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Abstract

Let Pn be a simple path on n vertices. An n-fan is a simple graph
G formed from a path Pn by adding a vertex adjacent to every ver-
tex of Pn. In this work we denote n-fan by Fn+1 and derive the ex-
plicit formula for t(Fn+1) the number of spanning trees in Fn+1 to
be t(Fn+1) = 2 ((3−√

5)/2)n+1−((3+
√

5)/2)n−1

5−3
√

5
. In addition, we show that

t(Fn+1) = F {2n}, where F {i} represents i’th Fibonacci number.
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1 Introduction

In this paper we derive two simple formulas for the number of spanning trees
of a special family of graphs called n-fans [5]. Let Pn be a simple path defined
on n vertices. An undirected simple graph F on n + 1 vertices is defined as
an n-fan when it is obtained from Pn by adding an additional vertex adjacent
to every vertex of Pn. In this work we denote n-fan by Fn+1. The n-fan is
illustrated in Figure 1.

The number of spanning trees of G, denoted by t(G), is the total number of
distinct spanning subgraphs of G that are trees. A classic result of Kirchhoff
[4] can be used to determine the number of spanning trees for G = (V, E).
Let V = v1, v2, ..., vn. To state the result, we define the n × n characteristic
matrix A = [aij ] as follows: (i) aij = −1 if vi and vj are adjacent and i �= j,
(ii) aij equals the degree of vertex vi if i = j, and (iii) aij = 0 otherwise.
The Kirchhoff matrix tree theorem states that all cofactors of A are equal,
and their common value is t(G). The matrix tree theorem can be applied to
any graph G to determine t(G), but this requires evaluating a determinant of



782 Zbigniew R. Bogdanowicz

 

      vn+1 

 
 
vn 

 
 
v5 

 
 
v4 

 
 
v3 

 
 
v2 

 
 
v1 

Figure 1: Fn+1

a corresponding characteristic matrix. However, for a few special families of
graphs there exist simple formulas that make it much easier to calculate and
determine the number of corresponding spanning trees especially when these
numbers are very large. One of the first such results is due to Cayley who
showed that complete graph on n vertices, Kn, has nn−2 spanning trees [3].
That is he showed

t(Kn) = nn−2 for n ≥ 2.

Another result is due to Sedlacek [6] who derived a formula for the wheel on
n + 1 vertices, Wn+1, which is formed from a cycle Cn on n vertices by adding
a vertex adjacent to every vertex of Cn. In particular, he showed that

t(Wn+1) =
(3 +

√
5

2

)n

+
(3 −√

5

2

)n

− 2 for n ≥ 3.

Sedlacek also later derived a formula for the number of spanning trees in a
Möbius ladder [7]. The Möbius ladder, Mn, is formed from cycle C2n on 2n
vertices labeled v1, v2, ..., v2n by adding edge vivi+n for every vertex vi, where
i ≤ n. The number of spanning trees in Mn equals

t(Mn) =
n

2
[(2 +

√
3)n + (2 −

√
3)n + 2] for n ≥ 2.

Another class of graphs for which an explicit formula has been derived is
based on a prism [2]. Let the vertices of two disjoint and equal length cycles
be labeled v1, v2, ..., vn in one cycle and w1, w2, ..., wn in the other. The prism,
Rn, is defined as the graph obtained by adding to these two cycles all edges of
the form viwi. The number of spanning trees in Rn is given by the following
formula.

t(Rn) =
n

2
[(2 +

√
3)n + (2 −

√
3)n − 2] for n ≥ 3.
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Baron et al. [1] derived the formula for the number of spanning trees in a
square of cycle, C2

n, which is expressed for n ≥ 5 as follows.

t(C2
n) = nF {n},

where F {n} is the n’th Fibonacci number. Similar results can also be found
in [8].

In this work we derive an even simpler formula, which expresses the num-
ber of spanning trees in n-fan directly in terms of Fibonacci numbers, i.e.,
t(Fn+1) = F {2n}. The method applied is to establish a recursion that is sat-
isfied by a Kirchhoff cofactor of the fan. We subsequently will show that the
stated formulas are the solutions to the recursion. Let x be the shift operator,
ai = xai−1 and x0 = 1. For recursion λkai+k + λk−1ai+k−1 + ... + λ0ai = 0 with
constants λ0, λ1, ..., λk we shall say that sequence {ai} satisfies

k∑
j=0

λjx
j = 0.

2 Main Results

We first form the Kirchhoff characteristic matrix An+1 corresponding to the
labeling shown in Figure 1. Next we focus our attention on the principal
submatrix An obtained by canceling its last row and column corresponding
to vertex vn+1 (Figure 2). So, the number of spanning trees of n-fan equals
t(Fn+1) = det(An).
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Figure 2: The principal tri-diagonal submatrix of Fn+1

Before presenting the main results we need the following lemma.
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Lemma 2.1 Let an denote the determinant of An. Then the sequence {an}
satisfies

x2 − 3x + 1 = 0

where x is the shift operator an = xan−1.

Proof: Expanding An along the first row we obtain

an = 2bn−1 − bn−2.

where bi = det(Bi), and Bi is defined as in Figure 3.
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Figure 3: Auxiliary tri-diagonal matrix Bi

Now we derive the recursion for bn by expanding det(Bn) along the first
row. We obtain

bn − 3bn−1 + bn−2 = 0,

which means that sequence {bi} satisfies

x2 − 3x + 1 = 0.

So, it follows that sequence {an} satisfies the above recursion. �

Theorem 2.2 If n ≥ 2 then

t(Fn+1) = 2
((3 −√

5)/2)n+1 − ((3 +
√

5)/2)n−1

5 − 3
√

5
.

Proof: We define the corresponding function

g(n) = 2
((3 −√

5)/2)n+1 − ((3 +
√

5)/2)n−1

5 − 3
√

5
.

By direct calculations we obtain that g(n) satisfies
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x2 − 3x + 1 = 0,

where x is the shift operator g(n) = xg(n−1). However, by Lemma 2.1, an sat-
isfies the same recursion. In addition, we numerically evaluate a2, a3, g(2), g(3)
and find that a2 = g(2) = 3 and a3 = g(3) = 8. So, an = g(n) and our formula
holds. �

Theorem 2.3 Let F {i} be i’th Fibonacci number and n ≥ 2. Then

t(Fn+1) = F {2n}.

Proof: Clearly, Fibonacci numbers satisfy recursion F {2i} − 3F {2i − 2} +
F {2i − 4} = 0 for i > 2. So, if we define f(i) as F {2i} then sequence {f(i)}
satisfies

x2 − 3x + 1 = 0,

where x is the shift operator f(i) = xf(i− 1). By Lemma 2.1, an satisfies the
same recursion. In addition, F {4} = f(2) = a2 = 3, and F {6} = f(3) = a3 =
8. So, f(n) = an and our result follows. �
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