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Abstract

In this paper, we consider a classical risk process model and allow
investment into a risk-free asset as well as proportional reinsurance.
The optimal proportional reinsurance strategy is found to minimize the
probability of ruin. It is treated under two cases. The first case is a
trivial case and the corresponding the minimal probability of ruin and
the optimal proportional reinsurance strategy are given directly. For
the second case, firstly the existence of the solution to the Hamilton-
Jacobi-Bellman equation is proved. Then the minimal probability of
ruin and the optimal proportional reinsurance strategy are obtained by
a new verification theorem.
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1 Introduction

In recent years, stochastic control theory has gained much interest in insurance
literature. This is due to the fact that the insurance company can control the
surplus process so that a certain objective function is minimized (maximized).
The corresponding approach under the classical risk model is pioneered by
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Hipp and Plum (2000) who applied the classical stochastic control method to
reduce the optimization problem to a matter of solving a Hamilton-Jabcobi-
Bellman (HJB) equation. They found the optimal investment strategy to
minimize the probability of ruin. Since their pioneering work many attempts
have been made to solve the problem of minimizing the probability of ruin
in a framework that allows more controls. Schmidli (2001) obtained optimal
proportional reinsurance in the classical risk model, while optimal levels of
reinsurance and investment are found by Schmidli (2002). In addition, Hipp
and Vogt (2003) studied the same problem under the control of excess-of-loss
reinsurance.

In this paper, we study the classical risk model with the possibility of
investing in a risk-free asset as well as purchasing the proportional reinsur-
ance, and find the optimal proportional reinsurance strategy to minimize the
probability of ruin. Differently from Schmidli (2001) and Schmidli (2002), the
corresponding HJB equation do not always have a smooth solution. In order to
tackle the difficulty, we consider the optimal problem under two cases. Firstly
a trivial case is shown. In this case, the corresponding minimal probability of
ruin and the optimal proportional reinsurance strategy are given directly. For
the second case, we prove the existence of solution to the HJB equation. Since
the traditional verification theorem is no longer valid for our problem, a new
verification theorem is given. Moreover, the maximal probability of survival
and the optimal proportional reinsurance are obtained.

In section 2, the model assumptions are formulated, and a trivial case is
shown. In section 3, the corresponding HJB equation is given and the exis-
tence of its solution is proved. In section 4, the verification theorem is given.

2 The model

We model the surplus of an insurance company by a compound poisson pro-
cess. Here the number of claims Nt in (0, t] is a poisson process with intensity
λ, and the claim sizes Y

i
(i = 1, 2 · · ·) are a sequence of positive idd random

variables independent of Nt . Let G(x) = P (Yi ≤ x), E[Y
i
] = μ and Y is a

generic random variable which has the same distribution as Yi (i = 1, 2 · · ·).
We assume that G(x) is absolutely continuous. Let Ti be the occurrence time
of the i-th claim. The premium income in (0, t] is (1+η)λμt with safety loading
η > 0. In addition to the premium income, the company also invests all of the
surplus into a risk-free asset whose price process S0

t satisfies

dS0
t = rS0

t dt, r > 0.

Then, without reinsurance, the dynamics for the surplus process Ut is given
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by

dUt = rUtdt+ (1 + η)λμdt− d
Nt∑
i=1

Yi, (1)

with the initial reserve U0 = u.
For the rest of this paper we work on a complete probability space (Ω,F ,P)

on which the process {Ut} is defined. The information at time t is given by
the complete filtration {F t} generated by {Ut}.

A strategy α is described by a stochastic processes {bt; t ≥ 0}, where bt
represents the retention level at time t for reinsurance, which means that the
insurer pays btY of a claim occurring at time t and the reinsurer pays (1−bt)Y .
For this reinsurance, the premium rate λμ(1 + θ)(1− bt) has to be paid, where
θ represents the safety loading of the reinsurance company. We consider non-
cheap reinsurance, that is θ > η. Thus, when applying the strategy α, the
resulting surplus process Uα

t is dynamicly given by

dUα
t = rUα

t dt+ (bt(1 + θ) − (θ − η))λμdt− d
Nt∑
i=1

bTi
Yi. (2)

The strategy α is said to be admissible if bt is F t -progressively measurable
and satisfies 0 ≤ bt ≤ 1 a.s. for all t. We denote by Π the set of all admissible
strategies.

With the admissible strategy α, the ruin time is defined by

τα = inf{t ≥ 0 : Uα
t < 0}.

Then the probability of ruin can be written as

ψα(u) = P (τα <∞|Uα
0 = u)

with the probability of survival

φα(u) = P (τα = ∞|Uα
0 = u) = 1 − ψα(u).

The aim is to minimize the probability of ruin which is the same as maximiz-
ing the probability of survival. We will compute the maximal probability of
survival.

φ(u) = sup
α∈Π

φα(u) (3)

and find an optimal proportional reinsurance strategy α∗ such that

φ(u) = φα∗(u).
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Note that φ(u) = 0 for u < 0. In this case, any admissible strategy can be
regarded as an optimal proportional reinsurance strategy.

Before solving the problem we consider a trivial case, that is, ru > λμ(θ−η)
for the initial reserve u. In view of (2), if the strategy bt ≡ 0 for all t is applied,
ruin will not take place for ever, i.e., φα(u) = 1. By (3), it follows that

φ(u) = 1, u ≥ λμ(θ − η)/r (4)

and the strategy

bt ≡ 0, t ≥ 0, (5)

is optimal.
In the following sections we consider the maximal survival probability φ(u)

on [0, (θ − η)μ/r) and the corresponding optimal strategy.

3 The HJB equation and the existence of its solution

To solve the above optimization problem, the dynamic programming approach
described in Fleming and Soner (1993) is used. From standard arguments, we
know that if φ(u) is continuously differentiable, then φ(u) satisfies the following
HJB equation:

sup
b∈[0,1]

(ru+ (b(1 + θ) − (θ − η))λμ)φ
′
(u) − λφ(u) + λE[φ(u− bY )] = 0. (6)

As follows, the existence of a solution to (6) on [0,
displaystyleλμ(θ− η)/r) is proved. This will be done through a monotonicity
argument.

Theorem 3.1 There exists a strictly increasing solution V (x) to the HJB
equation (6) on the interval [0, λμ(θ−η)/r), which is continuous on [0, λμ(θ−
η)/r] with V (u) → 1 as u → λμ(θ − η)/r, continuously differentiable on
(0, λμ(θ − η)/r).

Proof Let b(u) be the value where the equality

ru+ (b(1 + θ) − (θ − η))λμ = 0

holds for 0 ≤ u < (θ−η)λμ
r

, then

b(u) =
(θ − η)λμ− ru

(1 + θ)λμ
> 0.
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Since we are looking for a strictly increasing solution of equation (6), we
can rewrite it as

φ
′
(u) = inf

b∈(b(u),1]
λ

φ(u) −Eφ(u− bY )

ru+ (b(1 + θ) − (θ − η))λμ
, 0 ≤ u <

(θ − η)λμ

r
. (7)

Define a sequence Vn(u) via V0(u) = φ0(u), the probability of ruin without
reinsurance for n = 0, and through the recursion

V
′
n+1(u) = inf

b∈(b(u),1]
λ

Vn(u) − EVn(u− bY )

ru+ (b(1 + θ) − (θ − η))λμ
. (8)

For n = 0 we have

V
′
0 (u) = λ

V0(u) −EV0(u− Y )

ru+ (1 + η)λμ
> 0, (9)

[see Sundt and Teugels (1995)], and from (8) we get for n = 1

V
′
1 (u) = inf

b∈(b(u),1]
λ

V0(u) −EV0(u− bY )

ru+ (b(1 + θ) − (θ − η))λμ
. (10)

It follows that V
′
1 (u) ≤ V

′
0 (u) for all u ≥ 0. Let bi(u) (i = n, n + 1) are the

points where the minimum is taken for V
′
i (u) (i = n, n+1) respectively. Then

the considerations above show that

V
′
n+1(u) − V

′
n(u) =

E
∫ u
u−bn+1(u)Y V

′
n(s)ds

ru+(bn+1(u)(1+θ)−(θ−η))λμ
−

E
∫ u
u−bn(u)Y V

′
n−1(s)ds

ru+(bn(u)(1+θ)−(θ−η))λμ

≤ E
∫ u
u−bn(u)Y V

′
n(s) − V

′
n−1(s)ds

ru + (bn(u)(1 + θ) − (θ − η))λμ
≤ 0,

and by induction V
′
n(u) is a decreasing sequence. In addition, note that the

minimum in (10) is not attained at the point b(u) > 0, so V
′
1 (u) > 0. By

recursion V
′
n(u) > 0 for all n ≥ 1. Thus the sequence V

′
n(u) converges to a

function g(u). And with

V (u) = 1 −
∫ (θ−η)λμ

r

u
g(s)ds, (11)

we have a nondecreasing continuous function V (u) satisfying

g(u) = inf
b∈(b(u),1]

λ
V (u) −EV (u− bY )

ru+ (b(1 + θ) − (θ − η))λμ
≥ 0. (12)

What is left is a proof for continuity of g(u) and g(u) > 0, then

V
′
(u) = g(u)
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is continuous and V (u) satisfies the equation (6) on [0,
displaystyleλμ(θ − η)/r). Now we show that g(u) > 0 for all u > 0. First
there exists ε > 0 such that g(u) > 0 for u < ε. Indeed, since V

′
1 (u) > 0, we

can rewrite (10) as

sup
b∈(b(u),1]

(ru+ (b(1 + θ) − (θ − η)λμ)V
′
1 (u) + λ[EV0(u− bY ) − V0(u)] = 0 (13)

with b1(0) = 1, where b1(u) is the maximizing function of (13). In view of
lemma 3 in Schmidli (2002), there exists ε > 0 such that b1(u) = 1 for u < ε.
Thus from (9)-(10) equation V

′
1 (u) = V

′
0 (u) holds for u < ε. By recursion,

V
′
n(u) = V

′
0 (u) > 0 for u < ε and all n > 0. Therefore g(u) = limn→∞ V

′
n(u) =

V
′
0 (u) > 0 for u < ε.

It remains to show that g(u) > 0 is still true for u ≥ ε. Otherwise we can
assume that

u0 = inf(u : g(u) = 0) <∞,

obviously u0 ≥ ε > 0 holds. Choose a ε0 such that ε0 ≤ ε and

P (Y >
ε0(1 + θ)

(θ − η)λμ− r(u0 + ε0)
) > 0. (14)

Then there exists u0 ≤ u < u0 + ε0 for which g(u) = 0 or

inf
b∈(b(u),1]

[V (u) − EV (u− bY )] = V (u) −EV (u− b(u)Y ) = 0,

i.e.

V (u) − EV (u− (θ − η)λμ− ru

1 + θ
Y ) = 0. (15)

In addition, (14) yields

P (
(θ − η)λμ− ru

1 + θ
Y > ε0) = P (Y >

ε0(1 + θ)

(θ − η)λμ− ru
)

> P (Y >
ε0(1 + θ)

(θ − η)λμ− r(u0 + ε0)
) > 0. (16)

So, (15) gives

V (u) −EV (u− (θ − η)λμ− ru

1 + θ
Y )I

(
(θ−η)λμ−ru

1+θ
Y >ε0)

= 0,

which implies
V (u) − V (u− ε0) = 0.
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We obtain
0 =

∫ u

u−ε0

g(s)ds ≥
∫ u0

u−ε0

g(s)ds ≥ 0,

which contradicts the choice of u0.
On the other hand, combining g(u) > 0 with (12) yields the continuity of

g(u).

4 The verification theorem

As is shown in Section 2, for the initial reserve u < 0 and u ≥ λμ(θ−η)/r, the
maximal probability of survival φ(u) and corresponding optimal proportional
reinsurance strategy α∗ are given by

φ(u) =

⎧⎪⎨
⎪⎩

0, u < 0,

1, u ≥ λμ(θ − η)/r,

and

α∗ =

⎧⎪⎨
⎪⎩

any admissible strategy, u < 0,

{b∗t = 0, t ≥ 0}, u ≥ λμ(θ − η)/r,

The following verification theorem shows

φ(u) = V (u) of (11), 0 ≤ u < λμ(θ − η)/r,

and the corresponding optimal proportional reinsurance strategy is derived
(see 17). Differently from the traditional verification theorem, it only involves
the solution of the HJB equation (6) on [0, λμ(θ − η)/r) while the traditional
verification theorem involves the solution of the HJB equation (6) on [0,∞).
Moreover, the optimal proportional reinsurance strategy is skilly constructed.

Theorem 4.1 Let V (u) be defined by (11) with V (u) = 0 for u < 0. Then
the maximal probability of survival φ(u) = V (u) on [0, λμ(θ − η)/r) and the
optimal proportional reinsurance strategy α∗ is given by

b∗t =

⎧⎪⎨
⎪⎩
b∗(Uα∗

t− ), t < Tα∗ ,

0, t ≥ Tα∗ ,
(17)

where Tα∗ = inf{t ≥ 0 : Uα∗
t = (θ − η)λμ/r} and b∗(u) is the point on which

the supremum is taken to the HJB equation (6) on [0, λμ(θ − η)/r).
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Proof For any admissible strategy α = {bt}, let Tα = inf{t ≥ 0 : Uα
t =

(θ − η)λμ/r}. Define the strategy α
′

b
′
t =

⎧⎪⎨
⎪⎩
bt, t < Tα,

0, t ≥ Tα.

The analysis in section 2 implies φα′ (u) ≥ φα(u). This shows that we can
restrict the optimization problem to such strategy α that bt = 0 for t ≥ Tα.
Let Π

′
denotes the set of such strategies. Then, for the strategy α

′ ∈ Π
′
,

applying Ito’s formula into V (Uα
′

t∧T
α
′∧τ

α
′ ) results in

V (Uα
′

t∧T
α
′∧τ

α
′ ) = V (u) +

∫ t∧T
α
′ ∧τ

α
′

0
(rUα

′
s + b

′
s(1 + θ) − (θ − η)λμ)V

′
(Uα

′
s )ds

+

Nt∧T
α
′ ∧τ

α
′∑

i=1

(V (Uα
′

Ti
) − V (Uα

′
Ti−))(18)

By Brémaud (1981, page 27 or page 235),

Nt∧T
α
′ ∧τ

α
′∑

i=1

(V (Uα
′

Ti
) − V (Uα

′

Ti−)) − λ
∫ t∧T

α
′∧τ

α
′

0
[EV (Uα

′

s − b
′
sY ) − V (Uα

′

s )]ds

is a martingale with zero-expectation. (Similarly also see Schmidli (2002)
Theorem 1). Taking expectations on both side of (18) yields

V (u) = EV (Uα
′

t∧T
α
′∧τ

α
′ ) − E

∫ t∧T
α
′∧τ

α
′

0
[rUα

′
s + (b

′
s(1 + θ) − (θ − η)λμ)V

′
(Uα

′
s )

+
∫ Uα

′
s /bα

′
s

0
λV (Uα

′
s − b

′
sy)dG(y) − λV (Uα

′
s )]ds ≥ EV (Uα

′
t∧T

α
′∧τ

α
′ ), (19)

where the last inequality follows from (6). Note that

P (Tα′ < τα′ |τα′ = ∞) = 1. (20)

Indeed, if Tα
′ = τα′ = ∞, 0 < Uα

′
t < λμ(θ − η)/r for all t ≥ 0. In addition,

there is a positive (maybe small) probability that

Nt+1∑
i=Nt

b
′
Ti
Yi > λμ(θ − η)/r + (1 + θ)λμ.

Therefore

Nt+1∑
i=Nt

b
′
Ti
Yi > λμ(θ − η)/r +

∫ t+1

t
rUα

′

s ds+
∫ t+1

t
b
′
s(1 + θ)λμdt− (θ − η)λμ
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holds with a positive probability, where we use the fact that Uα
′

s < λμ(θ−η)/r
on {t < Tα′} and b

′
s ≤ 1. By the law of large numbers, ruin occurs, i.e., τα′ <∞,

which contradicts τα′ = ∞ and (20) is proved. Thus

V (u) ≥ EV (Uα
′

t∧T
α
′∧τ

α
′ ) = EV (Uα

′

t∧T
α
′∧τ

α
′ )I(Tα

′ <τ
α
′ ,τ

α
′=∞)

+ EV (Uα
′

t∧T
α
′∧τ

α
′ )I(Tα

′ >τ
α
′ ,τ

α
′ <∞) + EV (Uα

′

t∧T
α
′∧τ

α
′ )I(Tα

′≤τ
α
′ ,τ

α
′ <∞),

where the choice of the strategy α
′
implies that the last term is equal to 0. By

the bounded convergence theorem as t→ ∞,

V (u) ≥ EV (Uα
′

τ
α
′ ) + P (τα′ = ∞) = φα′ (u),

Since the distribution G(x) of claims is absolutely continuous , Uα
′

τ
α
′ < 0 a.s..

Thus, by V (u) = 0 for u < 0, we get

V (u) ≥ P (τα′ = ∞) = φα′ (u),

which implies V (u) ≥ φ(u).
Redoing the calculation with the strategy given by (17) yields V (u) =

EV (Ut∧τ
α
′
∗
∧Tα∗ ) and letting t → ∞ gives V (u) = φα∗(u). Thus V (u) ≤ φ(u)

which ends the proof.
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