha \phi_{x}(y)=0$. By uniqueness of $\phi_{\alpha x}$ we have $\phi_{\alpha x}=\alpha \phi_{x}$.
(b). Proof is a conclusion of (a).
(c). For all $x \in X$, if $x \perp^{G} x$. Then $\phi_{x}(x, b)=0$ and $\phi_{x}(x, b)=\|x, b\|^{2}$. Therefore $x=0$.
(d). If $z \in<x>\cap<y>$, then for scales $c_{1}, c_{2}, z=c_{1} x=c_{2} y$. Hence $\phi_{x}(z, b)=0$, it follows that $\phi_{x}\left(c_{1} x, b\right)=0$. Therefore $c_{1}=0$ and $z=0$.
(e). It is trivial.

Let X be a 2-normed space. The element $x \in B$ is called 2-normal element if there exists only one $f \in X_{b}^{*}$ such that $f(x)=\|x, b\|$ and $\|f\|=1$.

Theorem 2.2. Let X be a 2-normed space. Then the following statements are true:
a) If $x, y \in X, x \perp_{G}^{b} y$, then $x \perp_{B G}^{b} y$.
b) If $x \neq 0 \in B$ is a 2-normal element, $y \in B$ and $x \perp_{B G}^{b} y$, then $x \perp_{G}^{b} y$.

Proof. (a). Suppose $x, y \in X$ and $x \perp_{G}^{b} y$ then

$$
\begin{aligned}
\|x, b\|^{2} & =\phi_{x}(x, b) \\
& =\phi_{x}(x+\alpha y, b) \\
& \leq\left\|\phi_{x}\right\|\|x+\alpha y, b\| \\
& =\|x, b\|\|x+\alpha y, b\|
\end{aligned}
$$

Therefore $\|x, b\| \leq\|x+\alpha y, b\|$, that is $x \perp_{B G}^{b} y$.
(b). We know that if $x \perp_{B G}^{b} y$ and $\alpha>0$ then $\alpha x \perp_{B G}^{b} y$. Therefore $Z=$ $\frac{x}{\|x\|} \perp_{B G}^{b} y$. Since x is normal by Lemma 1.2, there exists a unique $\phi_{Z} \in X_{b}^{*}$ such that $\phi_{Z}(X)=1,\left\|\phi_{Z}\right\|=1$ and $\phi_{Z}(y, b)=0$. From Theorem 2.1, $\phi_{Z}=$ $\frac{1}{\|x\|} \phi_{x}$. Therefore there exists a unique $\phi_{x} \in X_{b}^{*}$ such that $\phi_{x}(x)=\|x, b\|^{2}$, $\left\|\phi_{x}\right\|=\|x, b\|$ and $\phi(y, b)=0$. It follows that $x \perp_{G}^{b} y$.

We know that every 2 -inner product space $(X,<, . \mid .>)$ is a 2 -smooth spaces. Therefore every element $x \in X$ is normal, Hence we have

Corollary 2.3. Let $(X,<., \mid .>)$ be a 2-smooth spaces, $x, y, b \in X$. If $x \perp_{G}^{b} y$ then $\langle x, y \mid b\rangle=0$.

Definition 2.4. Let X be a 2-normed space and $b \in X$. The b-general orthogonality is called $b-G$-additivity, if $y \perp_{G}^{b} x$ and $z \perp_{G}^{b} x$, then $y+z \perp_{G}^{b} x$.

Definition 2.5. Let X be a 2-normed space, $M \subseteq X$ and $x, b \in X$. Then we say that x is b-general orthogonal to M and write $x \perp_{G}^{b} M$ if and only if there exists a unique $\phi_{x} \in X_{b}^{*}$ such that $\phi_{x}(x, b)=\|x, b\|^{2},\left\|\phi_{x}\right\|=\|x, b\|$ and for all $y \in M \phi(y, b)=0$. The element $y_{0} \in M$ is $b-G$-best approximation of $x \in X$ if and only if $x-y_{0} \perp_{G}^{b} M$.

Corollary 2.6. Let X be a 2-normed space, $x, b \in X$. If $y_{0} \in M$ is $b-G$-best approximation of x. Then y_{0} is a b-best approximation of x.

Theorem 2.7. Let X be a 2-normed space, $x, b \in X$ and $M \subseteq X$. If the b-general orthogonality is $b-G$-additivity, Then there exist a unique $y_{0} \in M$ such that $x-y_{0} \perp_{G}^{b} M$.

Proof. Suppose $y_{1}, y_{2} \in M$ such that for all $i=1,2, x-y_{i} \perp_{G}^{b} M$. Therefore for all $y \in M$ and all $i=1,2, x-y_{i} \perp_{G}^{b} y$. Since b-orthogonality is $b-G$ additivity. It follows that $y_{2}-y_{1}=\left(x-y_{1}\right)-\left(x-y_{2}\right) \perp_{G}^{b} y$. Put $y=y_{1}-y_{2}$, then $y_{1}-y_{2} \perp_{G}^{b} y_{1}-y_{2}$. From Theorem 2.1, $y_{1}=y_{2}$.

References

[1] Dragomir, S. S., Cho, Y. J., Kim, S. S., Sofo, A., Some boas-bellman type inequalities in 2-inner product spaces, J. of Ine. in Pure and Appl. Math. $6(2) 55$ (2005), 1-13.
[2] Cho, Y. J., Lin, P. C. S., Kim, S. S. Misiak, A., Theory of 2-inner product spaces, Nova Science Publishes, Inc., New York, 2001.
[3] Cho, Y. J., Matic, M., Pecaric, J. E., On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc., 38 (6)(2001), 1125-1156.
[4] Lewandowska, Z. Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) (1999), no. 4, 353-368.
[5] Lewandowska, Z. Generalized 2-normed spaces, Supskie Space Matema yczno Fizyczne 1 (2001), 33-40.
[6] Lewandowska, Z. On 2-normed sets, Glas. Mat. Ser. III 38(58) (2003), no. 1, 99-110.
[7] Lewandowska, Z. Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space, Glas. Mat. Ser. III 38(58) (2003), no. 2, 329-340.
[8] Lewandowska, Z. Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III 39(59) (2004), 301-312.
[9] Gähler, S., Linear 2-normierte Räume, Math. Nachr, 28 (1965), 1-45.
[10] Mazaheri, H., Golestani, S., b-Orthogonality in 2-normed spaces, Submitted.

Received: May 30, 2007

