Applied Mathematical Sciences, Vol. 2, 2008, no. 16, 775 - 780

b-General Orthogonality in 2-Normed Spaces

H. R. Kamali

Department of Mathematics Islamic Azad University, Ardekan Branch ham-kamali@yahoo.com

H. Mazaheri

Department of Mathematics Yazd University, Yazd, Iran hmazaheri@yazduni.ac.ir

Abstract

In this paper, we investigate some properties of the b-General orthogonality in 2-normed spaces, and obtain some results on b-General orthogonality in 2-normed spaces similar to b-orthogonality of 2-normed spaces. In this paper we shall consider the relation between this concept in 2-smooth spaces and sense b-Brikhoff orthogonality.

Mathematics Subject Classification: 41A65, 41A15

Keywords: b-General orthogonality, 2-smooth spaces, b-Best approximation

1. Introduction

The concept of linear 2-normed spaces has been investigated by S. Gähler and has been developed extensively in different subjects by many authors (see [1-6]).

Let X be a linear space of dimension greater than 1. Suppose $\|.,.\|$ is a real-valued function on $X \times X$ satisfying the following conditions:

a) ||x, y|| = 0 if and only if x and y are linearly dependent vectors.

b) ||x, y|| = ||y, x|| for all $x, y \in X$.

c) $\|\lambda x, y\| = |\lambda| \|x, y\|$ for all $\lambda \in \mathbf{R}$ and all $x, y \in X$.

d) $||x + y, z|| \le ||x, z|| + ||y, z||$ for all $x, y, z \in X$.

Then $\|.,.\|$ is called a 2-norm on X and $(X, \|.,.\|)$ is called a linear 2-normed space. Some of the basic properties of 2-norms, that they are non-negative and $\|x, y + \alpha x\| = \|x, y\|$ for all $x, y \in X$ and all $\alpha \in \mathbf{R}$.

Every 2-normed space is a locally convex topological vector space. In fact for a fixed $b \in X$, $p_b(x) = ||x, b||$, $x \in X$, is a seminorm and the family $P = \{p_b : b \in X\}$ of seminorms generates a locally convex topology on X.

Let $(X, \|., .\|)$ be a 2-normed space and let W_1 and W_2 be two subspaces of X. A map $f: W_1 \times W_2 \to \mathbf{R}$ is called a bilinear 2-functional on $W_1 \times W_2$ whenever for all $x_1, x_2 \in W_1, y_1, y_2 \in W_2$ and all $\lambda_1, \lambda_2 \in \mathbf{R}$; (i) $f(x_1 + x_2, y_1 + y_2) = f(x_1, y_1) + f(x_1, y_2) + f(x_2, y_1) + f(x_2, y_2)$, (ii) $f(\lambda_1 x_1, \lambda_2 y_1) = \lambda_1 \lambda_2 f(x_1, y_1)$.

A bilinear 2-functional $f: W_1 \times W_2 \to \mathbf{R}$ is called bounded if there exists a non-negative real number M (called a Lipschitz constant for f) such that $|f(x,y)| \leq M ||x,y||$ for all $x \in W_1$ and all $y \in W_2$. Also, the norm of a bilinear 2-functional f is defined by

 $\|f\| = \inf\{M \ge 0: M \text{ is a Lipschitz constant for } f\}.$

It is known that ([4])

$$||f|| = \sup\{|f(x,y)|: (x,y) \in W_1 \times W_2, ||x,y|| \le 1\} = \sup\{|f(x,y)|: (x,y) \in W_1 \times W_2, ||x,y|| = 1\} = \sup\{|f(x,y)|/||x,y||: (x,y) \in W_1 \times W_2, ||x,y|| > 0\}.$$

For a 2-normed space $(X, \|., .\|)$ and $0 \neq b \in X$, we denote by X_b^* the Banach space of all bounded bilinear 2-functionals on $X \times \langle b \rangle$, where $\langle b \rangle$ be the subspace of X generated by b.

Let $(X, \|., .\|)$ be a 2-normed space, $x, y \in X$. If there exists $b \in X$ such that $\|x, b\| \neq 0$ and $\|x, b\| \leq \|x + \alpha y, b\|$ for all scalar $\alpha \in \mathbf{R}$. Then x is b-Brikhoff orthogonal to y and denoted by $x \perp_{BG}^{b} y$.

If W_1 and W_2 are subsets of X, if there exists $b \in X$ such that for all $y_1 \in W_1, y_2 \in W_2, y_1 \perp^b y_2$, then we say that $W_1 \perp^b_{BG} W_2$.

Let $(X, \|., \|)$ be a 2-normed space, W be a linear subspace of X and $b \in X$. $w_0 \in W$ is b-best approximation for $x \in X$, if $x - w_0 \perp_{BG}^b W$. The set of all b-best approximations of x in W is denoted by $P_W^b(x)$. Also W is called bproximinal if for every $x \in X \setminus (W + \langle b \rangle)$, there exists $w_0 \in W$ such that $w_0 \in P_W^b(x)$. (see [10]) Let X be a 2-normed linear space. We say that X is a 2-smooth if for any $x \neq 0$ and every $b \in X$ such that $||x, b|| \neq 0$, there is a unique linear functional Λ_b such that

$$\Lambda_b(x) = \|x, b\|, \quad \|\Lambda_b\| = 1$$

The following basic lemmas is important in the proof of main results.

Proposition 1.2 (3]) Let $(X, \|., .\|)$ be a 2-normed space, W be a subspace of $X, b \in X$ and let $\langle b \rangle$ be the subspace of X generated by b. If $x_0 \in X$ is such that

$$\delta = \inf\{\|x_0 - w, b\|: w \in W\} > 0,$$

then there exists a bounded bilinear functional $F: X \times \langle b \rangle \rightarrow \mathbf{R}$ such that $F|_W \times \langle b \rangle = 0$, $F(x_0, b) = 1$ and $||F|| = \frac{1}{\delta}$.

Lemma 1.2. Let X be a 2-normed linear space, $b \in X$, $y \in X$ and $x \in X \setminus (< b >)$. Then the following statements are equivalent: 1) $x \perp^{b} y$. 2) There exists X_{b}^{*} such that f(y, b) = 0, f(x, b) = ||x, b|| and ||f|| = 1.

Lemma 1.3. Let X be a 2-normed linear space. Let W be a linear subspace of X, $b \in X$ and $F \subseteq X \setminus (W + \langle b \rangle)$. Then the following statements are equivalent:

1) $F \perp^{b} W$.

2) There exists $f \in X_b^*$ such that $f|_{W \times \langle b \rangle} = 0$, ||f|| = 1 and f(x, b) = ||x, b|| for all $x \in F$.

Let X be a linear space of dimension greater than 1 over the filed $\mathbf{K} = \mathbf{R}$ of real numbers or the filed $\mathbf{K} = \mathbf{C}$ of complex numbers. Suppose that (., .|.) is a **K**-valued function defined on $X \times X \times X$ satisfying the following conditions: **a**) $(x, x|z) \ge 0$ and (x, x|z) = 0 if and only if x and z are linearly dependent; **b**) $(x, x|z) = \underline{(z, z|x)};$

- c) (y, x|z) = (x, y|z);
- **d**) $(\alpha x, y|z) = \alpha(x, y|z)$ for any scalar $\alpha \in \mathbf{K}$;
- e) (x + x', y|z) = (x, y|z) + (x', y|z).

(.,.|.) is called a 2-inner product on X and (X, (.,.|.)) is called a 2-inner product space. some basic properties of 2-inner products (.,.|.) can be immediately obtained in [1-3].

Let (X, (., .|.)) be a 2-inner product space. We can define a 2-norm on $X \times X$ by

$$||x,y|| = \sqrt{(x,x|y)}.$$

we shall consider general orthogonality in the Banach spaces.

Definition 1.4. Let X be a 2-normed linear space and $x, y, b \in X$. x is called b-general orthogonal to y and write $x \perp_{G}^{b} y$, if and only if there exists a unique $\phi_x \in X_b^*$ such that $\phi_x(x, b) = ||x, b||^2$, $||\phi_x|| = ||x, b||$ and $\phi(y, b) = 0$.

2. Main Results

In this section we state and prove some characterizations of the b-general orthogonality in 2-normed spaces.

Theorem 2.1. Let X be a 2-normed linear space. Then the following statements are true:

a) For all x ∈ X and all α > 0, φ_{αx} = αφ_x.
b) For all x, y ∈ X and all α > 0, if x⊥^b_Gy, then αx⊥^b_Gy.
c) For all x ∈ X, if x⊥^b_Gx then x = 0.
d) For all x, y ∈ X, if x⊥^b_Gy and x ≠ 0, then < x > ∩ < y >= {0}.
e) For all x ∈ X, 0⊥^b_Gx and x⊥^b_G0.

Proof. (a). Suppose $x \in X$ and $\alpha > 0$. Then

$$\alpha \phi_x(\alpha x) = \alpha^2 \|x, b\|^2 = \|\alpha x, b\|^2, \|\alpha \phi_x, b\| = \alpha \|\phi_x, b\| = \alpha \|x, b\| = \|\alpha x, b\|$$

also $\alpha \phi_x(y) = 0$. By uniqueness of $\phi_{\alpha x}$ we have $\phi_{\alpha x} = \alpha \phi_x$.

(b). Proof is a conclusion of (a).

(c). For all $x \in X$, if $x \perp^G x$. Then $\phi_x(x,b) = 0$ and $\phi_x(x,b) = ||x,b||^2$. Therefore x = 0.

(d). If $z \in \langle x \rangle \cap \langle y \rangle$, then for scales $c_1, c_2, z = c_1 x = c_2 y$. Hence $\phi_x(z, b) = 0$, it follows that $\phi_x(c_1 x, b) = 0$. Therefore $c_1 = 0$ and z = 0.

(e). It is trivial. \blacksquare

Let X be a 2-normed space. The element $x \in B$ is called 2-normal element if there exists only one $f \in X_b^*$ such that f(x) = ||x, b|| and ||f|| = 1.

Theorem 2.2. Let X be a 2-normed space. Then the following statements are true:

a) If $x, y \in X$, $x \perp_{G}^{b} y$, then $x \perp_{BG}^{b} y$.

b) If $x \neq 0 \in B$ is a 2-normal element, $y \in B$ and $x \perp^b_{BG} y$, then $x \perp^b_{G} y$.

Proof. (a). Suppose $x, y \in X$ and $x \perp_G^b y$ then

$$||x,b||^2 = \phi_x(x,b)$$

= $\phi_x(x + \alpha y, b)$
 $\leq ||\phi_x|| ||x + \alpha y, b||$
= $||x,b|| ||x + \alpha y, b||$

Therefore $||x, b|| \le ||x + \alpha y, b||$, that is $x \perp_{BG}^{b} y$.

(b). We know that if $x \perp_{BG}^{b} y$ and $\alpha > 0$ then $\alpha x \perp_{BG}^{b} y$. Therefore $Z = \frac{x}{\|x\|} \perp_{BG}^{b} y$. Since x is normal by Lemma 1.2, there exists a unique $\phi_Z \in X_b^*$ such that $\phi_Z(X) = 1$, $\|\phi_Z\| = 1$ and $\phi_Z(y,b) = 0$. From Theorem 2.1, $\phi_Z = \frac{1}{\|x\|} \phi_x$. Therefore there exists a unique $\phi_x \in X_b^*$ such that $\phi_x(x) = \|x,b\|^2$, $\|\phi_x\| = \|x,b\|$ and $\phi_y(y,b) = 0$. It follows that $x \perp_G^b y$.

We know that every 2-inner product space (X, < ., .|. >) is a 2-smooth spaces. Therefore every element $x \in X$ is normal, Hence we have

Corollary 2.3. Let (X, < ., .|. >) be a 2-smooth spaces, $x, y, b \in X$. If $x \perp_G^b y$ then $\langle x, y | b \rangle = 0$.

Definition 2.4. Let X be a 2-normed space and $b \in X$. The b-general orthogonality is called b - G-additivity, if $y \perp_G^b x$ and $z \perp_G^b x$, then $y + z \perp_G^b x$.

Definition 2.5. Let X be a 2-normed space, $M \subseteq X$ and $x, b \in X$. Then we say that x is b-general orthogonal to M and write $x \perp_G^b M$ if and only if there exists a unique $\phi_x \in X_b^*$ such that $\phi_x(x,b) = ||x,b||^2$, $||\phi_x|| = ||x,b||$ and for all $y \in M \ \phi_(y,b) = 0$. The element $y_0 \in M$ is b - G-best approximation of $x \in X$ if and only if $x - y_0 \perp_G^b M$.

Corollary 2.6. Let X be a 2-normed space, $x, b \in X$. If $y_0 \in M$ is b - G-best approximation of x. Then y_0 is a b-best approximation of x.

Theorem 2.7. Let X be a 2-normed space, $x, b \in X$ and $M \subseteq X$. If the b-general orthogonality is b - G-additivity, Then there exist a unique $y_0 \in M$ such that $x - y_0 \perp_G^b M$.

Proof. Suppose $y_1, y_2 \in M$ such that for all $i = 1, 2, x - y_i \perp_G^b M$. Therefore for all $y \in M$ and all $i = 1, 2, x - y_i \perp_G^b y$. Since b-orthogonality is b - Gadditivity. It follows that $y_2 - y_1 = (x - y_1) - (x - y_2) \perp_G^b y$. Put $y = y_1 - y_2$, then $y_1 - y_2 \perp_G^b y_1 - y_2$. From Theorem 2.1, $y_1 = y_2$.

References

[1] Dragomir, S. S., Cho, Y. J., Kim, S. S., Sofo, A., Some boas-bellman type inequalities in 2-inner product spaces, J. of Ine. in Pure and Appl. Math. 6(2)55 (2005), 1-13.

[2] Cho, Y. J., Lin, P. C. S., Kim, S. S. Misiak, A., Theory of 2-inner product spaces, Nova Science Publishes, Inc., New York, 2001.

[3] Cho, Y. J., Matic, M., Pecaric, J. E., On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc., 38 (6)(2001), 1125-1156.

[4] Lewandowska, Z. Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) (1999), no. 4, 353-368.

[5] Lewandowska, Z. Generalized 2-normed spaces, Supskie Space Matema yczno Fizyczne 1 (2001), 33-40.

[6] Lewandowska, Z. On 2-normed sets, Glas. Mat. Ser. III 38(58) (2003), no. 1, 99-110.

[7] Lewandowska, Z. Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space, Glas. Mat. Ser. III 38(58) (2003), no. 2, 329-340.

[8] Lewandowska, Z. Bounded 2-linear operators on 2-normed sets, Glas. Mat. Ser. III 39(59) (2004), 301-312.

[9] Gähler, S., Linear 2-normierte Räume, Math. Nachr, 28 (1965), 1-45.

[10] Mazaheri, H., Golestani, S., b-Orthogonality in 2-normed spaces, Submitted.

Received: May 30, 2007