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Abstract
A common fixed point theorem for certain contractive type mappings

is presented in this paper. As an application, the existence and unique-
ness of common solution for a system of functional equations arising
in dynamic programming is given. The results presented in this paper
generalize some known results in the literature.

0Correspondence author



830 Jinsong Li, Minjie Fu, Zeqing Liu and Shin Min Kang

Mathematics Subject Classification: 49L20, 49L99, 54H25, 90C39
Keywords: Common fixed point, contractive type mappings, complete

metric space, system of functional equations, dynamic programming

1 Introduction and Preliminaries

Let f, g and h be mappings from a metric space (X, d) into itself, R =
(−∞, +∞), R

+ = [0, +∞) and

Φ = {W : R
+ → R

+ is a continuous function such that

0 < W (r) < r for all r ∈ R
+ \ {0}}.

The existence of common fixed points and solutions for several classes of con-
tractive type mappings and functional equations and system of functional
equations arising in dynamic programming, respectively, have been studied
by many investigators, for example, see [1-19] and the references therein.

Ray [18] studied the existence of common fixed point for the following
contractive type mappings:

d(fx, gy) ≤ d(hx, hy) − W (d(hx, hy)), ∀x, y ∈ X. (1.1)

Liu [5] gave a sufficient condition which ensures the existence of common
fixed point for the contractive type mappings:

d(fx, gy) ≤ max{d(hx, hy), d(hx, fx), d(hy, gy)}
− W (max{d(hx, hy), d(hx, fx), d(hy, gy)}), ∀x, y ∈ X.

(1.2)

As suggested in Bellman and Lee [1], the basic form of the functional
equations in dynamic programming is as follows :

f(x) = sup
y∈S

H(x, y, f(T (x, y))), ∀x ∈ D, (1.3)

where x and y denote the state and decision vectors, respectively, T denotes
the transformation of the process and f(x) denotes the optimal return function
with the initial state x. The authors [2-4, 6-17, 19] studied the existence or
uniqueness of solutions, common solutions, coincidence solutions, nonpositive
solutions and nonnegative solutions for several classes of functional equations
and systems of functional equations arising in dynamic programming by using
various fixed point theorems, common fixed point theorems and coincidence
point theorems, respectively.

The purpose of this paper is to establish a unique common fixed point
theorem for four self mappings f , g, h and t on X which satisfy the condition
of the type

d(fx, gy) (1.4)
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≤ max
{
d(fx, tx), d(gy, hy), d(hy, tx),

1

2

[
d(fx, hy) + d(gy, tx)

]
,

d(fx, tx)d(gy, hy)

1 + d(hy, tx)
,
d(fx, hy)d(gy, tx)

1 + d(hy, tx)
,
d(fx, hy)d(gy, tx)

1 + d(fx, gy)

}

−W
(

max
{
d(fx, tx), d(gy, hy), d(hy, tx),

1

2

[
d(fx, hy) + d(gy, tx)

]
,

d(fx, tx)d(gy, hy)

1 + d(hy, tx)
,
d(fx, hy)d(gy, tx)

1 + d(hy, tx)
,
d(fx, hy)d(gy, tx)

1 + d(fx, gy)

})

for all x, y ∈ X, where W ∈ Φ. As an application, we prove the existence and
uniqueness of common solutions for a class of system of functional equations
arising in dynamic programming. The results presented in this paper extend
and unify some results in [5] and [18].

2 A Common Fixed Point Theorem

Our main result is as follows.

Theorem 2.1. Let (X, d) be a complete metric space, f , g, h and t be
four continuous mappings from X into itself satisfying ft = tf , gh = hg,
f(X) ⊆ h(X) and g(X) ⊆ t(X). If there exists W ∈ Φ satisfying (1.4), then
f , g, h and t have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since f(X) ⊆ h(X) and g(X) ⊆
t(X), it follows that there exist two sequences

{
yn

}
n≥1

and
{
xn

}
n≥0

such that
y2n+1 = fx2n = hx2n+1 for n ≥ 0 and y2n = gx2n−1 = tx2n for n ≥ 1. Define
dn = d(yn, yn+1) for n ≥ 1. We first show that

dn+1 ≤ dn − W (dn), ∀n ≥ 1. (2.1)

Let n ≥ 1. By (1.4) for x = x2n and y = x2n+1, we have

d2n+1

= d(fx2n, gx2n+1)

≤ max
{

d(fx2n, tx2n), d(gx2n+1, hx2n+1), d(hx2n+1, tx2n),

1

2

[
d(fx2n, hx2n+1) + d(gx2n+1, tx2n)

]
,
d(fx2n, tx2n)d(gx2n+1, hx2n+1)

1 + d(hx2n+1, tx2n)
,

d(fx2n, hx2n+1)d(gx2n+1, tx2n)

1 + d(hx2n+1, tx2n)
,
d(fx2n, hx2n+1)d(gx2n+1, tx2n)

1 + d(fx2n, gx2n+1)

}

−W
(

max
{

d(fx2n, tx2n), d(gx2n+1, hx2n+1), d(hx2n+1, tx2n),
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1

2

[
d(fx2n, hx2n+1) + d(gx2n+1, tx2n)

]
,
d(fx2n, tx2n)d(gx2n+1, hx2n+1)

1 + d(hx2n+1, tx2n)
,

d(fx2n, hx2n+1)d(gx2n+1, tx2n)

1 + d(hx2n+1, tx2n)
,
d(fx2n, hx2n+1)d(gx2n+1, tx2n)

1 + d(fx2n, gx2n+1)

})

≤ max
{

d2n, d2n+1, d2n,
1

2
d(y2n+2, y2n),

d2nd2n+1

1 + d2n
, 0, 0

}

−W
(

max
{
d2n, d2n+1, d2n,

1

2
d(y2n+2, y2n),

d2nd2n+1

1 + d2n

, 0, 0
})

,

which implies that

d2n+1 ≤ max{d2n, d2n+1} − W (max{d2n, d2n+1}). (2.2)

Suppose that d2n+1 > d2n for some n ≥ 1. It follows that d2n+1 ≤ d2n+1 −
W (d2n+1) < d2n+1, which is a contradiction. From (2.2) we infer that d2n+1 ≤
d2n −W (d2n) for all n ≥ 1. Hence d2n+1 ≤ d2n for all n ≥ 1. Similarly, we have
d2n ≤ d2n−1 − W (d2n−1) for n ≥ 1. That is, (2.1) holds. Therefore the series
of nonnegative terms

∑∞
n=1 W (dn) is convergent. Hence

lim
n→∞

W (dn) = 0.

Since
{
dn

}
n≥1

is a nonnegative decreasing sequence, it converges to some point
p. By the continuity of W we have

W (p) = lim
n→∞

W (dn) = 0,

which means that p = 0. Hence limn→∞ dn = 0.
In order to show that

{
yn

}
n≥1

is a Cauchy sequence, it is sufficient to show

that
{
y2n

}
n≥1

is a Cauchy sequence. Suppose that
{
y2n

}
n≥1

is not a Cauchy
sequence. Thus there exists a positive number ε such that for each even integer
2k, there are even integers 2m(k) and 2n(k) such that

d(y2m(k), y2n(k)) > ε, 2m(k) > 2n(k) > 2k.

For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k)
satisfying the above inequality, so that

d(y2m(k)−2, y2n(k)) ≤ ε, d(y2m(k), y2n(k)) > ε. (2.3)

It follows that for each even integer 2k,

d(y2m(k), y2n(k)) ≤ d(y2n(k), d2m(k)−2) + d2m(k)−2 + d2m(k)−1.
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Using (2.3) and the above inequality we deduce that

lim
k→∞

d(y2n(k), y2m(k)) = ε. (2.4)

By the triangle inequality we infer that for each even integer 2k

|d(y2n(k), y2m(k)−1) − d(y2n(k), y2m(k))| ≤ d2m(k)−1,

|d(y2n(k)+1, y2m(k)−1) − d(y2n(k), y2m(k))| ≤ d2m(k)−1 + d2n(k)

and
|d(y2n(k)+1, y2m(k)) − d(y2m(k), y2n(k))| ≤ d2n(k).

In view of (2.4) and the above inequalities we arrive at

ε = lim
k→∞

d(y2n(k), y2m(k)−1) = lim
k→∞

d(y2n(k)+1, y2m(k)−1)

= lim
k→∞

d(y2n(k)+1, y2m(k)).

By virtue of (1.4), we get that

d(y2n(k), y2m(k))

≤ d2n(k) + d(fx2n(k), gx2m(k)−1)

≤ d2n(k) + max
{
d(fx2n(k), tx2n(k)), d(gx2m(k)−1, hx2m(k)−1),

d(hx2m(k)−1, tx2n(k)),
1

2

[
d(fx2n(k), hx2m(k)−1) + d(gx2m(k)−1, tx2n(k))

]
,

d(fx2n(k), tx2n(k))d(gx2m(k)−1, hx2m(k)−1)

1 + d(hx2m(k)−1, tx2n(k))
,

d(fx2n(k), hx2m(k)−1)d(gx2m(k)−1, tx2n(k))

1 + d(hx2m(k)−1, tx2n(k))
,

d(fx2n(k), hx2m(k)−1)d(gx2m(k)−1, tx2n(k))

1 + d(fx2n(k), gx2m(k)−1)

}

−W
(

max
{

d(fx2n(k), tx2n(k)), d(gx2m(k)−1, hx2m(k)−1),

d(hx2m(k)−1, tx2n(k)),
1

2

[
d(fx2n(k), hx2m(k)−1) + d(gx2m(k)−1, tx2n(k))

]
,

d(fx2n(k), tx2n(k))d(gx2m(k)−1, hx2m(k)−1)

1 + d(hx2m(k)−1, tx2n(k))
,

d(fx2n(k), hx2m(k)−1)d(gx2m(k)−1, tx2n(k))

1 + d(hx2m(k)−1, tx2n(k))
,
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d(fx2n(k), hx2m(k)−1)d(gx2m(k)−1, tx2n(k))

1 + d(fx2n(k), gx2m(k)−1)

})

= max
{

d(y2n(k)+1, y2n(k)), d(y2m(k)−1, y2m(k)), d(y2m(k)−1, y2n(k)),

1

2

[
d(y2n(k)+1, y2m(k)−1) + d(y2m(k), y2n(k))

]
,

d(y2n(k)+1, y2n(k))d(y2m(k), y2m(k)−1)

1 + d(y2m(k)−1, y2n(k))
,

d(y2n(k)+1, y2m(k)−1)d(y2m(k), y2n(k))

1 + d(y2m(k)−1, y2n(k))
,

d(y2n(k)+1, y2m(k)−1)d(y2m(k), y2n(k))

1 + d(y2n(k)+1, y2m(k))

}

−W
(

max
{

d(y2n(k)+1, y2n(k)), d(y2m(k)−1, y2m(k)), d(y2m(k)−1, y2n(k)),

1

2

[
d(y2n(k)+1, y2m(k)−1) + d(y2m(k), y2n(k))

]
,

d(y2n(k)+1, y2n(k))d(y2m(k), y2m(k)−1)

1 + d(y2m(k)−1, y2n(k))
,

d(y2n(k)+1, y2m(k)−1)d(y2m(k), y2n(k))

1 + d(y2m(k)−1, y2n(k))
,

d(y2n(k)+1, y2m(k)−1)d(y2m(k), y2n(k))

1 + d(y2n(k)+1, y2m(k))

})
.

As k → ∞, we infer that

ε ≤ max
{

0, 0, ε, ε, 0,
ε2

1 + ε
,

ε2

1 + ε

}
− W

(
max

{
0, 0, ε, ε, 0,

ε2

1 + ε
,

ε2

1 + ε

})

= ε − W (ε),

which implies that W (ε) ≤ 0. This is a contradiction. Thus {yn}n≥1 is a Cauchy
sequence. Therefore {yn}n≥1 converges to a point z ∈ X by completeness of
X. It follows that

lim
n→∞

fx2n = lim
n→∞

hx2n+1 = lim
n→∞

gx2n+1 = lim
n→∞

tx2n = z.

By the continuity of h, f , t and g, and ft = tf, hg = gh, we conclude that for
any n ≥ 0

d(tfx2n, hgx2n+1)

= d(ftx2n, ghx2n+1)
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≤ max
{

d(ftx2n, ttx2n), d(ghx2n+1, hhx2n+1), d(hhx2n+1, ttx2n),

1

2

[
d(ftx2n, hhx2n+1) + d(ghx2n+1, ttx2n)

]
,

d(ftx2n, ttx2n)d(ghx2n+1, hhx2n+1)

1 + d(hhx2n+1, ttx2n)
,

d(ftx2n, hhx2n+1)d(ghx2n+1, ttx2n)

1 + d(hhx2n+1, ttx2n)
,

d(ftx2n, hhx2n+1)d(ghx2n+1, ttx2n)

1 + d(ftx2n, ghx2n+1)

}

−W
(

max
{

d(ftx2n, ttx2n), d(ghx2n+1, hhx2n+1), d(hhx2n+1, ttx2n),

1

2

[
d(ftx2n, hhx2n+1) + d(ghx2n+1, ttx2n)

]
,

d(ftx2n, ttx2n)d(ghx2n+1, hhx2n+1)

1 + d(hhx2n+1, ttx2n)
,

d(ftx2n, hhx2n+1)d(ghx2n+1, ttx2n)

1 + d(hhx2n+1, ttx2n)
,

d(ftx2n, hhx2n+1)d(ghx2n+1, ttx2n)

1 + d(ftx2n, ghx2n+1)

})
.

As n → ∞, we get that

d(tz, hz) ≤ d(tz, hz) − w
(
d(tz, hz)

)
,

which gives that tz = hz. Note that

d(tfx2n, hgx2n+1) = d(ftx2n, ghx2n+1), ∀n ≥ 0.

As n → ∞, we gain immediately that d(fz, gz) = d(hz, tz). Hence fz = gz.
It follows from (1.4)

d(fx2n, hgx2n+1)

= d(fx2n, ghx2n+1)

≤ max
{

d(fx2n, tx2n), d(ghx2n+1, hhx2n+1), d(hhx2n+1, tx2n),

1

2

[
d(fx2n, hhx2n+1) + d(ghx2n+1, tx2n)

]
,

d(fx2n, tx2n)d(ghx2n+1, hhx2n+1)

1 + d(hhx2n+1, tx2n)
,

d(fx2n, hhx2n+1)d(ghx2n+1, tx2n)

1 + d(hhx2n+1, tx2n)
,
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d(fx2n, hhx2n+1)d(ghx2n+1, tx2n)

1 + d(fx2n, ghx2n+1)

}

−W
(

max
{

d(fx2n, tx2n), d(ghx2n+1, hhx2n+1), d(hhx2n+1, tx2n),

1

2

[
d(fx2n, hhx2n+1) + d(ghx2n+1, tx2n)

]
,

d(fx2n, tx2n)d(ghx2n+1, hhx2n+1)

1 + d(hhx2n+1, tx2n)
,

d(fx2n, hhx2n+1)d(ghx2n+1, tx2n)

1 + d(hhx2n+1, tx2n)
,

d(fx2n, hhx2n+1)d(ghx2n+1, tx2n)

1 + d(fx2n, ghx2n+1)

})
, ∀n ≥ 0.

As n → ∞, we get that

d(z, hz) ≤ max
{

0, 0, d(z, hz), d(z, hz), 0,
d2(z, hz)

1 + d(z, hz)
,

d2(z, hz)

1 + d(z, hz)

}

−W
(

max
{

0, 0, d(z, hz), d(z, hz), 0,
d2(z, hz)

1 + d(z, hz)
,

d2(z, hz)

1 + d(z, hz)

})

= d(z, hz) − W (d(z, hz)),

which implies that z = hz.
Using (1.4), we infer that

d(ffx2n, gx2n+1)

≤ max
{

d(ffx2n, tfx2n), d(gx2n+1, hx2n+1), d(hx2n+1, tfx2n),

1

2

[
d(ffx2n, hx2n+1) + d(gx2n+1, tfx2n)

]
,

d(ffx2n, tfx2n)d(gx2n+1, hx2n+1)

1 + d(hx2n+1, tfx2n)
,

d(ffx2n, hx2n+1)d(gx2n+1, tfx2n)

1 + d(hx2n+1, tfx2n)
,

d(ffx2n, hx2n+1)d(gx2n+1, tfx2n)

1 + d(ffx2n, gx2n+1)

}

−W
(

max
{

d(ffx2n, tfx2n), d(gx2n+1, hx2n+1), d(hx2n+1, tfx2n),

1

2

[
d(ffx2n, hx2n+1) + d(gx2n+1, tfx2n)

]
,
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d(ffx2n, tfx2n)d(gx2n+1, hx2n+1)

1 + d(hx2n+1, tfx2n)
,

d(ffx2n, hx2n+1)d(gx2n+1, tfx2n)

1 + d(hx2n+1, tfx2n)
,

d(ffx2n, hx2n+1)d(gx2n+1, tfx2n)

1 + d(ffx2n, gx2n+1)

})
, ∀n ≥ 0.

Letting n → ∞ in the above inequality, we get that

d(fz, z) ≤ max
{

0, 0, d(fz, z), d(fz, z), 0,
d2(fz, z)

1 + d(fz, z)
,

d2(fz, z)

1 + d(fz, z)

}

−W
(

max
{

0, 0, d(fz, z), d(fz, z),

0,
d2(fz, z)

1 + d(fz, z)
,

d2(fz, z)

1 + d(fz, z)

})

= d(fz, z) − W (d(fz, z)),

which means that z = fz. It follows that z = fz = gz = tz = hz. That is z is
a common fixed point of f, g, h and t. If u is another common fixed point of
f, g, h and t in X, it follow from (1.4) that

d(z, u) = d(fz, gu) ≤ d(z, u) − w
(
d(z, u)

)
< d(z, u),

which is a contradiction. This completes the proof.

As consequences of Theorem 2.1, we have the following results.

Corollary 2.2. Let (X, d) be a complete metric space. Let f, g, h and t be
four continuous mappings from X into itself, ft = tf , gh = hg, f(X) ⊆ h(X)
and g(X) ⊆ t(X). If there exists W ∈ Φ satisfying

d(fx, gy) ≤ d(hy, tx)− W
(
d(hy, tx)

)
, ∀x, y ∈ X,

then f , g, h and t have a unique common fixed point in X.

Remark 2.3. Corollary 2.2 generalizes two results in [18].

Corollary 2.4. Let (X, d) be a complete metric space. Let f , g and h
be three continuous mappings from X into itself, fh = hf , gh = hg and
f(X)

⋃
g(X) ⊆ h(X). If there exists W ∈ Φ satisfying

d(fx, gy)

≤ max
{
d(hx, hy), d(fx, hx), d(gy, hy),

1

2

[
d(fx, hy) + d(gy, hx)

]}

−W
(

max
{

d(hx, hy), d(fx, hx), d(hy, gy),
1

2

[
d(fx, hy) + d(gy, hx)

]})

for all x, y ∈ X, then f , g and h have a unique common fixed point in X.

Remark 2.5. Corollary 2.4 is a generalization of the Theorem and Corol-
laries 1 and 2 in [5].
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3 An Application

Let X and Y be Banach spaces, S ⊆ X be the state space, D ⊆ Y be the
decision space and iX be the identity mapping on X. B(S) denotes the set of all
bounded real-valued functions on S and d(f, g) = sup{|f (x) − g(x)| : x ∈ S}.
It is clear that (B(S), d) is a complete metric space.

By means of Theorem 2.1, in this section we study the existence and unique-
ness of common solution of the following system of functional equations arising
in dynamic programming:

fi(x) = sup
y∈D

{
u(x, y) + Hi(x, y, fi(T (x, y)))

}
, ∀x ∈ S, i ∈ {1, 2, 3, 4}, (3.1)

where u : S × D → R, T : S × D → S and Hi : S × D × R → R for
i ∈ {1, 2, 3, 4}.

Theorem 3.1. Suppose that the following conditions are satisfied:
(a1) u and Hi are bounded for i ∈ {1, 2, 3, 4};
(a2) There exist W ∈ Φ and the mappings A1, A2, A3 and A4 defined by

Aigi(x) = sup
y∈D

{
u(x, y)+Hi(x, y, gi(T (x, y)))

}
, ∀x ∈ S, gi ∈ B(S), i ∈ {1, 2, 3, 4};

satisfying
|H1(x, y, g(t))− H2(x, y, h(t))|

≤ max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

}

−W
(

max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

})

for all (x, y) ∈ S × D, g, h ∈ B(S), t ∈ S;
(a3) A1(B(S)) ⊆ A3(B(S)), A2(B(S)) ⊆ A4(B(S));
(a4) There exists some Ai ∈ {A1, A2, A3, A4} such that for any sequence

{hn}n≥1 ⊆ B(S) and h ∈ B(S),

lim
n→∞

sup
x∈S

|hn(x) − h(x)| = 0 ⇒ lim
n→∞

sup
x∈S

|Aihn(x) − Aih(x)| = 0;
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(a5) A1A4 = A4A1, A2A3 = A3A2.
Then the system of functional equations (3.1) has a unique common solution

in B(S).

Proof. It follows from (a1)-(a4) that A1, A2, A3 and A4 are continuous self
mappings of B(S). For any g, h ∈ B(S), x ∈ S and ε > 0, there exist y, z ∈ D
such that

A1g(x) < u(x, y) + H1(x, y, g(T (x, y))) + ε, (3.2)

A2h(x) < u(x, z) + H2(x, z, h(T (x, z))) + ε. (3.3)

Note that

A1g(x) ≥ u(x, z) + H1(x, z, g(T (x, z))), (3.4)

A2h(x) ≥ u(x, y) + H2(x, y, h(T (x, y))). (3.5)

It follows from (3.2), (3.5) and (a2) that

A1g(x) − A2h(x) (3.6)

< H1(x, y, g(T (x, y)))− H2(x, y, h(T (x, y))) + ε

≤ max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

}

−W
(

max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

})
+ ε.

In view of (3.3), (3.4) and (a2) that

A1g(x) − A2h(x) (3.7)

> H1(x, z, g(T (x, z))) − H2(x, z, h(T (x, z))) − ε
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≥ −max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

}

+W
(

max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A4h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

})
− ε

(3.6) and (3.7) ensure that

d(A1g, A2h) (3.8)

= sup
x∈S

|A1g(x) − A2h(x)|

≤ max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

}

−W
(

max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

})
+ ε.

Letting ε → 0 in (3.8), we gain that

d(A1g, A2h) (3.9)

= sup
x∈S

|A1g(x) − A2h(x)|

≤ max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,
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d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

}

−W
(

max
{

d(A1g, A4g), d(A2h, A3h), d(A3h, A4g),

1

2

[
d(A1g, A3h) + d(A2h, A4g)

]
,
d(A1g, A4g)d(A2h, A3h)

1 + d(A3h, A4g)
,

d(A1g, A3h)d(A2h, A4g)

1 + d(A3h, A4g)
,
d(A1g, A3h)d(A2h, A4g)

1 + d(A1g, A2h)

})
.

It follows from (a5) and (3.9) that Theorem 2.1 implies that A1, A2, A3

and A4 have a unique common fixed point v ∈ B(S), that is, v(x) is a unique
common solution of the system of functional equations (3.1). This completes
the proof.
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