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Abstract

In this paper, we investigate some properties of the b-General or-
thogonality in 2-normed spaces, and obtain some results on b-General
orthogonality in 2-normed spaces similar to b-orthogonality of 2-normed
spaces. In this paper we shall consider the relation between this concept
in 2-smooth spaces and sense b-Brikhoff orthogonality.
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1. Introduction

The concept of linear 2-normed spaces has been investigated by S. Gahler

and has been developed extensively in different subjects by many authors (see
[1-6]).

Let X be a linear space of dimension greater than 1. Suppose |.,.|| is a
real-valued function on X x X satisfying the following conditions:
a) ||z,y|| = 0 if and only if z and y are linearly dependent vectors.
b) ||z, y|| = ||y, z| for all z,y € X.
c) || Az, y|| = |M|||z, y|| for all A € R and all z,y € X.
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d) ||z + vy, 2| < ||z, 2| + ||y, || for all z,y, z € X.

Then ||.,.|| is called a 2-norm on X and (X, ||.,.||) is called a linear 2-normed
space. Some of the basic properties of 2-norms, that they are non-negative
and ||z,y + ax| = ||z, y|| for all z,y € X and all a« € R.

Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b € X, py(x) = ||z,0]|, x € X, is a seminorm and the family
P ={py: b€ X} of seminorms generates a locally convex topology on X.

Let (X, ||.,-||) be a 2-normed space and let Wy and W5 be two subspaces
of X. A map f: W; x Wy — R is called a bilinear 2-functional on W; x W,
whenever for all x1,x9 € Wi, y1,y2 € Ws and all A\, Ay € R;

(i) flo1 + 22,91 +y2) = f(x1, 1) + f(z1,92) + flo2,91) + f(22,92),
(ii) f()\1l‘1, /\291) = /\1)\2f($1,y1)-

A bilinear 2-functional f : W; x W5 — R is called bounded if there exists
a non-negative real number M (called a Lipschitz constant for f) such that
|f(z,y)| < M||z,y]| for all z € W; and all y € W;. Also, the norm of a bilinear
2-functional f is defined by

|fIl =inf{M >0: M is a Lipschitz constant for f}.

It is known that ([4]

)
1fll = sup{|f(z,y)|: (z,y) € Wy x Wa, |z, y|| <1}
= sup{|f(z,y): (v,y) € Wi x Wy, |,y =1}
= sup{|f(z.9)l/llz,yll - (z,y) € Wi x Wa, [lz,y]| > 0}

For a 2-normed space (X, ||.,.||) and 0 # b € X, we denote by X} the
Banach space of all bounded bilinear 2-functionals on X x < b >, where < b >
be the subspace of X generated by b.

Let (X,||.,.||) be a 2-normed space, z,y € X. If there exists b € X such
that ||z,b|| # 0 and ||z,b|] < ||z + ay,b| for all scalar « € R. Then z is
b-Brikhoff orthogonal to y and denoted by z 1% ,y.

If W7 and W, are subsets of X, if there exists b € X such that for all
y1 € Wi, yo € W, 31 L%, then we say that Wy LY W,

Let (X, |.,.]|) be a 2-normed space, W be a linear subspace of X and b € X.
wy € W is b-best approximation for x € X, if x — wyL%-W. The set of all
b-best approximations of x in W is denoted by P (z). Also W is called b-
proximinal if for every x € X\(W+ < b >), there exists wy € W such that
wo € Pfy (). (see [10])
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Let X be a 2-normed linear space. We say that X is a 2-smooth if for any
x # 0 and every b € X such that ||z, b|| # 0, there is a unique linear functional
Ay such that

Ay(z) = [z, 0l f[Aoll =1

The following basic lemmas is important in the proof of main results.

Proposition 1.2 (3]) Let (X, ||.,.]|) be a 2-normed space,W be a subspace of
X,be X and let < b > be the subspace of X generated by b. If xqg € X is such
that

0 = inf{||lzg —w,b||: we W} >0,

then there exists a bounded bilinear functional F': XX < b >— R such that
Flwx <b>=0, F(zo,b) =1 and ||F|| = }.

Lemma 1.2. Let X be a 2-normed linear space, b€ X, y € X and v € X\(<
b >). Then the following statements are equivalent:

1) z1by.

2) There exists Xy such that f(y,b) =0, f(z,b) = ||z,b]| and || f|| = 1.

Lemma 1.3. Let X be a 2-normed linear space. Let W be a linear subspace
of X, b€ X and F C X\(W+ < b >). Then the following statements are
equivalent:

1) FLPW.

2) There exists f € X such that flwx<p= =0, || f]| =1 and f(z,b) = ||z,
forallz € F.

Let X be a linear space of dimension greater then 1 over the filed K = R
of real numbers or the filed K = C of complex numbers. Suppose that (.,.|.) is
a K-valued function defined on X x X x X satisfying the following conditions:
a) (z,x|z) > 0 and (z,z|z) = 0 if and only if 2 and z are linearly dependent;
b) (z,z[z) = (2, 2|x);

) (y,2|2) = (2,y]2);
d) (
e)

az,y|z) = a(x,y|z) for any scalar a € K;

(z +2',yl2) = (z,y]2) + (2", y|2).
(.,.|.) is called a 2-inner product on X and (X, (.,.|.)) is called a 2-inner product
space. some basic properties of 2-inner products (.,.|.) can be immediately
obtained in [1-3].

Let (X, (.,.].)) be a 2-inner product space. We can define a 2-norm on
X x X by

2, yll = \/ (@, z[y)-

we shall consider general orthogonality in the Banach spaces.
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Definition 1.4. Let X be a 2-normed linear space and x,y,b € X. x is called
b-general orthogonal to y and write x L%y, if and only if there exists a unique
6o € X; such that ¢, (z,b) = |,bl12, 64| = |z, b] and ¢y, b) = 0.

2. Main Results

In this section we state and prove some characterizations of the b-general
orthogonality in 2-normed spaces.

Theorem 2.1. Let X be a 2-normed linear space. Then the following state-
ments are true:

a) Forallz € X and all a > 0, ¢z = Q.

b) For all z,y € X and all a > 0, if 1%y, then ax1ly.

c) Forallz € X, if 1% then x = 0.

d) Forallz,y € X, if v1%y and x # 0, then <x >N <y >= {0}.

e) Forallz € X, 0152 and 2120.

Proof. (a). Suppose z € X and o > 0. Then
ags(ax) = oz, bl|* = [laz, bl|* , |ads, bl = allés, bl = allz, bl = [|az, b,

also a¢,(y) = 0. By uniqueness of ¢,, we have ¢, = ag,.

(b). Proof is a conclusion of (a).

(c). For all z € X, if z1%. Then ¢,(z,b) = 0 and ¢,(z,b) = ||z, b|>
Therefore x = 0.

(d). If z €< oz >N <y >, then for scales ¢y, ¢y, 2 = c1z = cy. Hence
¢:(z,0) = 0, it follows that ¢, (ciz,b) = 0. Therefore ¢; = 0 and z = 0.

(e). It is trivial. m

Let X be a 2-normed space. The element x € B is called 2-normal element
if there exists only one f € X} such that f(x) = ||x,b]| and || f|| = 1.

Theorem 2.2. Let X be a 2-normed space. Then the following statements are
true:

a) Ifv,y € X, vlby, then z1%.y.

b) If x # 0 € B is a 2-normal element, y € B and v 1%y, then x1%y.

Proof. (a). Suppose x,y € X and z 1%y then

HI?bH2 - ¢$(x’ b)

= ¢.(z+ ay,b)

< ||gllllz + ay, b
|z, 0l|[|x + ay, b]].

Therefore ||z,b| < ||z 4+ ay, b||, that is z L% y.
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(b). We know that if x 1%,y and o > 0 then az1%,y. Therefore Z =
ﬁL%Gy. Since x is normal by Lemma 1.2, there exists a unique ¢z € X
such that ¢z (X) = 1, ||¢z|| = 1 and ¢z(y,b) = 0. From Theorem 2.1, ¢, =

”71”%. Therefore there exists a unique ¢, € X; such that ¢.(z) = ||z, b|?,
||| = ||z, || and ¢y, b) = 0. It follows that zLly. m

We know that every 2-inner product space (X, < .,.|. >) is a 2-smooth
spaces. Therefore every element x € X is normal, Hence we have

Corollary 2.3. Let (X, < .,.|. >) be a 2-smooth spaces, x,y,b € X. If v1ly
then < z,ylb>=0. m

Definition 2.4. Let X be a 2-normed space and b € X. The b-general orthog-
onality is called b — G-additivity, if y1 %2 and 2 1%2, then y + z1 2.

Definition 2.5. Let X be a 2-normed space, M C X and x,b € X. Then we
say that x is b-general orthogonal to M and write x 1% M if and only if there
exists a unique ¢, € Xj such that ¢,(x,b) = ||z, ||, ||¢]| = ||z, b|| and for all
y e M ¢uy,b) =0. The element yo € M is b— G-best approzimation of x € X
if and only if v — yo L& M.

Corollary 2.6. Let X be a 2-normed space, x,b € X. Ifyg € M is b — G-best
approximation of x. Then yy is a b-best approximation of x.

Theorem 2.7. Let X be a 2-normed space, x,b € X and M C X. If the
b-general orthogonality is b — G-additivity, Then there exist a unique yo € M
such that x — yo L% M.

Proof. Suppose y1,y2 € M such that for all i = 1,2, x — y; L& M. Therefore
for ally € M and all i = 1,2, z — y; L%y. Since b-orthogonality is b — G-
additivity. It follows that yo —y1 = (x — 1) — (x — y2) Loy, Put y = y; — 4o,
then y1 — y2L%y1 — yo. From Theorem 2.1, y; = yo. ®
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