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Abstract

The method of approximate approximations is based on generating
functions representing an approximate partition of the unity, only. In
the present paper this method is used for the numerical solution of the
Poisson equation and the Stokes system in R" (n = 2,3). The cor-
responding approximate volume potentials will be computed explicitly
in these cases, containing a one-dimensional integral, only. Numerical
simulations show the efficiency of the method and confirm the expected
convergence of essentially second order, depending on the smoothness
of the data.
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1 Introduction

In 1991 V. Maz‘ya introduced an approximation method, called the method of
approximate approximations [3]. Here a given function f: R" — R is ap-
proximated by a linear combination f; (h > 0) of radial smooth exponentially
decreasing basic functions (compare [6], [7], [8]). In contrast to a linear com-
bination of splines this system of basic functions leads only to an approximate
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partition of the unity. Hence the approximation procedure does not converge
as h — 0. For practical computations, however, this lack of convergence does
not play an important role, since the error between f and its approximation
fn can be controlled via a certain parameter and hence chosen to be of the
same magnitude as the computer accuracy. Furthermore, the method of ap-
proximate approximations has great advantages for the numerical solution of
Cauchy problems of the form Dwu = f, where D is a suitable linear partial dif-
ferential operator in R". In some cases explicit formulas for the approximate
volume potentials can be developed if the right hand side f is approximated
by fn. In these formulas, instead of a multi-dimensional integration, often
there remains a one-dimensional integral only, for instance an expression con-
taining the error function (see [2], [5]). Recently, the method of approximate
approximations has also been applied successfully for the numerical treatment
of boundary value problems (see [9], [10]).

In the present paper the method of approximate approximations is carried out
explicitly for two important Cauchy problems in R" (n = 2,3), the Poisson
equation —Av = f and the Stokes system —Au + Vp = f, divu = 0, the
latter well-known from hydrodynamics. In Section 2 the method is motivated
and introduced for the approximation of functions given on the real line. Here
also error estimates are presented (Lemma 1). In Section 3 the method is
applied to the Poisson equation. Here, using two different approaches, explicit
expressions for the corresponding approximate volume potentials in two and
three dimensions are given, containing the exponential integral function and
the error function, respectively (Theorem 2 and Theorem 3). In Section 4 ex-
plicit expressions for the solution of the Stokes system are given, where even in
this case the approximate velocity potentials depend on the above mentioned
functions, only (Theorem 4 and Theorem 5). In Section 5 and 6 numerical
simulations for both the Poisson equation and the Stokes system (n = 2) are
carried out, where here in addition the smoothness of the density function can
be controlled by some parameter. In all cases the numerical simulations show
essential convergence of second order, as expected from the error estimates.

2 Approximate approximations on R

We consider the Gaussian probability function ¢, , of the normal distribution
with mean p and variance o2, defined by

Puo(T) = \/2;7 exp (—%) : (1)

It is well-known that this function takes it’s maximum at = = p and has two
turning points at = pu 4 o, such that the variance 0? somehow represents a




Poisson and Stokes equations 931

measure of the Gaussian bell. Since ¢, , is a probability density on the real
line we have

“+o00

/ Ypo(x)dr = 1. (2)

— 00

Replacing integration by a simple quadrature rule we obtain

Z Yuo(k) = 1.
keZ,

Let us consider the left—-hand side as a function of u, i.e.

p— (1) == \/1— > exp (—(M%‘QW) : (3)

We investigate the difference between ®, and the constant 1. Since ®, is an
even function having the period p =1 we obtain the Fourier series expansion

a - 1
D, (1) = ?0 + Z a cos(2mmp),  |p| < 5.
m=1

An easy calculation leads to the Fourier coefficients
Gy = 2 €Xp (—202m27r2) , m e Ny.

It follows
O, () —1=2 Z exp (—20°k*m?) cos(2kmp),
k=1

and this implies
-2 _ 1
10 y g = 9

|y () — 1] < QZeXp (—20%K*7%) ~ ¢ 1079, o=1, (4)
k=1 1073, o=2.

Analogously, for the derivatives
O (n) = —4rm Z kexp (—20°k*n?) sin(2kmp),
k=1

() = —8n° Z k* exp (—20°k*1?) cos(2kmp)
k=1
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we find

1071, o=
@5 (1)~ q 107°,  o=1,
10734, o=2,
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1071, o=
@5 (W)~ q 1077, o=1,
10733, o=2.

In the following, let us assume ¢ := 1. In contrast to splines, compare e.g.
the piecewise linear B—splines in Figure 1, the function

B = B1(1) = = > e (-45

2 )

generates only an approximate partition of the unity (see Figure 2).

Figure 1: Exact partition of the unity

Figure 2: Approximate partition of the unity

Now let us use the function (5) for the approximation of a given function



Poisson and Stokes equations 933

f :R — R. For this purpose we choose h > 0 and define

fulw) = V%_w keZZexp (—% (x‘hhkf) F(hk). (6)

Since we are using an approximate partition of the unity, only, we cannot
expect convergence of the resulting sequence if h tends to zero. Anyhow, let
us study the error

en(w) := fulz) = f(2)

for h — 0 assuming a certain regularity on f. To do so we need the space
C*(R) of functions having bounded continuous derivatives on R up to the
order m € N.

Lemma 1 Let f € CZ(R), h > 0, and f;, defined by (6). Then the error
en(x) satisfies in x € R the following estimate:

+

o"(7)]) +nlr @)

@) < 211 ([0 (2) o(2)] + 171 [o(2) 1.

Here ® is the function defined by (5) and || f|le := sup |f(z)| is the norm
zeR
in L*(R).

Proof: We use the decomposition

en(z) = fulz) = f(2)

By Taylor expansion we have

(hk — z)?

2 f”(gh)a

f(hk) = f(x) = (hk — x) f'(x) +

where &, € R denotes some point between x and hk. This implies

Si(z) = L Z exp (—%) (hk —z) f'(z)
kel

LY e (_ i W) (B =2 r(6) = su() + sal).
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Due to
x 1 (I - hk)Q hk—zx
@’(5) T o &P\ T o h
keZ,
we obtain
s1(z) = hf'(2)® (%)
Using

iz 1 x — hk)?\ (hk — z)?
P (E):ﬁZZeXp(_( 2h2))( ) —CD( )’

for the second summand it follows

o= 60 (9 (5) 49 (2)).

This proves the lemma. U

The estimate of Lemma 1 shows that we are using an approximation essentially
of second order, since in practise only the term

h2 " xz
S5 |2(5)

has to be taken into account, all other factors are neglectably small. Therefore
the expression approximate approximation seems to be reasonable (compare

3])-

The method caries over immediately to the n—dimensional case, where a given
function f : R"™ — R can be approximated by

fulz) = \/(;T)nkezznexp (_% x—hh’ff) (k). (1)

All the above statements hold true in this case, too.

3 Application to the Poisson equation

To use this approximation method for the numerical solution of the Poisson
equation

—Av=f inR" (n=2,3) (8)
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we proceed as follows: It is well-known [1] that a solution of (8) is given by
the volume potential

Vi) = /R e —y)fy)dy  (n=23). (9)
Here
L In — n=2
6(1‘) :{ 2 } |$" ; (10)
ﬁm s n=3

denotes the fundamential solution of the Laplacian in R".

To approximate the volume potential V f we replace the given function f by
the approximation fy, defined by (7). This leads to an approximate solution
of (8) in the form

n(z) = V= /R el —y) A= 3 exp (<3 [E —m[*) fhm) dy

(@m)" el
= " Suula)f(hm) (11)
mEZn
with
1 1y 2 _
ﬁRlenlx_m-exp(—?‘E—m})d(y , n =2,
Smn() =

1 1 11y 2 _
poay o fg g €D <—§ o m} ) dy, n=3.
R
The weights Sy, n(x) can be determined analytically:
Theorem 2 Let & :=x/h—m. Then for n =2 we have

h {1n(2h2) — O+ exint (%\5\2) }

2
SmJl(.fIf) = __ﬂ'

Here C' = 0,577216 ... is Fuler’s constant and the function exint is defined by

xT

exint () := /1_e+p(_t) dt.

0

Proof: Substituting z := y/h — m, due to dy = h?dz we have

Lo | 2|2
Smn(z) = —mh - In(h € — z|) exp - dz
= 1 e |22 1 2/ |z|?
= 47T2h /Rz(lnh) exp( 5 dz 4772h o In(|€ — 2]) exp 5 dz

— — L (51(6) + (0.

472
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Using polar coordinates and the substitution ¢ = r?/2 for the first term we

obtain
Si1(&) = h2/ (Inh) exp P dz
1 e 5
= 2wh*Inh.

Since S3(¢) depends only on [€], a similar calculation leads to

|2

Sa(&) = h2/R2 In|§ — z|exp (—7) dz

oo 2w

2
- hQ//ln\/]ﬂ?—i—r?—2]5]rcos€d9exp (—%) rdr
00

2

= h2/27rln (max{|¢|,r})exp (—%) rdr.
0

Finally, we obtain

€] oo

2 2
Se (&) = 27rh2/1n|§\exp (—%) rdr+27rh2/ln7“exp (—%) rdr
0 §
2
= 7h? (1n2 — C + exint (%) ) ,

and this proves the assertion.

To prove an analogous formula for n = 3 we use a different method.

Theorem 3 Let & := x/h —m. Then for n =3 we have

Proof: Substituting z := y/h —m, due to dy = h*dz we have
h2

Sm(2) @n)

- exp (—%|z|2) dz =: ~v(§).

B h? / 1
N VAP E A
RB

Using spherical coordinates we can show that v(§) = v(r, 6, ) depends only
on r = |¢|.
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The integral v(£) is a volume potential that solves (8) with f = exp <—% \5]2),

1.e.

—exp (<3 1¢7) = L0(©) = Lo(rb,p)
- 2o\ or r2sin 6 00 a0 r2sin? 6 Op?

10 [ ,0v 8@_81}_

We obtain

1.e.

From this it follows

l.e.
M 1 t
v(oo) —v(r) = — exp (— t ) ") exp < ) dz| dt.
t=r t t z=0
We obtain v(o0) = 0, and with partlal mtegratlon we find
o(r) = — - Et dt—|— = exp dz dt
t=r t t= rt
_ <1 1 1 1 5 ‘X’l 1,
= —/t:TgeXp( 3 )dt t/ZzoeXp( 2z)dz}fr+/t=rtexp( 2t)dt

1 T
= —/ exp (—%22) dz.
T Jz=0

This proves the asserted formula for n = 3, too.

4 Application to the Stokes equations

Now we will use the approximation method to solve numerically the Stokes
equations

—Au+Vp=f } in R™ (n =2, 3). (12>
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Here w:= (uy, ..., u,) is the unknown velocity field and Vp := (0p, ..., Onp)
the unknown pressure gradient of a viscous incompressible fluid flow, and the
exernal force density f := (f1, ... fn) is given.

In the following we approximate the velocity field u, only, but there exists
an analogous method for the pressure p. The corresponding volume potential
part

u(e) = V() = /R Bw—y) fy)dy (=23,  (13)

which solves (12), is defined using the fundamential solution E(z) = E;;(x)
(1,7 =1...n) of the Stokes operator in R", i.e.

e In + n =2
B Fk }
Eii(rx) =5—¢ —= + 0, . 14
( ) an{ ‘x|n ]{ |x|_17 n — 3 } ( )

Here w, denotes the surface of the (n — 1)- dimensional unit ball (see [1]).

To approximate the volume potential V' f we replace each component f; (j =
1 ,n) of the given function f by the approximation (7), i.e. by

P

This leads to an approximate solution u of (12) in the form
w(@)i=Vii= [ Ba=1) ho)dy= 3 A" fhm)  (15)
meZ"
with A™h = A7 (3,5 =1...n):

1 Ti—Yi)\Lj—Yj 1 Yy 2
o [ (st + e e (g [f - Y ay o n=2
1
2

m,h L 2
Aij (x) := H} 1 (i) (s —u) y 2
L e

The weights A™"(z) can be determined analytically:

Theorem 4 Let & :=x/h —m. Then for n =2 and i,j =1,2 and |{| #0
we have

m,h 1 . 1 L —exp (_l|§|2)
A () = 8—7Th26ij [— In(2h%) 4+ C — exint <§|f|2) + %‘5‘22

(5 oo ()
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and for || =0 we have

AT ) = W20 (€~ n (207) 1),

where C s FEuler’s constant.

Proof: By using the functions

1 1 2 1 1
S(z) = /lnw - exp (—5 % —m| ) dy, H(z):= §\x|2 <ln]a:| — 5)
]RQ
with #;xjﬂ(x) = —0;; In ﬁ + % for € R* we obtain
mhg oy L 1, (@i —y)(z —y)) Ly g2
A (x) = 2 i In E=mia v =y - exp <—§ ’E — m’ ) dy
RQ

1 0? 11y )
T ( /R Gogr e =) e (=5 [f —mf") dy+ 2«%5@))

1 02 11y )
o @ (c%czéx] (/IKQ H(:L’ - y) - exp <_§ ’E - m} ) dy) + 25”S(x))
1

?

Following Theorem 2 with £ = x/h —m we find
S(z) = —h? {ln(2h2) — C + exint (%1512) } .
For B(z) with z =y/h—m and £ = x/h —m it follows
1
B(z) = n* /R2 |€ — 2] In|€ — 2| exp <—§|z|2> dz
+ (nh— 3t /RQ € — 22 exp (—%\212) dz = W*F(z) + (Inh — DG ().

By transformation in polar coordinates (r, ) finally we obtain

2

G(z) = // [|§|2 + 12 — 2|€|r cos 4,0} r exp <—%r2) dodr = 27|€]* + 4n
0 0
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and
oo 271
Fz) = %// [1€7 + 12 — 2|¢|r cos o] In [|€]* + r? _2‘€|rcosw}rexp< 1 )dgodr
00
oo 2
= %/ (|§|2—|—r2)/ln [|f|2+7“2—2\£|rcos<p] )
0 0
2
~ 2¢lr [cospn ¢ + 7 - 2elreosy] dgo]rexp (-4) ar
0
= %/ |f|2—|-r r) —2|ErT (&, )}Texp(—%ﬂ) dr.
0
Since
Arinr , ‘f‘ S r
S(f,?”) —
ArInlé| , r<|¢]
and
_2#\5\ , ‘5‘ <r
T(£7T) — { 27’
-5 <l
we obtain

Flz) =2 [2— exp (—3[¢?) + (512 +1) - {m2 = €+ exint (3¢ ) }]
and
B(x) = 20kt {2 — exp (= 316°) + (3167 +1) [m(2h?) — C = 1+ exine (51612 |}
Due to

82 .
s 0= s [ 0) - s (3
e (CLEP) 66 &g |
Mo T 1 T e 2'5'2)}}’
for €] # 0 we find
mh 1 ?
A (@) = @{8xi8xj53(x)+26ijs(x)}

o IJeP
1 & &
+ 8_7rh2{%‘§‘32 _ i\f\i |:1—6Xp <_%|§|2)}}7

_ _ 12
= ih?fsz‘j [_ In(2h%) 4+ C — exint <%|§|2) + 1 exp( 2 1€l )]
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and for |£] =0

. 1
Aij’h(l') = 5ij8_7rh2 {C —In (2h2) -+ 1} .

In an analogous way we can prove

Theorem 5 Let & := x/h —m. Then for n = 3 and i,j5 = 1,...3 and
€] # 0 we have

€
mh 1 2 ) _ﬁ) ( i) < (_ﬁ>
A7) = g T e exp (=15 ) + (1 + g 0/“’ 7)
€

()6 2) [
N e R R O/GXP 2) "

and for |£] =0 we have

_|_

2

A ) = ———6;;h%.
1] ( ) 3 (271')3 J
Proof: By using the functions
1 1 2
S(x) = /m-exp <—§’%—m} ) dy, H(x) :=|z|
]R3

with =2 —H(z) = 6;;-& — 2% for € R® we obtain

Ox;0x; jm o |[3
g .oy 2
A (@) - L4 (i — 90)(; y])> -exp (_% ‘% - m‘ ) dy

1 1
m P Sii
5 S T R/ (s + =
11 0 1|y
=2 oL (/ , 2045 S(x) — 8xi8xjH(x — ) - exp (—2 ‘h - m‘

- s 52 (e oon (1) )

11 0?
= gw (251]‘9(-%') — mB(m)) .

Using Theorem 3 with £ = 2/h —m we find

€]
S(x) = 47Th2|?1| /exp (—%t2) dt.
0
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For B(x) with z =y/h —m and & = x/h —m it follows

B(z) = n* /]R?’ |€ — z] exp (—%\2]2) dz.

Using polar coordinates (r,6, ) we can show that B depends only on [£],
and we obtain

o] T 21
B(x) = h4/ / / \/|§|2+T2—2|§|TCOSQ exp <—%T2) r? sin 0 di df dr
r=0 J0=0 J p=0

0 1
= 27rh4/ VIE2 + 72 = 2|¢rt exp <—%T2) 2 dt dr.
r=0Jt=—1

For |£| # 0 we find

B(z) = %ﬂh‘lé /_Orexp <—%T2) 1gl+ 7 = |Ig] = 7] dr
€]

= 4rh* { exp (—%]5]2) - (\é\ - %') /eXp (—%ﬂ) dt p |

0

and for || =0
B(z) = 87h".
With
0°B(x) _ Ah26, {exp <—l\€\2) + (|§| - i) jeXp <_lt2) dt}
dx,0x; Y€ 2 €] / ’

€]
+ 47Th2‘§§i —3exp <—%\§\2) + (% — \f\) O/GXp <—%t2) dt

we obtain for [¢| # 0

m,h = 1 1 .. 82
A (x) = 5% T (251 S(x) — MB(@)
1 5 1 €7 1 i t2
= S (27T_)35ijh BB —exp <—7> + (|£| + E) O/exp <—5> dt

e 9) o ) (9
RN R A W R T 0/”’ 2) (0
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and for [£| =0 it follows finally

2 Siih%.

A () = — =,
1] (ZL’) 3 (27T)3 J

5 Numerical calculations for the Poisson equa-
tion
In the following we present the results of some numerical simulations using

the above formulas for the two-dimensional Poisson equation. Let us choose
3 < 3 €N and define the test function

g 8
(1) ()
V(@ 2) = 16 <4 x] 7 T3 n Q, (16)
0 in  R\Q,
where
Q= {(xl,xQ) € R?||z] < %, |zo| < %}

denotes the open two-dimensional unit square. For f := —Awv we obtain in
reqQ

f(z) = f(zy,25) = 2516° (%—x%)ﬁ_Q <i—x§)ﬂ_2-
(=) G- (=) (-2}
—2(6—-1) {x% <%—xf)2+xf G—x%)Q}],

and for € R*\@Q we have f = 0. Hence f is continuous in R* if 5 > 3.

The exponential integral function exint(z) in Theorem 2 has been evaluated
with help of the NAG Fortran Library (see www.nag.co.uk).

6 Numerical calculations for the Stokes equa-
tions

For 4 < 5 € N we define the test function u = (uy, uz) with

251 i 51
16 1 1
up(ry,m2) = 4dxy <?) <Z — xf) <Z — x%)

28-1 3 51
16 1 1
ug(wy,m9) = —4ry <?> <Z — x%) <Z — x%)

in Q (18)
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The error ¢, := max|v(z) — vy(z)| for different values of the smoothness
parameter ( is shown in Table 1.

L h [ =3 [ B=4 | B=5 | B5=6 ]
0,1 1,41487e-01 2,49694e-01 2,97605e-01 3,34063e-01
0,05 4,23751e-02 7,49503e-02 9,22317e-02 1,08464e-01
0,025 1,10846e-02 1,96726e-02 2,44883e-02 2,92301e-02
0,0125 2,80271e-03 4,97935e-03 6,21759e-03 7,45106e-03
0,00625 7,02666e-04 1,24871e-03 1,56047e-03 1,87193e-03
0,003125 1,75791e-04 3,12419e-04 3,90498e-04 4,68558e-04
0,0015625 4,39555e-05 7,81200e-05 9,76483e-05 1,17175e-04

Table 1. Maximal error expansion

The corresponding order « := log, Ej—hh of convergence is presented in Table
2 and confirms an approximate approximation of second order.

| h | pB=3 | 6=4 [ B=5 | B=6 |
0,05 1,73938 1,73616 1,69007 1,62291
0,025 1,93466 1,92975 1,91317 1,89169
0,0125 1,98366 1,98216 1,97767 1,97194
0,00625 1,99591 1,99552 1,99438 1,99292
0,003125 1,99898 1,99888 1,99860 1,99823
0,0015625 1,99974 1,99972 1,99965 1,99956

Table 2. Order of convergence

and v = 0 in R*\@Q, where @ is the unit square as in Section 5. An easy
calculation shows divu = 0 in R

Moreover, setting

1 S| ot
p(x1, 19) == 16°71 (Z — x%) (Z - xg) in Q (19)
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and p = 0 in R?\Q, we obtain for the function f := —Au+ Vp in 2 € Q
the representation

st = (a1 (=) (=)
-Vﬁ—ﬂJ(i—xﬂQ{mﬁ—2n§—3<i—xQ}mn

where ¢+ = 1,2 and 7 = {
Ji = 0.

The error g, := max |u;(z) — u}(z)| (the results are identical for i = 1,2) for
different values of the smoothness parameter [ is shown in Table 3.

. r | B=4 | B=5 | B=6 | B=7 |
0,1 1,08505e-00 2,32411e-00 4,22133e-00 7,34847e-00
0,05 3,47030e-01 7,68388e-01 1,44394e-00 2,60742e-00
0,025 9,25330e-02 2,07515e-01 3,95278e-01 7,23272e-01
0,0125 2,35129e-02 5,29152e-02 1,01176e-01 1,85807e-01
0,00625 9,90226e-03 1,32948e-02 2,54448e-02 4,67728e-02
0,003125 1,47707e-03 3,32784e-03 6,37069e-03 1,17134e-02
0,0015625 3,69362e-04 8,32221e-04 1,59327e-03 2,92961e-03

Table 3. Maximal error expansion

The corresponding order ay, := log, Ej—hh of convergence is presented in Table
4 and confirms an approximate approximation of second order, too.

[ h | 6=4 | B=5 [ 6B=6 | B=T
0,05 1,64463 1,59677 1,54769 1,49482
0,025 1,90702 1,88862 1,86907 1,85001
0,0125 1,97651 1,97146 1,96600 1,96073
0,00625 1,99411 1,99282 1,99142 1,99007
0,003125 1,99853 1,99820 1,99785 1,99751
0,0015625 1,99963 1,99955 1,99946 1,99938

Table 4. Order of convergence
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