
Applied Mathematical Sciences, Vol. 2, 2008, no. 18, 861 - 881

Demonic Operational and

Denotational Semantics

Fairouz Tchier

Mathematics Department, King Saud University
P.O. Box 22452, Riyadh 11495, Saudi Arabia

ftchier@hotmail.com

Abstract

Over the years, different approaches to give semantics of program-
ming and specification language have been put forward. We restrict
ourselves to the operational and the denotational approach, two main
streams in the field of semantics. We use relational formalism and we
consider the worst execution of the program i.e we suppose that the
program behaves as badly as possible it’s the demonic relational se-
mantics . The principal aim of this paper is to show that relational
demonic operational semantics of a nondeterministic program is equal
to its demonic denotational semantics.

Keywords: Operational semantics; Denotational semantics; Demonic se-
mantics, Relational semantics; Nondeterminism; Nontermination

Our mathematical tool is abstract relation algebra [17, 37, 39].

(1) Definition. A (homogeneous) relation algebra is a structure (R,∪,∩, , ˘, ◦)
over a non-empty set R of elements, called relations. The following conditions
are satisfied.

• (R,∪,∩,) is a complete atomic Boolean algebra, with zero element Ø,
universal element L and ordering ⊆.

• Composition, denoted by (◦), is associative and has an identity element,
denoted by I.

• The Schröder rule is satisfied: P ◦Q ⊆ R ⇔ P−1◦R ⊆ Q ⇔ R◦Q−1 ⊆ P .

• L ◦ R ◦ L = L ⇔ R �= Ø (Tarski rule).

862 F. Tchier

The precedence of the relational operators from highest to lowest is the follow-
ing: and ˘ bind equally, followed by ◦, then by ∩, and finally by ∪. From
now on, the composition operator symbol ◦ will be omitted (that is, we write
QR for Q ◦ R).

We now give useful definitions. For more details (see, e.g., [9, 17, 37]).

(2) Definition.

(a) A relation R is functional iff R−1R ⊆ I.

(b) A relation v is a vector [37] iff v = vL.

(c) A relation a is a partial identity [41] iff aa−1 ⊆ I.

(d) A relation x is a point [37] iff x = xL and xx−1 ⊆ I.

In our work we need to define an operator called relative implication.
In previous work, we used the monotype and residual operators see
[44, 45, 46, 47]

(e) A binary operator �, called relative implication [41], is defined as fol-
lows :

Q � R := QR.

The operator � binds less than (◦) and more than ∩ and ∪.

We need to define the notions of direct sum and the direct product.

(3) Definition.

(a) A pair (σ1, σ2) of relations is called direct sum[7, 8, 19] iff :

σ1σ
−1
1 = I, σ2σ

−1
2 = I, σ1σ

−1
2 = Ø, σ−1

1 σ1 ∪ σ−1
2 σ2 = I.

Relations σ1 and σ2 are called injections.

The next definition introduces the notion of the disjoint union of two
relations.

(b) Let (σ1, σ2) be a direct sum. The relation 〈R1, R2〉 := σ−1
1 R1σ1 ∪

σ−1
2 R2σ2 is called the disjoint union of relations R1 and R2 with respect

to (σ1, σ2).

(c) A pair (π1, π2) of relations is called direct product iff [7, 8, 19]

π−1
1 π1 = I, π−1

2 π2 = I, π1π
−1
2 = L, π1π

−1
1 ∩ π2π

−1
2 = I.

Relations π1 and π2 are called projections.

In what follows, we will define the cartesian product of relations. For
more details see [19].

Demonic operational and denotational semantics 863

(d) Let (π1, π2) be a direct product and Ri, 1 ≤ i ≤ 2 relations. The
cartesian product of relations Ri with respect to (π1, π2) is :

[R1, R2] := π1R1π
−1
1 ∩ π2R2π

−1
2 .

(e) Another operation that occurs in the definition of the while program
semantics is the reflexive transitive closure. The reflexive transitive
closure is an unary operation denoted ∗ and defined for every relation
R by : R∗ =

⋃
i≥0 Ri, where R0 = I and Ri+1 = RRi.

The unary operations ∗, −1 and bind equally.

In the following, we describe notions that are useful for the description
of the set of initial states of a program for which termination is guar-
anteed. These notions are initial part and the progressive finiteness of
a relation. The algebraic definitions are

(f) The initial part [37] of a relation R, denoted I(R), is given by :

I(R) :=
⋂{x | R � x = x},

where x takes its value in the set of the vectors (by Definition 2(b),
I(R) is a vector). See [36, 37]); in other words, I(R) is the least
fixed point of the ⊆-monotonic function g(x) := R � x, where x is a
vector (the least fixed point of g exists since the set of vectors is also
a complete lattice [37]).

(g) A relation R is said to be progressively finite iff I(R) = L, in other
words if there is no infinite path by R. Progressive finiteness of a
relation R is the same as well-foundedness of R−1.

(Mnemonics : I(R) represents the set of states from which no infinite
loop is possible.)

1 Relational diagrams

In the following, we will give the formal definition of a diagram and different
types of diagrams. For more details, see [47, 45]

(4) Definition. Let A be a homogeneous relational algebra.

(a) A quadruple P = (P, C, ε, ξ) is a diagram on A iff,

• P is a relation of A, called the associated relation of diagram P,

• C is a set of partial identities (Definition (2)c) disjoint from each
other, verifying the condition : (∪C)P (∪C) = P ,

864 F. Tchier

• ε (entry) and ξ (sortie,which means exit in french) are partial
identities
(ε, ξ ∈ C) called respectively the input relation and the output
relation of the diagram P.

(b) A diagram P1 = (P1, C, ε1, ξ1) is a sub-diagram of diagram P =
(P, C, ε, ξ) iff : P1 ⊆ P and ((∩C)∩ε1 ∪ ξ1)P = P ((∪C)∩ε1 ∪ ξ1) =
Ø.

We distinguish two types of diagrams : elementary and compound diagrams.

(a) A diagram P = (P, C, ε, ξ) is atomic iff C = {ε, ξ} and P = εPξ.

An atomic diagram consists of a unique atomic step i.e. the transition
between the input node and the output node is formed in exactly one
step.

(b) A diagram P = (R, C, ε, ξ) is a sequence diagram iff :

P = P1 ∪ P2, C = {ε, a, ξ}, P = εP1a and P2 = aP2ξ.

(c) A diagram P = (R, C, ε, ξ) is a branching diagram iff

R = G1 ∪ P ∪ G2 ∪ Q, C = {ε, a, b, ξ}, G1 = εG1a, P = aPξ,
G2 = εG2b and Q = bQξ .

(d) A diagram W = (W, C, e, s) is a loop diagram iff

W = P ∪ Q, P = εPε, Q = εQξ and PL ∩ QL = Ø.

The graphs and the matrices representing the different diagrams P
can be found in [41, 43]

In a loop diagram, P is applied until Q can be applied.

(e) A diagram is elementary if it is an atomic, a sequence, branching or a
loop diagram.

(f) A diagram is compound if it is not elementary.

(5) Lemma. Let P = (P, C, ε, ξ) is a diagram and σ a relation such that
σσ−1 = I and σ−1σ ⊆ I. Then Pσ := (σ−1Pσ, σ−1Cσ, σ−1εσ, σ−1ξσ), where
σ−1Cσ := {σ−1cσ : c ∈ C}, is a diagram.

For more details see [21, 27, 41].

Demonic operational and denotational semantics 865

2 A demonic refinement ordering

We now define the refinement ordering we will be using in the sequel. This or-
dering induces a complete join semilattice, called a demonic semilattice. The
associated operations are demonic join (�), demonic meet (
) and demonic
composition (�). We give the definitions and needed properties of these oper-
ations. For more details on relational demonic semantics and demonic opera-
tors, see [6, 7, 8, 9, 20, 21, 41].

(6) Definition. Let Q and R be relations. We have,

(a) We say that a relation Q refines a relation R [28, 29], denoted by
Q � R, iff

Q ∩ RL ⊆ R ∧ RL ⊆ QL.

(b) The greatest lower bound (wrt �) of relations Q and R is Q � R =
(Q ∪ R) ∩ QL ∩ RL.

(c) If Q and R satisfy the condition QL ∩ RL = (Q ∩ R)L, their least
upper bound is Q
 R = (Q ∩ R) ∪ QL ∩ R ∪ Q ∩ RL, otherwise, the
least upper bound does not exist.

(d) We will introduce a certain operation, related to the usual relational
composition, the so-called demonic composition. Its definition is

Q � R := QR ∩ Q � RL.

Note that we assign to � the same binding power as that of ◦.

3 Demonic input-output relation

During the execution of a program in an input state, by considering a demonic
point of view (if there is a possibility for the program not to terminate nor-
mally then it will not terminate normally), three cases may happen : normal
termination, abnormal termination and infinite loops. As our goal is to define
formally the input-output relation of a diagram by supposing its worst exe-
cution, we have to consider these three previous cases together at the same
time. Let us give the relational expressions that formalize these notions : the
normal termination, the abnormal termination and the infinite loops.

Let P = (P, C, ε, ξ) be a diagram. The input-output relation of a diagram
P is given by a relation E(P) where E is a function from the set of diagrams
to a relational algebra, which associates to each diagram P the relation E(P)
given by :

E(P) = ε � (T ∩ I(P)) � ξ, with T := P ∗ ∩ PL˘.

For more details see [6, 7, 8, 9, 21].

866 F. Tchier

4 Demonic denotational semantics

The demonic semantics of a nondeterministic program p is given by a relation
D[[p]], where D is a function from the set of programs P to a certain relational
algebra (see Section 1). As, we are interested to imperative programs, this
algebra is in general a complete algebra of the form Rel(X). The constructors
considered are affectation, sequence, guarded commands and the while loop.
To treat the last case, we need to suppose that the algebra is complete. We
will present the syntax before introducing the denotational semantics.

4.1 Syntax

We will use the word programs and instructions in an interchangeable man-
ner. In reality, we consider programs fragments. Each program uses a certain
number of variables x0, . . . , xn. We don’t precise the syntax of the admissible
expressions. Let i be an instruction.

• Affectation :

xi := f(x), where f(x) is an expression that depends on x0, . . . , xn.

• Sequence :

i1; i2, where i1 and i2 are instructions.

• Guarded commands : if c1 → i1 c2 → i2 fi, where each ci is a boolean
expression called guarded command where i1 and i2 are instructions. This
can be generalized to an arbitrary number of guarded commands.

• While loop :

do c → i od, where c is a boolean expression (guarded command) and i
is an instruction.

4.2 Semantics

We will give the demonic denotational semantics of each constructor. These
results are from [21].

(7) Remark. In our examples, we will use sets to define the program spaces.
The space of the program is defined by the variables of the program and their
type. Hence, the sets that we are interested in cartesian product of predefined
sets.

Let R be a relation defined on a set X which is the cartesian product of sets
X0, . . . , Xn. An element x ∈ X has the form x = (x0, . . . , xn), where xi ∈ Xi,
so, the notation (x, x′) is an abbreviation of ((x0, . . . , xn), (x′

0, . . . , x
′
n)).

Demonic operational and denotational semantics 867

We will begin by the basic case; affectation.

• Affectation :

Suppose that x0, . . . , xn are the program variables and their values are
in X0, . . . , Xn, respectively, and that f is a certain executable function.
The demonic semantics of the affectation xi := f(x), where 0 ≤ i ≤ n,
x = (x0, . . . , xn) and x′ = (x′

0, . . . , x
′
n), is the relation

D[[xi := f(x)]] := {(x, x′) | (∀j : 0 ≤ j ≤ n : xj ∈ Xj ∧ x′
j ∈ Xj) ∧ x′

i = f(x)
∧(∀j : 0 ≤ j ≤ n ∧ j �= i : x′

j = xj)}.
• Sequence :

The demonic semantics of the sequence p; q of programs p and q is :

(8) D[[p; q]] := D[[p]] � D[[q]].

• Guarded commands :

The demonic semantics of the guarded commands if g1 → p1 g2 →
p2 fi is

(9) D[[if g1 → p1 g2 → p2 fi]] := G[[g1]] � G[[g2]]∼ � D[[p1]]
 G[[g1]]∼ � G[[g2]] � D[[p2]]

 G[[g1]] � G[[g2]] � (D[[p1]] � D[[p2]]),

where G[[gi]] is the semantics of the guarded commands gi, i = 1, 2.
The relation G[[gi]] is a partial identity such that its domain satisfies
the guarded command condition. Notice that G is applied to boolean
expressions but D is applied to instructions and for this raison we will
use two different symbols.

As the relations G[[gi]] are partial identities, by certain properties (for
more details see [41]), the last expression is given with angelic operators
as follows :

D[[if g1 → p1 g2 → p2 fi]] = G[[g1]]G[[g2]]
∼D[[p1]] ∪ G[[g1]]

∼G[[g2]]D[[p2]]
∪ G[[g1]]G[[g2]](D[[p1]] � D[[p2]]).

This expression is inductively explained as follows:

If g1 is true and g2 is false, execute p1 ; if g1 is false and g2 is true, execute
p2 ; if both are true, so do a demonic choice between p1 and p2 (�).

In the case where the conditions are mutually exclusive, we will use
certain rules and Equation 9 is reduced to: D[[if g1 → p1 g2 → p2 fi]] =
G[[g1]] � D[[p1]]
 G[[g2]] � D[[p2]].

In the case of many commands, we have,

D[[if n
i=1gi → pi fi]] :=
XgX � g∼

X
� pX , where

868 F. Tchier

– n ≥ 0,

– Ø �= X ⊆ {0, . . . , n}
– X is the complement of X with respect to {1, . . . , n − 1},
– gX is the demonic composition of partial identities G(gi), for i ∈ X,

– g∼
X

the demonic composition of partial identities G(gi)
∼, for i ∈ X

(as G(gi) and G(gi)
∼ are partial identities, the order of composition

is not important; for X = Ø, we define g∼
X = I,

– pX =
⊔

i∈X D[[pi]].

For n = 2, we will find Equation (9).

• While loop

We treat the while loop case; W := do g → p od, where g is the loop
body condition and p is the loop body.

The demonic semantics of the while loop W is the greatest fixed point
with respect to � of the semantics function Wd(X) := G[[g]]∼
 G[[g]] � D[[p]] � X
(d recall demonic), where G[[g]] is the semantics of the condition g ; as
for the guarded commands, G[[g]] is a partial identity whose domain ver-
ifies the condition is a partial identity where the domain satisfies the
condition. Formally,

(10) D[[W]] =
⊔{X | X = G[[g]]∼
 G[[g]] � D[[p]] � X}.

As the domains of two terms of
 are disjoint, and that the partial
identities are (deterministic) and that � is associative, we have :

Wd(X) = G[[g]]∼ ∪ (G[[g]]D[[p]]) � X,

which is a familiar form of the while loop definition. By fixed point
property, we have also,

D[[W]] =
⊔{X | X � Wd(X)}.

By Remark 14, D[[W]] exists and is well defined. Expression 10 is the
demonic semantics of the while loop given in previous work [21, 41, 43].
By choosing the greatest fixed point (wrt �) means that it is the fixed
point with the least domain which has been chosen, which is conform
with demonic point of view. Other similar definitions of the demonic
semantics of the while loop can be found in [32, 35].

(11) E(P ′′) = (GE(P))∗Q ∩ A(GE(P), Q) ∩ I(GE(P)).

Demonic operational and denotational semantics 869

We remark that for the instructions (affectation, sequence, guarded com-
mands and while loop), the semantics of each instruction was given intuitively
from the behavior of the instruction. For the while loop, D[[W]], is the greatest
fixed point of a certain function. We will show its existence but it is difficult to
calculate it. To solve this problem, when the loop is deterministic, it is possible
to use a theorem known as the Mills while loop verification rule [30, 31]. We
generalized this theorem to a nondeterministic context [40, 41, 42, 43].

(12) Lemma. Let P = (P, C, ε, ξ) be a diagram and σ a relation such that
σσ−1 = I and σ−1σ ⊆ I. Then E(Pσ) = σ−1E(P)σ.

5 Demonic operational semantics

In the following, we will define the demonic operational semantics of a program.
Let Rel(N×S) be a relational algebra, where N is the input set of naturals.

The input represent the edges of graph representing the program p and S is
the set of the states of the program.

First, we will introduce certain notions to define the operational semantics.

(a) The projections π1 : N × S → N and π2 : N × S → S. The
pair (π1, π2) forms a direct product. Along this paper, the cartesian
products are defined relatively to (π1, π2).

(b) The function Q, from the set of programs to the set of associated
diagrams; associates to each program p the diagram Q[[p]] = (P, C, e, s)
where P is an element of the algebra Rel(N × S).

(c) The function F : Rel(N × S) → Rel(S) associates to each relation
X the relation F(X) = π−1

2 Xπ2. The function F associates to each
relation on N × S its projection on S. Let O := F ◦ E ◦ Q. The
demonic operational semantics of a program p is given by the relation
O[[p]] = F(E(Q[[p]])).

By consequent, O is a function from the set of programs to the relations algebra
Rel(S).

6 Comparison of semantics

In this section, we want to compare operational and denotational semantics.
Exactly, we will show their equality, in other words, we will prove that each
program p verifies

(13) D[[p]] = O[[p]].

870 F. Tchier

p

D[[p]] = F(E(Q[[p]]))

Q[[p]]

E(Q[[p]])

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

D F

Q E

Figure 1: O[[p]] := F(E(Q[[p]])) = D[[p]]

This is equivalent to prove that this diagram (in the usual meaning) of the
figure 1 commutes.

We have to show that each program p is associated to a diagram Q[[p]]
and the projection by a function F of the input/output relation E(Q[[p]]) of
the diagram Q[[p]] is equal to the demonic denotational semantics D[[p]] of the
program p.

(14) Remark. As we consider the relational algebra Rel(N× S), where N is
the set of natural states and S is the set of the program states, P is a relation
on N × S and the elements of the set C are of the form [xx−1, I] where x is
a relation on N that represents a state of the program p. For example, the
relation 0 := {(0, n) | n ∈ N} is the relation that represents the state 0 of the
program. This relation is a point (see Definition 2(d).

It is not difficult to prove that the elements of C are partial identities
disjoint to each other. The relation [xy−1, Q] on N× S indicates that there is
a transition from the state x to the state y and that the state variation that
follows the transition from x to y described by the relation Q. The relations
ε and ξ are given by [xx−1, I] and [yy−1, I] where x and y are respectively the
initial state and the final state of program p.

Let x and y be states on N, such that e = [xx−1, I] and s = [yy−1, I]. It is
easy to prove that

(15) E(Q[[p]]) = [xy−1,D[[p]]]

implies Equation 13.
Consequently, instead of proving Equation 13, it suffices to prove Equation

15 and show that is verified by each program p (in other words, it exists points
x, y such that the equality is verified). As, affectations are atomic programs,
and as the sequence, the guarded commands and the loop can be used to
construct complex programs, we will define the affectation to satisfy Equation

Demonic operational and denotational semantics 871

15. After this, we will define the function Q[[p]] inductively and we will show
that if p is obtained by using constructors to programs that satisfy Equation
15, then p satisfies Equation 15.

• Affectation

We consider the affectation given in Section 4, xi := f(x), where 0 ≤
i ≤ n, x = (x0, . . . , xn). It is easy to see that the diagram associated
to the affectation is atomic. The integers 0 and 1 represent the vertices
of the graph and D[[xi := f(x)]] is the relation that shows the variation
from 0 to 1. By using the direct product definition (see c) we have
E(Q[[xi := f(x)]]) = [01−1,D[[xi := f(x)]]], where 0 and 1 are respectively
the initial input state and the final point state of the affectation.

Before treating the other cases, we describe the method we will use to
show that the other constructors verify the induction hypothesis 15. In
the beginning, we use the direct sum, we combine together the diagrams
associated to programs given by hypotheses. In the following, we show
that we obtain a diagram. The third step consists to calculate the in-
put/output relation of the new diagram. Finally, we suppose that the
induction Hypotheses 15 is verified by the given diagrams and we verify
that the new diagram satisfies also Equation 15.

In the following, we treat the sequence case.

• Sequence

Let p1, p2 be two programs and Q[[p1]] = (P1, C1, ε1, ξ1),
Q[[p2]] = (P2, C2, ε2, ξ2) diagrams associated respectively to these pro-
grams. The input relations ε1 and ε2 and the output relations ξ1 and ξ2

of diagrams Q[[p1]] and Q[[p2]] are respectively (see Remark 14) :

(16) ε1 = [x1x
−1
1 , I], ξ1 = [y1y

−1
1 , I], ε2 = [x2x

−1
2 , I], ξ2 = [y2y

−1
2 , I],

where x1, y1, x2 and y2 are points on N representing respectively the
initial states and final states of the programs p1 and p2.

Our aim here is to join into sequence the diagrams Q[[p1]] and Q[[p2]] in
such a way that the output state of the program p1 coincides with the
input state of the program p2. This will be done by giving new labels to
the states of both diagrams in a way that the final state of the program
p1 has to be given the same name as the initial state of the program p2.
This will be done by using the injections σ1 and σ2. The idea is very
simple, even the details seem to be complicated.

The relations σ1 and σ2 verify the following conditions :

872 F. Tchier

(17) σ1σ
−1
1 = I, σ2σ

−1
2 = I, σ1σ

−1
2 = y1x

−1
2 , σ−1

1 σ1 ⊆ I, σ−1
2 σ2 ⊆ I,

which means that relations σ1 and σ2 are total injections.

For example, the state x1 of the program p1 is named into σ−1
1 x1. The

condition σ1σ
−1
2 = y1x

−1
2 means that the state y1 (final state of the

program p1) coincides (is connected) with the state x2 (initial state of
program p2).

The elements of C1 and C2 verify the following propriety : c1[σ1σ
−1
2 , I] =

Ø, where c1 ∈ C1 and c1 �= ξ1.

In a similar way, we have

[σ1σ
−1
2 , I]c2 = Ø, where c2 ∈ C2 and c2 �= ε2.

Let the program be p := p1; p2 which is the sequence of programs p1 and
p2. In the following, by using the relations σ1 and σ2 also the associated
to programs p1 and p2, we will define a quadruplet Q[[p]] and show in the
following that this last one is effectively a diagram.

Let, Q[[p]] := (P, C, e, s), where

(18) P := [σ−1
1 , I]P1[σ1, I] ∪ [σ−1

2 , I]P2[σ2, I],
C := {[σ−1

i , I]c[σi, I] | c ∈ Ci, i = 1, 2, },
ε := [σ−1

1 , I]ε1[σ1, I],
ξ := [σ−1

2 , I]ξ2[σ2, I].

(19) Remark. If σ is a one to one application, σ−1σ ⊆ I and σσ−1 = I,
it is easy to see that the relation [σ, I] is also a one to one application.
As, (σ1, σ2) are one to one applications, [σ1, I] and [σ2, I] are also.

By Remark 19 and Lemma 5, the quadruplets

Q1[[p1]] := ([σ−1
1 , I]P1[σ1, I], [σ−1

1 , I]C1[σ1, I], [σ−1
1 , I]ε1[σ1, I], [σ−1

1 , I]ξ1[σ1, I]),

and Q2[[p2]] := ([σ−1
2 , I]P2[σ2, I], [σ−1

2 , I]C2[σ2, I], [σ−1
2 , I]ε2[σ2, I], [σ−1

2 , I]ξ1[σ2, I])

are diagrams.

Before proving that Q[[p]] is effectively a diagram, let us show that the
output relation of the diagram Q1[[p1]] is equal to the input relation of
the diagram Q2[[p2]], in other words,

(20) [σ−1
1 , I]ξ1[σ1, I] = [σ−1

2 , I]ε2[σ2, I].

By relpacing ξ1 and ε2 in Equation 20 by their values (16), we obtain

Demonic operational and denotational semantics 873

(21) [σ−1
1 y1y

−1
1 σ1, I] = [σ−1

2 x2x
−1
2 σ2, I].

It is easy to see that Equation 21 comes from σ−1
1 y1 = σ−1

2 x2. In a similar
manner, we show that σ−1

2 x2 ⊆ σ−1
1 y1.

We are now ready to prove that Q[[p]] = (P, C, e, s) (18) is effectively
a diagram (Definition 4). In other words, we have to verify that each
element of C is a partial identity, that the elements (different) of C are
pairwise disjoint, that e, s ∈ C and finally that (

⋃
C)P (

⋃
C) = P .

– By Remark 19 and the fact that the elements of C1 and C2 are
partial identities, we will deduce that the elements of C (18) are
also partial identities.

– Let c and c′ two arbitrary different partial identities from the set
C. By considering the structure of the set C(18), three cases are
possible :

∗ c = [σ−1
1 , I]c1[σ1, I] and c′ = [σ−1

1 , I]c′1[σ1, I], where c1, c′1 ∈ C1.
By Remark 19 and Lemma 5, we deduce that cc′ = Ø.

∗ c = [σ−1
2 , I]c2[σ2, I] and c′ = [σ−1

2 , I]c′2[σ2, I], wherec2, c′2 ∈ C2.
This case can be treated as the precedent case.

∗ c = [σ−1
1 , I]c1[σ1, I] with c1 ∈ C1 and c′ = [σ−1

2 , I]c2[σ2, I] with
c2 ∈ C2 (or the symmetric case). If c1 = sortie1 and c2 = ε2,
we have c = c′. As c �= c′, by Hypotheses, we must have c1 �= ξ1

or c2 �= ε2.

We conclude that the elements of C are disjoint from each other.

– It is easy to see that the relations [σ−1
1 , I]ε1[σ1, I] and [σ−1

2 , I]ξ2[σ2, I]
are elements of the set C (Equation 18). This is from ε1 ∈ C1 and
ξ2 ∈ C2.

– Finally, let us show this (
⋃

C)P (
⋃

C) = P . As (
⋃

C) ⊆ I, it suffices
to show that P ⊆ (

⋃
C)P (

⋃
C). As (◦) is distributive with respect

to ∪, we have
⋃

C = [σ−1
1 , I](

⋃
C1)[σ1, I] ∪ [σ−1

2 , I](
⋃

C2)[σ2, I].

We consider the fact that (
⋃

C1)P1(
⋃

C1) = P1 and (
⋃

C2)P2(
⋃

C2) =
P2 and that P = [σ−1

1 , I]P1[σ1, I]∪ [σ−1
2 , I]P2[σ2, I], it is easy to de-

duce that P = (
⋃

C)P (
⋃

C).

So, we have showed that Q[[p]] = (P, C, e, s) is effectively a diagram. We
will calculate the input/output relation of diagram Q[[p]] and prove that
the induction hypothesis 15 is verified by the program p = p1; p2.

So, the diagram Q[[p]] is constructed from two diagrams Q1[[p1]] and
Q2[[p2]] such that the output relation of the first one coincides with the

874 F. Tchier

input relation of the second one (par 20). Consequently, Equation 8 is
applied to diagram Q[[p]] and we have E(Q[[p]]) = (E(Q1[[p1]]) � E(Q2[[p2]]).

By Remark 19 and Lemma 5(b), this is equivalent to

E(Q[[p]]) = ([σ−1
1 , I]E(Q[[p1]])[σ1, I]) � ([σ−1

2 , I]E(Q[[p2]])[σ2, I]).

By the induction Hypothesis 15, we have

E(Q[[p1]]) = [x1y
−1
1 ,D[[p1]]]. Similarly, we have E(Q[[p2]]) = [x2y

−1
2 ,D[[p2]]].

We have now necessary notions to show the induction Hypothesis 15 is
satisfied by the program p = p1; p2, in other words,

(22) E(Q[[p1; p2]]) = [σ−1
1 x1y

−1
2 σ2,D[[p1; p2]]].

It is not difficult to show that σ−1
1 x1 and σ−1

2 y2 are des points on N, ver-
ifying e = [σ−1

1 x1x
−1
1 σ1, I] and s = [σ−1

2 y2y
−1
2 σ2, I] (this can be deduced

from 16, 17.

• Guarded Commands Let p1 and p2 two programs, g1 and g2 two
guarded commands. We aim to verify if the program if g1 → p1 g2 →
p2 fi (see diagram c) satisfies Equation 15. The treatment of guarded
commands is the same as the sequence and in a certain manner as the
while loop case that we will present in the following. Consequently, we
give directly the result.

Equation 9 implies that :

(23) E(Q[[if g1 → p1 g2 → p2 fi]]) =
[xy−1,D[[if g1 → p1 g2 → p2 fi]]],

where x and y are respectively the initial and the final state of the pro-
gram if g1 → p1 g2 → p2 fi .

We deduce that the induction hypotheses is verified 15 for guarded com-
mands.

• While Loop

Finally, we treat the while loop case.

Let p be a program and Q[[p]] = (P, C1, ε1, ξ1) the diagram associated to
program p where ε1 := [x1x

−1
1 , I] and s := [y1y

−1
1 , I]. Let the program

w := do g → p od (see d for the definition of the associated diagram).

We seek to prove that the induction hypothesis 15 is verified by the program
w. We will construct diagram Q[[w]] = (W, C, ξ1, s). It suffices to add a unique
state. Let s := [yy−1, I], where y is such that s(

⋃
C1) = Ø. In other words, y

is a state on the naturals numbers that was not already used as intermediate
state in Q[[p]]. Let,

Demonic operational and denotational semantics 875

• C := C1 ∪ {s},
• W := [y1x

−1
1 ,G(g)] ∪ P ∪ [y1y

−1,G(g)∼].

Let us show that Q[[w]] is a diagram (Definition 4). Il is suffisant to show
that W ⊆ (

⋃
C)W (

⋃
C), as the other properties are easy to verify. By using

Remark 14, the fact that [x−1
1 x1, I] and [y−1

1 y1, I] are elements of C1 (recall that
the elements of C1 are pairwise disjoints) and that s = [yy−1, I] and verifies
s(

⋃
C1) = Ø, it is not difficult to show that the following properties are verified

:

• (
⋃

C1)[y1x
−1
1 ,G(g)] = [y1x

−1
1 ,G(g)],

• s[y1x
−1
1 ,G(g)] = Ø,

• (
⋃

C1)[y1y
−1,

• G(g)∼] = [y1y
−1,G(g)∼],

• s[y1y
−1,G(g)∼] = Ø.

In a similar way, we have:

• [y1x
−1
1 ,G(g)](

⋃
C1) = [y1x

−1
1 ,G(g)],

• [y1x
−1
1 ,G(g)]s = Ø,

• [y1y
−1,G(g)∼](

⋃
C1) = Ø,

• [y1y
−1,G(g)∼]s = [y1y

−1,G(g)∼],

we obtain: W ⊆ (
⋃

C)W (
⋃

C). So, Q[[p]] is effectively a diagram. In what
follows, we will calculate the input/output relation.

By Taking

(24) G := [y1x
−1
1 ,G(g)], P := P, Q := [y1y

−1,G(g)∼].

So, Equation 11 is applied to the diagram Q[[w]] and we have

E(Q[[w]]) = (GE(Q[[p]]))∗Q ∩A(GE(Q[[p]]), Q) ∩ I(GE(Q[[p]])).

We remark that QL ∩ GE(Q[[p]]L = Ø. By fixed point property, we have

(25) E(Q[[w]]) =
⊔{X | X = Q ∪ GE(Q[[p]]) � X}.

By applying the induction Hypothesis 15 to diagram Q[[p]], we obtain :

(26) E(Q[[p]]) = [x1y
−1
1 ,D[[p]] � X].

876 F. Tchier

By applying Equations 24, 26, Equation 25 becomes

(27) E(Q[[w]]) =
⊔{X | X = [y1y

−1,G(g)∼] ∪ [y1y
−1
1 ,G(g)D[[p]]] � X}.

To simplify the notations we adopt the next abbreviations :

(28) Abbreviation. A := y1y
−1
1 , B := y1y

−1,
f(X) := [B,G(g)∼] ∪ [A,G(g)D[[p]]] � X,
g(X) := G(g)∼ ∪ G(g)D[[p]] � X.

By fixed point property [38], Abbreviations 28 and Equation 27, let us show
that

(29) ν(f) = [B, ν(g)].

It is easy to see that the relations A and B verify the following properties :

AB = B, AL = BL, A ⊆ I.

Before we prove the Equation 29, we will give the following.

(30) Lemma. Let A, B be relations given in Abbreviation 28, and P and Q
be relations

(a) [A, P]∗[B, Q] = [B, P ∗Q],

(b) A([A, P], [B, Q]) = [BL,A(P, Q)].

Now, we will Equation 29. Consider f, B and g as given in (abbreviation 28)
Equation 29, we find the following equation :

(31) E(Q[[w]]) = [y1y
−1,

⊔{X | X = G(g)∼ ∪ G(g)D[[p]] � X}].
By certain rules the precedent equation becomes

(32) E(Q[[w]]) = [y1y
−1,D[[w]]].

Then, we have proved that the induction hypothesis 15 is verified by the
program :

w := do g → p od.
So, by induction, we have proved the induction hypotheses 15 is verified by

the sequence (22), by guarded commands (23) and finally by the while loop
(31). As, we consider imperative programs whose constructors are sequence,
guarded commands and the while loop, so we can affirm that the program p
verifies O[[p]] = D[[p]], in other words the demonic operational semantics of a
nondeterministic program p is equal to the demonic denotational semantics of
this program.

Demonic operational and denotational semantics 877

7 Conclusion

In this paper, we have defined the notion of the demonic operational semantics
of a nondeterministic p. This semantics was given from the notion of diagram
and the input/output relation of diagram. By proceeding by induction on con-
structors, we have showed that the demonic operational of a program is equal
to the demonic denotational semantics of this program. As, an intermediate
result, we have also showed how to combine the diagrams as sequence and as
a loop to obtain a new diagram. Finally, we have showed the equality between
the demonic operational semantics and the demonic denotational semantics.
This implies the Figure 1 commutes.

The approach to demonic input-output relation presented here is not the
only possible one. In [23, 24, 25], the infinite looping has been treated by
adding to the state space a fictitious state ⊥ to denote nontermination. In [9,
16, 27, 33], the demonic input-output relation is given as a pair (relation,set).
The relation describes the input-output behavior of the program, whereas the
set component represents the domain of guaranteed termination.

We note that the preponderant formalism employed until now for the de-
scription of demonic input-output relation is the wp-calculus. For more details
see [2, 3, 11, 14, 34, 48].

Acknowledgements. This work was supported by King Saud University
Deanship of Academic Research, Women Sections Research Center.

References

[1] C. Aarts, R. Backhouse, P. Hoogendijk, E. Voermans, and J.
van der Woude. A relational theory of datatypes. Department
of Computing Science, Eindhoven University of Technology, 1992.
http://www.win.tue.nl/win/cs/wp/papers.

[2] R. J. R. Back. On the correctness of refinement in program development.
Thesis, Department of Computer Science, University of Helsinki, 1978.

[3] R. J. R. Back. Combining angels, demons and miracles in program speci-
fications. Theoretical Computer Science, 100:365–383, 1992.

[4] R. J. R. Back. A continuous semantics for unbounded nondeterminism,
Theoretical Computer Science, 23:187–210, 1983.

[5] R. C. Backhouse and H. Doornbos. Mathematical induction made cal-
culational. Computing Science Note 94/16, Dept. of Mathematics and

878 F. Tchier

Computer Science, Eindhoven University of Technology, The Netherlands,
1994.

[6] R. C. Backhouse and J. van der Woude. Demonic operators and mono-
type factors. Mathematical Structures in Computer Science, 3(4):417–433,
December 1993. Also: Computing Science Note 92/11, Dept. of Mathe-
matics and Computer Science, Eindhoven University of Technology, The
Netherlands, 1992.

[7] R. Berghammer. Relational specification of data types and programs.
Technical report 9109, Fakultät für Informatik, Universität der Bun-
deswehr München, Germany, September 1991.

[8] R. Berghammer and G. Schmidt. Relational specifications. In C. Rauszer
(ed.), Algebraic Logic, Banach Center Publications, 28, Polish Academy
of Sciences, 1993.

[9] R. Berghammer and H. Zierer. Relational algebraic semantics of deter-
ministic and nondeterministic programs. Theoretical Computer Science,
43:123–147, 1986.

[10] C. Böhm. On a family of Turing machines and the related programming
languages. ICC Bull, 3:187–194, 1964.

[11] Franck van Breugell. An introduction to metric semantics: operational
and denotational models for programming and specification languages,
Theoretical Computer Science, 258:1–98, 2001

[12] C. Brink, W. Kahl, and G. Schmidt, editors. Relational Methods in Com-
puter Science. Springer, 1997.

[13] H. Doornbos, R. Backhouse, and J. van der Woude. A calculational ap-
proach to mathematical induction. Theoretical Computer Science, 179(1–
2):103–135, 1997.

[14] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[15] H. Doornbos. Reductivity. Science of Computer Programming, 26:217–
236, 1996.

[16] H. Doornbos. A relational model of programs without the restriction
to Egli-Milner monotone constructs. IFIP Transactions, A-56:363–382.
North-Holland, 1994.

[17] L. H. Chin and A. Tarski. Distributive and modular laws in the arith-
metic of relation algebras. University of California Publications, 1:341–
384, 1951.

Demonic operational and denotational semantics 879

[18] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-
bridge Mathematical Textbooks, Cambridge University Press, Cambridge,
1990.

[19] J. Desharnais. Abstract relational semantics. School of Computer Science,
Univ. McGill, Montréal, 1989. Ph D. thesis

[20] J. Desharnais, B. Möller, and F. Tchier. Kleene under a demonic star. 8th
International Conference on Algebraic Methodology And Software Tech-
nology (AMAST 2000), May 2000, Iowa City, Iowa, USA, Lecture Notes
in Computer Science, Vol. 1816, pages 355–370, Springer-Verlag, 2000.

[21] J. Desharnais, N. Belkhiter, S. B. M. Sghaier, F. Tchier, A. Jaoua, A. Mili
and N. Zaguia. Embedding a demonic semilattice in a relation algebra.
Theoretical Computer Science, 149(2):333–360, 1995.

[22] R. W. Floyd. Assigning Meanings to programs. Proceedings AMS Sympo-
sium in Applied Mathematics, 19:19–31, 1967.

[23] C. A. R. Hoare and J. He. The weakest prespecification. Fundamenta
Informaticae IX, 1986, Part I: 51–84, 1986.

[24] C. A. R. Hoare and J. He. The weakest prespecification. Fundamenta
Informaticae IX, 1986, Part II: 217–252, 1986.

[25] C. A. R. Hoare and al. Laws of programming. Communications of the
ACM, 30:672–686, 1986.

[26] Z. Huibiao, J. P. Bowen and He Jifeng. Deriving Operational Se-
mantics from Denotational Semantics for Verilog. Proc. APSEC
2001: 8th Asia-Pacific Software Engineering Conference, IEEE Com-
puter Society Press, pp. 177–184, Macau, China, December 2001.
http://citeseer.ist.psu.edu/zhu01deriving.html

[27] R. D. Maddux. Relation-algebraic semantics. Theoretical Computer Sci-
ence, 160:1–85, 1996.

[28] A. Mili. A relational approach to the design of deterministic programs.
Acta Informatica, 20:315–328, 1983.

[29] A. Mili, J. Desharnais and F. Mili. Relational heuristics for the design of
deterministic programs. Acta Informatica, 24(3):239–276, 1987.

[30] H. D. Mills. The new math of computer programming. Commun. ACM
18, 1, January 1975, 43–48.

880 F. Tchier

[31] H. D. Mills, V. R. Basili, J. D. Gannon and R. G. Hamlet. Principles
of Computer Programming. A Mathematical Approach. Allyn and Bacon,
Inc., 1987.

[32] Nguyen, T. T.: A Relational Model of Demonic Nondeterministic Pro-
grams. Int. J. Foundations Comput. Sci., 2(2), 101–131 (1991).

[33] D. L. Parnas. A Generalized Control Structure and its Formal Definition
Communications of the ACM, 26:572-581, 1983

[34] G.D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DIAMI FN-19, Computer Science Department, Aarhus University,
1981.

[35] E. Sekerinski. A Calculus for Predicative Programming. Second Interna-
tional Conf on the Mathematics of Program Construction, R. S. Bird,
C. C. Morgan, and J. C. P. Woodcock (eds), Oxford, June 1992, Lecture
Notes in Computer Science, Vol. 669, Springer-Verlag, 1993.

[36] G. Schmidt. Programs as partial graphs I: Flow equivalence and correct-
ness. Theoretical Computer Science, 15:1–25, 1981.

[37] G. Schmidt and T. Ströhlein. Relations and Graphs. EATCS Monographs
in Computer Science, Springer-Verlag, Berlin, 1993.

[38] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-
cific Journal of Mathematics, 5:285–309, 1955.

[39] A. Tarski. On the calculus of relations. J. Symbolic Logic, 6(3):73–89,
1941.

[40] F. Tchier and J. Desharnais. A generalisation of a theorem of Mills. Pro-
ceedings of the Tenth International Symposium on Computer and Infor-
mation Sciences, ISCIS X, pages 27–34, October 1995, Turkey.

[41] F. Tchier. Sémantiques relationnelles démoniaques et vérification
de boucles non déterministes. Ph D. thesis, Département de
mathématiques and de statistique, Université Laval, Canada, 1996.
http://auguste.ift.ulaval.ca/ desharn/Theses/index.html.

[42] F. Tchier and J. Desharnais. Applying a generalization of a theorem of
Mills to generalized looping structures. In Science and Engineering in
Software Development. A recognition of Harlan D. Mills’ Legacy, Los An-
geles, CA, May 1999, pages 31–38, IEEE Computer Society Press, 1999.

Demonic operational and denotational semantics 881

[43] F. Tchier. La sémantique démoniaque relationnelle des diagrammes com-
posés. Proc. 5th Seminar on Relational Methods in computer Science.
(RelMICS’5). Université Laval, Canada, 9-14 January 2000.

[44] F. Tchier. Demonic relational semantics of compound diagrams. In: Jules
Desharnais, Marc Frappier and Wendy MacCaull, editors. Relational
Methods in computer Science: The Québec seminar, pages 117-140, Meth-
ods Publishers 2002.

[45] F. Tchier. While loop demonic relational semantics monotype/residual
style.2003 International Conference on Software Engineering Research
and Practice (SERP03), Las Vegas, Nevada, USA, 23-26, June 2003.

[46] F. Tchier. Demonic semantics by monotypes. International Arab confer-
ence on Information Technology (Acit2002),University of Qatar, Qatar,
16-19 December 2002,

[47] F. Tchier. Demonic Semantics: using monotypes and residuals. Inter-
national Journal of Mathematics and Mathematical Sciences, IJMMS
2004:3, 135-160, 2004.

[48] J. Tiuryn and M. Wand. Untyped Lambda-Calculus with Input-Output.
In H. Kirchner, editor, Trees in Algebra and Programming: CAAP’96,
Proc. 21st International Colloquium, volume 1059 of Lecture Notes in
Computer Science, pages 317–329, Berlin, Heidelberg, and New York,
April 1996.

[49] M. Wand and G. T. Sullivan. Denotational Semantics Using an
Operationally-Based Term Model. In Proceedings 23rd ACM Symposium
on Programming Languages, pages 386–399, 1997.

