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Abstract

We investigate the global existence of both strong and weak solu-
tions for a linear coupled system with homogeneous feedback boundary
conditions in bounded-open domain €2 in R™ with n € N. We also prove
the exponential decay of total energy associated with weak solutions.
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1 Introduction
The linear coupled system studied in this paper is motivated by both the wave

and the heat linear equations. We will study the existence, uniqueness and
exponential decay of solutions for the mixed problem

u’(z,t) + Au(z, t) + Z %(z,t) =0 in Qx]0, 0], (1.1)
=1 "t

LCorresponding author
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0’(x,t)+.z49(x,t)+ig—j(x,t) =0 in Qx]0, 0], (1.2)

u(z,t) =0, 0(x,t) :Z:(; on I'yx]0, o0l, (1.3)

a@u (x,t) + a(x)u'(z,t) = 0 onl'y x]0, oo, (1.4)
VA

669 (x,t) + pO(z,t) =0 on I'yx]0, 00, (1.5)
VA

u(z,0) = u’(z), u/'(x,0) = u'(x), 0(z,0) =0°x) in Q, (1.6)

where ) is a bounded-open set in R™ with n € N. The boundary I' of Q is a C%-
set, and there exists a partition {Ty, T'1} of T" where I'y and I'; have positive
measures and I'g N I’y is an empty set. The operator A and the co-normal

derivative % are given by

Av(z,t) = — Z i(ai]‘(l',t) av(x; t)) and v _ Z a;i(z,t) Gv(x,t)l/i'

52 ox; vy 52 Ox;

We assume the following hypotheses on the functions of the system (1.1)-(1.6):

a e WHe(Iy), alz)>a>0 and apf > % for n € N. (1.7)

> i@ )68 > 7(|€1|2 +...+ |5n|2) for all &= (£1,...,&,) € Q with v >0. (1.8)

3, j=1

a;j = aj; witha;; € Wll(;zo (0, 00; C1()) N Wfo’zo (0, 00; L*(2)). (1.9)

The subset V' of H'(2) is defined by V = {v € H*(Q);v =0 on Ty} which
is a Hilbert space with inner product and norm of H'(Q). In V x V we define
the bilinear form

a(t,v,w) Z/a”xtaavg;ud

i,7=1

From (1.8) and (1.9) follows a(t,v,w) is defined positive, symmetrical and
continuous over V' x V. To get global solutions of the system (1.1)-(1.6) is also
considered the additional hypotheses

0
E atczjj x,t) (8;) <0 forall veV. (1.10)
J

The constant v defined in the hypothesis (1.8) satisfies

k
v > "2 Where ks = ess sup |a;;(v,t)] and n€N. (1.11)
2 2x]0, 00|
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We will use the Galerkin’s method to show the existence of solutions for the
system
(1.1)-(1.6). However, due to homogeneous boundary condition of feedback
type (1.4) and (1.5), it is necessary the construction of a special basis to ap-
ply the Galerkin’s method. In Medeiros-Milla Miranda [6] was constructed a
special basis which allows authors to study some properties associated with
wave equation with homogeneous boundary conditions via Galerkin method.
To prove the global existence solutions for (1.1)-(1.6) we will make use of the
ideas of Medeiros-Milla Miranda’s paper. The asymptotic behavior of energy
associated with weak solution of the system (1.1)-(1.6) will be determined as-
suming that a;;(x,t) is the real function a(z, t) satisfying the properties fixed
n (4.1). To obtain the exponential decay we construct a Liapunov operator
and utilize the technics introduced by Haraux-Zuazua [1].

The one-dimensional thermoelastic system associated with (1.1)-(1.2), i.e
when n = 1 and a;j(x,t) = 1 with Dirichlet boundary conditions, has been
studied for several authors. Questions about existence, uniqueness, stabiliza-
tion asymptotic, and exact controllability of solutions has been answered. See,
for instance, Hansen [7], Henry at al [2], Kim [3] among them.

2 Strong Solutions

The aim here is to prove the existence and uniqueness of solution for (1.1)-(1.6)
when u°, u! and 0° are smooth. Thus, we have the strong solution result

Theorem 2.1 Assuming the hypotheses (1.7)-(1.11) and the initial data and
boundary conditions satisfying

W e VNHA(Q), u'eV, °cVnHQ),

0 00°
L—i—oz( u'=0 on I'y and — + 30° =0 on T,
3%4 3%4

then there exists a unique pair of real functions {u, 0} solution of (1.1)-(1.6)
such that

ueL<l>°
oc

HGL}”

ou " 90 . N .
_ZJZ (az] (z,t) axj> + 2 oz, =0 in LlOC(O’ o0; L7(Q2)), (2.3)

"9 00 " o . o
0= 3 g (o) + Ly =0 in L0, 00 L), 24
j i=1

(0,00; VN H?(R)), o € L%C(O, oo; V), u” € L%C(O, oo; L2(€2)), (2.1)

(0 003 VN H?(Q)) N L7, (0,00;V), ¢ € LF (0,005 V), (2.2)




682 M. R. Clark, H. R. Clark and A. O. Marinho

+au' =0 in LY (0,00 H/A(T1)), (2.5)
8VA

99 +80 =0 in L} (0,00 H/2(T'1)) N L7, (0, 00; H3/(I'y)), (2.6)
8VA oc

u(0) = u®, ' (0) =wut, 6(0)=46". (2.7)

Proof. In VN H?*(Q) we define a special basis given by the sequences (u) e,
(up)eer and (09)sen such that

u) — u” in VﬂH2(Q), u; — ut in V, 6) — 6y in VN H*(Q) strongly,

690
8u€ +05/U/£—0 on I’y and 6—4—590—0 on IY.

v A
(2.8)
For each ¢ € N fixed, and uY, u} and 6 linearly independent we define the vec-
tors
@ =), wh = u} and @l = 69. Hence by orthornormalization process we con-
struct a basis
B = {w{, @), ..}, ..} in VN H*Q) satisfing (2.8). In these conditions,

for each m € N we consider the subspace W/, = [w!, @b, ..., @’ | generated by

the m-first vectors of the basis B. Thus, it is well known that the system of
ordinary differential equations

(), (¢ vdP—l—Z (6893‘;’:‘ (H),v) =0, (29)

(W 0),0) + alts o (0),0) + [

Iy

(0}, (1), w) + alt, Opm (1), +ﬁ/ Opm (t wdr+2(a“fm w) —0, (2.10)
U (0) =, ), (0) =uj and 6, (0) = 6, (2.11)

has a local solution {ue,(t), Oum(t)} in WE x W defined over [0, t,,[ for all
v, w € W!. This pair of solutions can be extended over [0, 7] for any real
number 7" > 0 thanks to estimates to proceed.

Substituting v by uj,,(t) into (2.9), w by 64, (t) into (2.10) and using the
identities

~ (O d 0o,
3 (e 0m0) = =3 (0. FE0) + 30 [ vt

i=1 i=1

1d 1
amwam%am:5%kmwamwam]—ywwm@wM@x
it follows from hypothesis (1.10) that

GEO )+ (0= 5) [ iu(0Par+ (3 32) [ Beatepar <o,

(2.12)



Linear system with homogeneous damping 683

where
By(1) = 5{ 1)+t wn(6), e (6) + B ()}

Now, differentiating the approximate equations (2.9) and (2.10) with re-
spect to t, taking v = uy (t) and w = 6),,(t) it follows

li u// ’2 1d
24t ™ T 24t
ot Oy ) + [ a0+ [ 10T .13

Iy

> (G vtn) + 3 (2 ) =0

1= 1=

’9/’2 +ta (t uﬁma“ém) + a(t uﬁm’”éﬁz) + a/(t efma 02m>+

Next, we will analyze some terms in (2.13). Since

i <653ﬂ792m) = _i< va 89% Z/ Uem Vz‘dF, then for e >0

=1 1=

"L oul) & 00, € n
m ’ 0/ ) < _ < " ’ Km) e / " 2dF s 9/ 2dF
izl < amz Im | = ZZI Upr, amz + 2 I [uﬁm] + % Fl[ Em]
(2.14)
Thanks to hypotheses (1.8) and (1.10) yields

a/(ta Upm., ugm) > - [ (t Ugm., uﬁm)] - a”(ta Upm, uém)’

—dt
1d 1 1d
(t uﬁm’“Zm) - 5%[“@7 uémauémﬂ - ia/(t7 u%m’“ém) > 5%[“@7 uémauémﬂ?

a(t, Oty Om) = V|00 ()1

(2.15)
Taking into account (2.14) and (2.15) into (2.13) yields
d d €
S B(t) + 10w )]+ Gl P+ (0= 5) [l P+
dt dt 2/ Jr, (2.16)

(9= 35) || BundPdl < 10"t )|+ 16,6 8,
€ T

where
Bo(t) = {1 OF + alt, (0, () + 18, (17

Using the hypothesis (1.8) and usual inequalities into two terms of the right-
hand side of (2.16) we can write

nk
(a) " (t, wem, Uy, )| < —HUemH +—1H Up||? < coBr(t)+c1Ea(t),
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, , nk nk
(b) |0 (t, Om, O, )| < 2H9emHQ+—2H9 I
0 o
where k) = ess sup |aji(z,t)] and "= Byt Taking into account (a) and (b)
2x]0, 00| t
into (2.12) and (2.16) we have
d d nks ) )
D) + 10/ )]+ (7= "22) {0 + 1001 +
€ / "
@0—5)/F { [t ()] + [, (8] } T+ (2.17)

(B—Q%) /Fl{[eem( +[0),,(1)])2} dT < cE(t),

where ¢ = max{co, c1} and E(t) = E1(t) + E2(t). Integrating (2.17) from 0 to
t, with 0 < ¢ < T, and using the hypotheses (1.9), (1.10), and the hypotheses
on initial conditions we have

B0+ (v = "22) [ {10617+ 100 s+

(a0 %) / t / [ {0+ (o)t

B -z / / [Gem(s [egm(sﬂ?}drds < ¢y + E(0) +c/0tE(s)ds,

(2.18)
where ¢z depends on only of u° and u'. To prove that £(0) is bounded in V'
it is sufficient to show that Fy(0) is bounded in V. It is equivalent to prove

that uj, (0) and 6,,,(0) are bounded in L?(€). In this point it will be clear the
importance of the special base constructed previously. In fact, taking ¢t = 0,
v=uj (0) and w = 6),,(0) in (2.9) and (2.10) yields

866 7

(W00, (0)) + a0, (0) + [ (@t (0 dr+2( i (0)) =0, (219)

Iy

"L roul
(0,4 (0) + 60,02 0 (0) 45 [ 020, 0) 0 + 35 (52,04 (@)) =0, (220)

From Green’s formula it implies

" 6u0 ouy, (0)
a(0, u?, u,,, (0) Z / aij (z &xj éimidx -

i,7=1

ou
_ Z/ . a;; (x,0) 6 i|/U/£m Ydx + Z/aw z,0) l/zugm(O)dx.

Zjl
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n

From (2.9) we have ) a;; (2,0) 5~ du" v; = —auj on T, thus
ij=1
0 8“4 1,
a(o’ Uy, U’Em Z 813 a’LJ €, O } Em( )dl‘ - oz(x)u U’Em(o)dr'(2'21)
i I
O I 860 O !
(O 96’ ém Z 8.131 a’LJ €, 0 8 }eém( )dl‘ - B r, 0 eém(o)dr' (2'22)

1,7=1

Taking into account (2.22) and (2.22) into (2.19) and (2.20) respectively, yields

|y Z/ a;j (z,0) Guqu (O)dx—i—i/aegu” (0)dx =0
Km ij amj Im — Qamz Im )

Z/axz a;j(x,0) azg} o dx—i—Z/aug@gm —

Hence, from convergence (2.8) and hypothesis (1.9) we get wj(0) and 6] (0)
are bounded in L?(Q). Therefore,

1 ” 1
Al (O +a (0,4, ud) + 10,0} < €.

independent of ¢ and m. Consequently, from (2.18) and Gronwall’s inequality

EQ(O) —

nkg

E(t) + <7 - —) / {H@em( I+ 1165, (¢ )HZ}ds—i—
<a0 - = / / [y, (s [ugﬂ(s)P}dFds—l— (2.23)
B - / / Hem [egm(s)]Q}dFds <C,

for all ¢ in [0, 7] and the constant C' depends only the hypothesis (2.8). Note
that all the constants on the left-hand side of (2.23) are positive, thanks to
hypotheses (1.7) and (1.11). For ¢ € N fixed, the estimate (2.23) permit us by
induction and diagonal process to obtain subsequences (wgm,, Jnen Of (Uem )men
and (0em,, )nen of (Bom)mern which also will be denoted by (wsm )men and (Gom ) men
respectively. Besides, we also will get functions u, : Qx]0,00[— R and
6, : ©2x]0, 0o[— R as a consequence of the convergence of those subsequences.
In these conditions, we multiply both sides of the approximate equations (2.9)
and (2.10) by ¢ € D(0,00) and integrate in relation to ¢ for all v,w € W,
which imply

| o+ [ a0, 0w a
0 0
/0 /n a@)ul(t) v (t dth+Z/ gZi (t)dt:(),
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| oo [T @0 a
0
ﬁ/ Fléhz Jwip(t dF+Z/ ng (t)dt:().

As B = {@!, @i, @}, ...} is a Hilbertian basis of V' N H? (), then by density
we have (2.24) and (2. 25) are still valid for all v, w € V N H?(Q).

On the other hand, the estimate (2.23) also hold for all / € N. Thus,
by the same process used in (2.24) and (2.25) we get two diagonal sequences
(ug,) and (6;,) which will still be denoted by (us) and (6;) and functions
u: Q2x]0, 00— R and 0 : Qx]0, co[— R such that

(2.25)

@, [T, oo
/ooo/pl alay v drd”Z/ (1), ) (t) dt = 0
| @@ wua+ [ o0, wpean
7 /ooo /F O(Bw(tydl d + 21 /0 ) (g—i(t%w)w(w dt =0,

for all ¢ in D(0,00) and for all v,w € V. As D(Q2) is dense in V' then (2.26)
and (2.27) yield

(2.27)

u”—i—Au—i—Z 5y, — 0 L2 (0, 00; L*()), (2.28)
/ u . o0
0 + A0 + Z 5 =0 in L5 (0, 00; L(€)). (2.29)
i=1 *

Thus, the proof of (2.3) and (2.4) are completed =
From (2.23) and considering (2.26) and (2.27) we have u, v’ and 6 belong

to Li’o (0,00; V). Hence,
oc

— and Z (aw x,t %) belong to LfOC(O, 00; L2(Q)), (2.30)
j

il i,7=1

Ou 2 .72
Z oz, and Z (aw x,t) 8xj> belong to Lj, .(0,00; L*(£2)).  (2.31)

From (2.30), (2.31) and cf. [5] it follows -2% and % belong to

vy
LfOC(O, oo; H~Y2(I'y)). Multiplying (2.28) by vy with v € V and ¢ € D(0, o)
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and (2.29) by wy with w € V' and ¢ € D(0,00) and using Green’s formula it

/Oo(u” v)wdt—l—/ooo a(t,u,v wdt—/ <Z Gij5— 1/“ >wdt+
(2.32)

Z/ wdt — 0 for all ¢ € D(0,00) and for all v €V,

/0 C )wdt+/oooa(t,9,w)wdt—/ <Z“Ua Vi, W >wdt+
(2.33)

n © 9 l
Z/ —u,w)wdt — 0 for all ¢ € D(0,00) and for all v eV,
x H'Y?(T;). Comparing (2.26)

implies

where < , > is the duality paring of H—1/%(T;)
and (2.27) with (2.32) and (2.33) respectively we obtain

00 n a
/ < Z az‘ja—ul/z‘ + az)u, v>wdt =0 for all ¥ € D(0,00) and for all v €V,
o ,

* & 00
/ < Z Qij 5 Vi + (0, w>wdt =0 for all ¥ € D(0,00) and for all v € V.
0 J

Consequently,
ou
E a”& vi+a(z)u’ =0 in L7 (0, 00; CHY2(TY)),
(2.34)

INES 1
69 oo 1/2
Zawa vi+ B0 =0 in L (0,00; H'/*(T)).
i,7=1
Hence, we conclude (2.5) and (2.6) =
Now, we shall prove that u € Lj° (0, 00; H*(2)) and 6 € Lj_ (0, 00; H*(()).
In fact, being {u, 8} solution of the boundary value problem

" UL
—Au=u +i2133€z‘

—A0 =0+ gz in € x[0,00],

u=0=0 on I'yx0,00],

in Q x [0, 00],

Zawa vita(x)u' =0 on T x[0,00],
1,]= 1
69
Zawa vi+ 080 =0 on I'ix]0,00],

i,7=1
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we have from convergence of subsequence above, that

” ", 00
u”+ Z O loc (O’ 05 L (Q)) )
i=1 v

9’+Zgu

=1

belongs to Lfoc (0,00; L*(©2)) .

i

Besides, (2.34) it implies that Yo(a (z)u') and SYof belong to
L. (0, 00; HY/2(I'1)), where Yy is the trace operator of order zero. Thus, from
results on elliptic regularity, it follows that u and 6 belong to L. (0, 00; H* (2))
Uniqueness of the solution is showed by standard energy method .
Other conclusions of Theorem 2.1 are verified in a standard way. Thus, the
proof has been completed m
Global solution of the system (1.1)-(1.6) is guaranteed by:

Corollary 2.1 If in the hypotheses (1.9) we take a; € W>(0,00; C1(Q)) N
W22(0,00; L2(R2)), then there exists a unique pair of functions {u, 0} which
satisfy the Theorem 2.1 for all
t€[0,00] m

3 Weak Solutions

Our goal in this section is to obtain solutions for problem (1.1)—(1.6) with
initial data
u eV, u'el*Q) and °cV.
The corresponding solutions shall be called WEAK SOLUTION. To obtain that
solution we approach u°, #° and u' by sequences of vectors in V' N H%(2) and
V' respectively, and apply the result of Theorem 2.1. The weak solution is
guaranteed by the following theorem

Theorem 3.1 Assuming the hypotheses (1.7)-(1.11) and w° € V, u' €
L*(Q2) and 6° € V. Then there exists a unique pair of real functions {u,0}
solution of (1.1)-(1.6) such that
u € Cp([0, 00[; V) N C([0, 00f; L*(9)), (3.1)
6 c Cg([o oo[' L*(Q)) N L7, (0,00 V), (3.2)

du oL ,
_Z <ath m‘)+i1%_0 anlOC(O,oo,V), (3.3)

’Ljf J

) o 00 i ou’ /
0 — Z 3—%<aij($’t) 3ocj) + Z Oz, =0, wn Lloc(O’OO; V) (34)

ij=1
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ou , .
% +au =0 in L%OC(O’OO;L2(F1>>’ (35)
00 .
v +00 =0 in L7, (0,00; L*(I1)), (3.6)
u(0) =u°, ¥/(0) =u', and 6(0) = 6°. (3.7)

Proof. Let (u)sen and (69)sery be sequences of vectors in VNH?(Q2) and (u})sen
sequences of vectors in V' such that

u) — v’ in V, u, —u' in L*(Q), 6} — 0" in V,
a—ug—l—oz(x)ul—(] on I'y and 6—92—1—590—0 on I’
3%4 t ! 3%4 t 1'

In these conditions, there exists a sequence of strong solutions {us, 0s}sen
of system (1.1)-(1.6) defined by the precedent initial data, which satisfy the
estimate (2.23). Thus, it implies in the existence of subsequence of (us)een
and (0¢)een which will still be denoted by (ug)een and (0y)sery, and functions
u, 0:Qx[0,00[— R and @1, 2, 91, 12 : I'1 X [0,00[— R such that

uy — u weak star in LfgC(O, oo; V), (3.8)

up =’ weak star in - L3° (0, 00; L*(€2)), (3.9)

0 — 60 weakin Li (0,00;V), (3.10)

up = 1 weak in L7 (0,00; L*(T'y)), (3.11)
& Ouy _ 9 9

i’jzlaij%jl/i — ¢z weak in Ly .(0,00; L7(I'1)), (3.12)

0y — 1 weak in LfOC(O, oo; L*(I'y)), (3.13)
00, , 5 5

> Gijg, Vi = Y2 weak in L}, (0, 00; L*(I'y)). (3.14)

ij=1

It also has from (2.3) and (2.4) that

" . 0 0 n 00
Uy — ”ZI %(aij(x’t)%uj) + ZZI 33; =0, (3.15)
~ 9 00 " ou!
0y — Zl a—%<aij($’t)%i‘) + Zl aZf =0, (3.16)
1,j= i

o)

where both identities are in the sense of Lloc(o’ oo; L(Q). Now, multiplying

both side of (3.15) and (3.16) by vy and w respectively, where v, w € V and
1 € D(0,00), and integrating on [0, co[. After these, taking limit { — oo and
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observing the convergence (3.8)-(3.14) it follows

_/000 (u',v) w’dt+/ (t,u,v) wdt+/ / x) prvpdldt +Z/ wdt =0,

(3.17)

_/Ooo(g’v)w’dt+/ tewwdH—B/ /9w¢1drdt+2/ wdt_o

(3.18)
The equations in (3.17) and (3.18) are still also valid with v, w € D (2). Thus,
it follows

u” — i %(ai]‘ (z,1) ) Z 8351 0, (3.19)

t,j=1

"9 00\ O~ O
3 a_xi@j (2, 1) %j) + Z azz 0, (3.20)

ij=1

where both identities are in the sense of H,,! (0, 00; L*(€2)). Now, we will prove
the identities

& ou & a0
P2 = Z <aij%j)l/ia Yy = Z <aij%j)l/ia pr=u" and ¢ =0.

i,7=1 i,7=1

From (2.5), (2.6) and (3.11)-(3.14) it follows

w2 +a(x)pr =0 on I'y x[0,00] and e + P11 =0 on I'y x [0, 0ol

(3.21)
Then it follows from (3.8)-(3.10) that
ug — u  weak in Lfoc (0,00; V), (3.22)
up = u' weak in Lloc (0,005 L* (), (3.23)
6y — 60 weak in Lloc (0,00; V). (3.24)
From (3.23) and (3.24) yields
uy —u” weak in nglc (0,00; L* (), (3.25)
20, 00 , 5 5
e weak in L7, (0,00; L? (2)) . (3.26)

From (3.21), (3.25) and (3.26) we get the weak convergence in Hl (0, 00; L*(Q))
of the term

> a—mi<(lz‘j($,t)%uj) — Z a—%<aij(x,t)%uj). (3.27)

ij=1 ij=1



Linear system with homogeneous damping 691

Denoting by T,, ¢ = 0, 1, the Trace operator and using (3.22) and (3.27) it im-
plies (cf. Milla Miranda [5]) that Tiu, — Tiu weak in HIBIC(O, oo; H-Y2(T')).
it also, from (3.12) yields Tiu; — @2 weak in LfOC(O,oo;L2(F1)). There-
ore,

- ou
Y2 = Tlu = ZJZI az‘j%jl/i ] (328)
On the other hand, from (3.8) it results u, — v’ weak in HII;C(O, oo; HY2(Iy)).
Hence and from (3.11)
Y1 = Toul [ (329)
From (3.22) and (3.24) it follows

du,  ou’
RN N

i —1 .72
oz,  op, “eakin Hj, (0,00, L7(0)), (3.30)
92 —~ ¢ weak in HII)IC(O’ 00; V)' (3.31)

Thus, from (3.20), (3.30) and (3.31) yields the weak convergence in

HIBIC(O,OO;LQ(Q)) of
) 00, ) 00
zjzl 3352 <aw (-T, t) 335]) zjzl 3352 <aw (-T, t) 335]) (3 3 )

The convergence (3.24) and (3.32) imply Y16, — Y10 weak in HII;C(O, oo; HY2(I'y)).
It also follows from (3.14) that 116, — v, weak in LfOC(O, oo; L*(T'1)). Thus,
we conclude
& 00
Yo =110 = ”21 aij%jl/i . (3.33)
On the other hand, from (3.26) it implies Tofy — Tof weakin L} (0, 00; HY2(T)).
Hence and from (3.13) it follows

Y1 ="To0 = (3.34)

From (3.21), (3.28) and (3.29) yields

)
3 aij%“jyi ta(@)u =0 in L3 (0,00, L*(I)). (3.35)

ij=1

Analogously, from (3.15), (3.21), (3.33) and (3.34) yields

" 39 . 2 T2
Z aij%jl/i +60=0 in Lloc(o’ o0; L(I'1)). (3.36)

ij=1
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Our next task is to prove the identities in (3.3) and (3.4) are satisfied in the
sense of LfOC(O, o0; V'). In fact, for all v, w € V it follows

"0 0
’< i Zl a—xi<a”%uj)’v>’ < la(t )|+ {00t O gosraeyy vz

where T u = Z a”& ;. Thus,

i,7=1

(- 35 2 o))

IN

C(u)lv]l, forall veV.  (3.37)

N9 00
(-3 g5 (g )| <Ol orawev o
ou 90
where C'(u) = C [lully, + Co By ™ C®) =C 0], +Co o e

From (3.37) and (3.38) we get for all 7' > 0

_ Z 3$z< o ) and — i %(azj%) belong to L*(0,T; V"),

i,j=1 1,j=
(3.39)
From (3.17), (3.18), (3.39), and Green’s formula yields
T , r "0 ou
_/0 (u,v)wdtJr/O <— > T%(aij%j),vwcm
i,7=1
" o (3.40)
Z/ ( ,v)wdt:(), V¢ eD(0,T) and Yo eV,
i=1 Y0 ;i
r , r 0 a0
_/0 (e,w)¢dt+/0 (- Z %<aij%j),w>wdt+
=t (3.41)

n T /
Z/ <g—z,w)wdt:0, V¢ eD(0,T) and Ywe V.
i=1 70 ‘

Thus, from (3.39), (3.40), (3.41), and as 7" > 0 is arbitrary we conclude (3.3)
and (3.4)

The regularities (3.1) and (3.2) are obtained in an usual way proving that
(t¢) jepy and (0¢) oy are Cauchy sequences

The initial conditions u(0) = u° «/(0) = u!, and #(0) = 0° in Q are
obtained from regularities (3.1) and (3.2) =

Finally, the uniqueness of solutions is obtained using the method of regu-
larization cf. Lions-Magenes [4] - pp 221, and also, Visik-Ladyzhenskaya [§]

Thus, the proof of Theorem 3.1 is completed m
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4 Asymptotic Behavior

The aim of this section is to prove that the total energy associated with
weak solutions of (1.1)-(1.6) has exponential decay as t — +00. To make this,
we consider a(x) = m(x) - v(x) and the following representation for I'y and I'y

Fo={zeT; m(z) v(r) <0} and Ty ={z €T; m(z)- v(z) >0},

where m(z) =z — 29, for all z € R™, 2 € R™ fixed, and ”-” denotes the usual

scalar product in R". Herein, the operator A and the co-normal derivative of
A are defined by

Av(x’t):_ig a(x’t)av(w,}t) i“ x,t) ”
— Oz, Ox; 8VA ‘= axj

=

where the real function a(z,t) satisfies

a(x,t) € W1’°°(O, o0; C1(Q)) N W2’°°(O, oo; L2(£2)),

loc loc (1)
4.1
Ky
a($,t)2a0>0, HGHOOS Wa
where ||a||loc = ess sup —a(x,t)', R(2°) = max |m(x)| and k is a
x]0, 00 19T* x €

real positive number.

The total energy E(t) of the system (1.1)-(1.6) is given by

B(t) = S {0 + alt,u(t) ut) + 10(0)

where

It is easy to see from (2.12) and (1.7) that the energy E(t) is non increasing
in view of

th( t)+ /F <0‘0 - %) [u]?dDl < —~]|0]. (4.2)

In these conditions we have the following stability’s result

Theorem 4.1 If the real function a(z,t) satisfies the hypothesis (4.1) then the
energy E(t) associated with weak solution of (1.1)-(1.6) gquaranteed by Theorem
3.1 satisfies

E(t) < AE(0)exp(—(t) forall t>0, (4.3)

where A and ( are real positive constants.
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Proof. First we will get (4.3) to energy FE(t) given by strong solutions of
(1.1)-(1.6). The stability’s result for the energy associated with weak solution
will be guaranteed by density properties. Therefore, let p(¢) be defined by

p(t) = 2(u'(t),m - Vu(t)) + (n — 1)(u'(t), u(t)). (4.4)
Hence
p(t) = 2("(t), m - Vu(t)) + 2(u'(t), m - Vu'(t))

(4.5)
+H(n = 1" (t),u(t)) + (n —1)|u' (1)

0 0 "L 00
Substituting u” = Z — <a(9c, t) _u) — Z - into (4.5) yields
. :

- ij ij

J(t) = 2(i % <a(m, t)a%“j(t)) m - Vu(t)) —9 i (aai (t),m - Vu(t))+

j=

2(u'(t),m-Vu'(t)) + (n — 1)<i Giycj <a(9c, t)%),u(t))—

SNl 2
(=13 (5 0 (0) + (= DO
(4.6)
Now, our goal is to bound each term of the right-hand side of (4.6). As

m - Vu = ka— for a moment we will use in the first term of (4.6) the

following notatlon

2<i ai( (e, Vo (1)),m - Vu(t)) = 2<%<a%),mk§—;).

j=1 J

In the following steps we will use the Green’s formula several time and the
boundary conditions (1.3)-(1.5).

Step 1 The first term of (4.6):

0 ou ou ou Omy, Ou
2 =92 Z dy—
<axj <“axj)’m’“axk) / “Du; Oz, O

ou 0*u ou ou
2 de + 2 dr.
/Qa&?cjmk Ox;0xy, v / axj ijkaxk
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Modifying some terms of (4.7) yields

ou 0%u 0 ou ou
2 _9 _
/ S /Q D <“axjm’“) Dan

2
Q/aa—uykmk%dF—Q/ 0 aaumkaudx—i—Q/a Ou m audx—l—

Ox; Oxy, Oxp Ox; " Ox;j Ox 0z, k@xj
ou dmy, Ou ou ou
2 [ a——-—dv —2 — —dr.
/ Ox; Oxy, Oxy, /“axj Vkmkamk

Using the hypothesis (4.1) yields

ou 9%u ou \ 2 ou Omy, Ou ou ou
—2 < - R " dr — M ——
o 02, " B0y m/Q (axj) S A T /Faaxj VAT G O

Substituting the last inequality into (4.7) yields
0 ou ou ou Ou Ou \2
(b} mepe) <2 [t [ (22
Ox; aaxj mkaxk - “axj Ox; o Ox; o
ou Ou ou ou ou ou
———dzr — dx + 2 —vmp—=—dl.
”/“axjaxk v / Yoz, M T /F“axjyjm’“axk
Adding the last inequality from j, k=1,...,n we have

2<i aij( %uj),rmVu) < —(2—n—r)a(t,u,u)—

s (4.8)
Z /Fa—l/kmkﬁ—xkdr + 2 Z / oz, ijk dF
Step 2 The second term of (4.6):
’ Z(aem Vu <22/’ ]mk]’ ’dx<
ox;’ ox; ox (49)

4327 [ ] oo = FE R v

Step 3 The third term of (4.6):

, , - Ou]? /amk "o
2(u',m-Vu') = dx+
(u',m - Vu') ;/ﬂmk &xk Z .

Z mpvg[u/]2dl = —n|u')* + / m - v[u']?dT.
Iy

k=11

S [l

=1
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Step 4 The fourth term of (4.6):
SN, ou - ou Ou
1 Z (a) u) = —(n—1 a2 Qo
(n )<Z ox; <a8xj)’u) (n=1) Z/ Oz; Ox;
n—lZ/a—VjudF— —(n —1Da(t,u,u) + n—l/%udf

—(n —Da(t,u,u) — (n — 1)/ m - vu'udl.

Let ¢; > 0 be a real number such that / (m - v)v?dl’ < ¢1||v||} then
Iy

—(n—l)/F(m pytudr < "2 [ (=1 V)QV[ W2dT+

—1 . —1 ?
n / 7 (m ”H@%Fg%/ m~l/[u’]2dF+%HuH2§
Iy

- 1 2 1
aln—1)° / m - vl + Jalt, u,u).
Thus,

——— [ m-v[)?dr.
v Iy

(4.11)

Step 5 The fifth term of (4.6): Let dy > 0 be a real number such that |v|* <
do||v||? for all v € V. Thus, hence,

NP, " 26em(n — 1)\ /2] 98 5 1/2
03 () =03 | () ] ) e <
don(n — 1) > 7 2 don(n—1)? 2, 7 2
5 161] JFEM < 1611+ 7l
(4.12)
Taking into account (4.8)-(4.12) into (4.6) yields
1 [R(=")]7 | don(n —1)%\
't) < —(=—kr)a(t,u,u) + + o|]"—
#(t) < = (- k)l () ()27 —)lel
-1
WPt (14 20 / m - v)[u']?dl —
! ( E ) Fl( )l (4.13)
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Our next task is to analyze the two last boundary terms in (4.13). Note that
on 'y we have

0 o 9 e
G Vi = g, whichimplies - Vu= ()50 and Val? = (57)
Thus, we can write

- ou ou
— — —dF = — — —dl'—
Z /Fa VR, . j;l /F1 a&xj VLM O

J,k=1

& 0
Z / Ou — VM= 8u dF:—/ am~1/]Vu\2dF—/ am:- 1/< u) dar,
j,kil FO amj amk Fl Fl aV

and
ou ou " ou ou
2 / Z/mk dF—2 l/mk—dF—l—Z —vimp——dl =
];1 83@ ’ ];1 83@ T Oy, ;1 To 83@ T Oy,
ou ou
I'+2 T =
N 81/A(m Vu)dl' + /Faam l/(ay) d
—2/ (m-y)u'(m-Vu)dF—l—2/ am:- 1/(8 ) dr.
T o 81/
L : ou\ 2
From definition of I'y it follows [ a(xz,t)(m - v) <8_) < 0. Thus,
T'o v

ou

— t —dF 2 t dl' =
Z/r alx, l/kmk + Z/F alx, Vﬂm’“ak

k=1
—Z/F (m - v)u'(m - Vu)dl — /r a(x,t)(m - v)|Vul|?dT.

(4.14)
On the other hand,

— m-l/u/m- u o Q, 1/2m-1/1/2u/a 1/2m-1/1/2 u
2/F1< ol V)dFSQR(O)/Fl(O) (m- )[4 |(a0) V2 (m - 1) V2| VuldT <

Re) (4.15)
—x/ (m-y)|u’|2dr+/ alz, t)(m - v)|Vu|2dT.
ao ry Iy
From (4.14) and (4.15) yields
8 R(xo)/ n2
— t —dF 2 t —dlI' < : dr.
(4.16)
Substituting (4.15) into (4.13) yields
1 (RO n(n=1)%\, 0
/ < (= = _
O G L e L
(4.17)

/| + <1 n Cl(n; 1) N R(xo)) /F1 (m - v)[u/]2dT.

Qo
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Multiplying p'(¢) by € > 0 it follows from (4.2) and (4.17) that

iE(t)+/ {%_ [E+€<1+C1(n; 1)? +R<x0>)}}[u']2drg

“ ’ 0y]2 0
(5~ w)alt uw) - [w—s([R(j ) +”<ZV_501) )]l
2 1 R(2%))*  n(n—1) ) o
—elu'[* < —5<i—n)a(t,u,u)—%[’y—g<[ (7 ) + <2750) )}!9’ —elu'|”.

(4.18)
Let 7 be a real positive number defined by

T:min{&“(i—/ﬁ), %[V—a(%Jr%)} 5}-

Hence, (4.17) and (4.18) it follows that

B0+ [ fon= [fre(t 0 S e < e,
(4.19)

where E.(t) = E(t) 4+ ep(t).
It is easy to prove that there are positive constants 7; and 7, such that

mE(t) < E:(t) < nE(1) (4.20)

for all ¢ > 0 and for suitable e. From (4.19) and (4.20) we obtain (4.3).
Therefore, the theorem 4.1 is established m
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