Conditioned Limit Theorems for Weighted Sums of Random Sequence¹

Zhong-zhi Wang

Faculty of Mathematics & Physics AnHui University of Technology Ma'anshan, 243002, P. R. China wzz30@ahut.edu.cn

Abstract. Some notions of conditionally dominated random variables are introduced and characterized, Under rather minimal assumptions on random variables $\{X, X_n, n \geq 1\}$, some limit theorems of Jamison's type of weighted sums of random variables are obtained.

Mathematics Subject Classification: 60F15

Keywords: Jamison type weighted sums; stability; conditionally dominated random sequence

1. Introduction

It is of interesting in probability theory and statistics to consider the convergence of weighted sums $\sum_{k=1}^{n} w_{nk}[X_k - E(X_k|\mathcal{F}_{k-1})]$, see e.g. [2],[4],[5],[6] and many results have been made in the field. Conditions of independent random variables are basic in historic results due to Bernoulli, Borel and Komogrov(cf.[5]). Recently, serious attempts have been made to relax these strong conditions(cf.[4]). Such as stochastically dominated conditions of some kind, and these have played an increasingly important role as a key condition in proving laws of large numbers. In Y. Adler and A. Rosasky, for example, the authors considered a sequence of independent random variables.

In the present paper, we are interesting in introducing a new set of conditions to be called conditionally dominated in Cesàro sense concerning the array $\{w_{nk}\}$ for a sequence of random variables, and we will show some stability results of Jamison type weighted sums of arbitrary random variables in

¹The author's research is supported by he National Natural Science Foundation of China(10571076) and Science Foundation of the Education Committee of AnHui Province(2006Kj 246B).

more general settings.

2. Preliminary work

Some definitions and preliminary results will be presented prior to establish the main results.

Let $(\Omega, \mathcal{F}, \mathcal{F}_n, \mu, n \in \mathbb{N})$ be a probability space and \mathbb{N} denote the set of non-negative integer, where $\{\mathcal{F}_n = \sigma(X_0, \dots, X_n), n \in \mathbb{N}\}$ is an increasing sequence of sub σ - algebras of the basic σ -algebra \mathcal{F} and \mathcal{F}_0 is the trivial σ -algebra $\{\phi, \Omega\}$. Suppose that $\{X, X_n, n \in \mathbb{N}\}$ be a stochastic sequence defined on this underlying probability space.

For all $n \in \mathbb{N}$, $A, A_0, A_1, \dots, A_n \in \mathcal{B}(\mathcal{B} \text{ is the Borel } \sigma \text{ algebra on } \mathbb{R})$,

$$\mu\{X \in A\} = \int_{x \in A} p(x)\mu(dx) \tag{1}$$

and

$$\mu\{X_0 \in A_0, \dots, X_n \in A_n\} = \int_{x_0 \in A_0} \dots \int_{x_n \in A_n} p_n(x_0, \dots, x_n) \mu(dx_0 \dots dx_n)$$
(2)

and denote the conditional pmf(pdf) by

$$p_n(x_n|x_0,\dots,x_{n-1}) = \frac{p_n(x_0,\dots,x_n)}{p_{n-1}(x_0,\dots,x_{n-1})}$$
(3)

where $p(x), p_n(\dots)$ are probability mass functions(pmf) or probability density functions(pdf) w.r.t. μ . In nearly all cases μ and is either the Lebesgue or counting measures.

Let $\{a_k, k \geq 1\}$ be a sequence of positive real numbers, $b = \sup\{a_k, k \geq 1\} < \infty, \mathbf{W} = \{w_{nk}, 1 \leq k \leq n, n \geq 1\}$ be a triangular array of positive real numbers, where

$$w_{nk} = \begin{cases} a_k/\sigma_n, & \text{for } k \le n \\ 0, & \text{for } k > n \end{cases}$$

satisfying $\sum_{k=1}^{n} w_{nk} \leq 1$ and with $\sigma_n \uparrow \infty$. We shall study the Jamison type weighted sums of the form

$$\mathbb{T}_n(\mathbf{W}) = \sum_{k=1}^n w_{nk} [X_k - \mathbb{E}(X_k | \mathcal{F}_{k-1})]$$
(4)

for all $n \in \mathbb{N}$.

Definition 1.Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of random variables, the conditionally moment generating function and conditional tail probability moment generating function of X_k with respect to a_k as follows:

$$\mathbb{M}_{n}(s; x_{0}, \cdots, x_{n-1}) = \int_{-\infty}^{\infty} e^{a_{n}xs} p_{n}(x|x_{0}, \cdots, x_{n-1}) \mu(dx).$$
 (5)

$$\widetilde{\mathbb{M}}_{n}(s; x_{0}, \cdots, x_{n-1})$$

$$= \int_{0}^{\infty} e^{a_{n}xs} \int_{x}^{\infty} p_{n}(t|x_{0}, \cdots, x_{n-1}) dt \mu(dx)$$

$$- \int_{-\infty}^{0} e^{a_{n}xs} \int_{-\infty}^{x} p_{n}(t|x_{0}, \cdots, x_{n-1}) dt \mu(dx).$$

$$(6)$$

and let

$$\widetilde{\mathbb{M}}(s) = \int_0^\infty e^{bxs} \int_x^\infty p(t)dt \mu(dx) - \int_{-\infty}^0 e^{bxs} \int_{-\infty}^x p(t)dt \mu(dx). \tag{7}$$

$$\widetilde{\mathbb{M}}^+(s) = \int_0^\infty e^{bxs} \int_x^\infty p(t)dt \mu(dx), \quad \widetilde{\mathbb{M}}^-(s) = \int_{-\infty}^0 e^{bxs} \int_{-\infty}^x p(t)dt \mu(dx). \quad (8)$$

provided that the integrals exit for $s \in (-s_0, s_0)$ for some $s_0 > 0$.

Definition 2. (cf.[6])Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of random variables, and is said to be:

1) conditionally dominated by a random variable X in double sides (we write $\{X_n, n \in \mathbb{N}\} \prec X$) if there exists a constant C > 0, for almost every $\omega \in \Omega$, such that

$$\sup_{n\in\mathbb{N}} \mu\{X_n > x | \mathcal{F}_{n-1}\} \le C\mu\{X > x\} \quad \text{for all } x > 0.$$

and

$$\sup_{n \in \mathbb{N}} \mu\{X_n < x | \mathcal{F}_{n-1}\} \le C\mu\{X < x\} \quad \text{for all } x < 0.$$

2) conditionally dominated in Cesàro sense by a random variable X, concerning the array $\{w_{nk}\}$, in double sides(we write $\{X_n, n \in \mathbb{N}\} \prec X(C)$) if there exists a constant C > 0, for almost every $\omega \in \Omega$, such that

$$\sup_{n \in \mathbb{N}} \sum_{k=1}^{n} w_{nk} \mu\{X_k > x | \mathcal{F}_{k-1}\} \le C \mu\{X > x\} \quad \text{for all } x > 0.$$

and

$$\sup_{n \in \mathbb{N}} \sum_{k=1}^{n} w_{nk} \mu\{X_k < x | \mathcal{F}_{k-1}\} \le C \mu\{X < x\} \quad \text{for all } x < 0.$$

Remark. In the particular case of array

$$w_{nk} = \begin{cases} 1/n, & \text{for } k \le n \\ 0, & \text{for } k > n \end{cases}$$

the condition of $\{w_{nk}\}$ -stochastically dominated in Cesàro sense is the dominated in Cesàro sense.

Lemma 1.Let $\mathbb{M}_n(s; x_0, \dots, x_{n-1}), \widetilde{\mathbb{M}}_n(s; x_0, \dots, x_{n-1})$ be defined as above, then

$$\frac{\mathbb{M}_n(s; x_0, \dots, x_{n-1}) - 1}{s} = a_n \widetilde{\mathbb{M}}_n(s; x_0, \dots, x_{n-1})$$
 (9)

1008

and

$$\widetilde{\mathbb{M}}_n(0) = \mathbb{E}(X_n | x_0, \cdots, x_{n-1}) \tag{10}$$

Proof. Since

$$\frac{\mathbb{M}_{n}(s; x_{0}, \cdots, x_{n-1}) - 1}{s} = \int_{0}^{\infty} \frac{e^{a_{n}sx} - 1}{s} p_{n}(x|x_{0}, \cdots, x_{n-1})\mu(dx)
+ \int_{-\infty}^{0} \frac{e^{a_{n}sx} - 1}{s} p_{n}(x|x_{0}, \cdots, x_{n-1})\mu(dx)
= \int_{0}^{\infty} \frac{1 - e^{a_{n}sx}}{s} d\int_{x}^{\infty} p_{n}(t|x_{0}, \cdots, x_{n-1})dt
+ \int_{-\infty}^{0} \frac{1 - e^{a_{n}sx}}{s} d\int_{-\infty}^{x} p_{n}(t|x_{0}, \cdots, x_{n-1})dt
= \left[\frac{1 - e^{a_{n}sx}}{s} \int_{x}^{\infty} p_{n}(t|x_{0}, \cdots, x_{n-1})dt\right]_{0}^{\infty}
+ a_{n} \int_{0}^{\infty} e^{a_{n}sx} \int_{x}^{\infty} p_{n}(t|x_{0}, \cdots, x_{n-1})dt\mu(dx)
+ \left[\frac{1 - e^{a_{n}sx}}{s} \int_{-\infty}^{x} p_{n}(t|x_{0}, \cdots, x_{n-1})dt\right]_{0}^{\infty}
- a_{n} \int_{-\infty}^{\infty} e^{a_{n}sx} \int_{-\infty}^{x} p_{n}(t|x_{0}, \cdots, x_{n-1})dt\mu(dx) = a_{n}\widetilde{\mathbb{M}}_{n}(s; x_{0}, \cdots, x_{n-1}).$$

(9) follows. (10) can also be obtained immediately from integration by parts.

3. Mainstream

Theorem 1.Let $\{X, X_n, n \in \mathbb{N}\}$ be defined as before. If $\{X_n, n \in \mathbb{N}\} \prec X$ with $\mathbb{E}X < \infty$ and let $\sigma_n \uparrow \infty$ as $n \to \infty$. Then

$$\lim_{n} \mathbb{T}_{n}(\mathbf{W}) = 0, \quad \mu - a.s. \tag{11}$$

Proof. Putting

$$p_k(s; x_k) = \frac{e^{a_k x_k s} p_k(x_k | x_0, \dots, x_{k-1})}{\mathbb{M}_k(s)}$$

and

$$\widetilde{p}_n(s; x_0, \dots, x_n) = p_0(x_0) \prod_{k=1}^n p_k(s; x_k), \quad n = 1, 2, \dots$$

Therefore $\widetilde{p}_n(s; x_0, \dots, x_n)$ is a pmf or pdf of n+1 variables, let us define

$$\Lambda_n(s,\omega) = \begin{cases} \frac{\tilde{p}_n(s;X_0,\cdots,X_n)}{p_n(X_0,\cdots,X_n)}, & if \ the \ denominator > 0 \\ 0, & otherwise \end{cases}$$

From reference [3], we have

$$\limsup_{n} \sigma_n^{-1} \log \Lambda_n(s; \omega) \le 0, \quad \mu - a.s.$$
 (12)

Note that

$$\log \Lambda_n(s;\omega) = s \sum_{k=1}^n a_k X_k - \sum_{k=1}^n \log \mathbb{M}_k(s; X_0, \dots, X_{k-1})$$
 (13)

By (12) and (13), we have

$$\limsup_{n} \frac{1}{\sigma_n} \left[s \sum_{k=1}^n a_k X_k - \sum_{k=1}^n \log \mathbb{M}_k(s; X_0, \dots, X_{k-1}) \right] \le 0, \ \mu - a.s.$$
 (14)

Thus

$$\limsup_{n} s \sum_{k=1}^{n} w_{nk} X_{k} \le \limsup_{n} \frac{1}{\sigma_{n}} \sum_{k=1}^{n} \log \mathbb{M}_{k}(s; X_{0}, \dots, X_{k-1}), \ \mu - a.s.$$
 (15)

By the property of the superior limit $\limsup_n (a_n - b_n) \leq 0 \to \limsup_n (a_n - c_n) \leq \limsup_n (b_n - c_n)$ and note that $\mathbb{E}(X_k | \mathcal{F}_{k-1}) < \infty$, a.s. $k = 1, 2, \cdots$. Dividing two sides of (15) by s, we have, by lemma 1, for any $s \in (-s_0, 0)$,

$$\liminf_{n} \sum_{k=1}^{n} w_{nk} [X_k - \mathbb{E}(X_k | \mathcal{F}_{k-1})]$$

$$\geq \liminf_{n} \frac{1}{\sigma_n} \sum_{k=1}^{n} \left[\frac{\log \mathbb{M}_k(s; X_0, \cdots, X_{k-1})}{s} - a_k \mathbb{E}(X_k | \mathcal{F}_{k-1}) \right], \ \mu - a.s. \quad (16)$$

From the inequality $\log x \le x - 1(x > 0)$ and lemma 1, we have

$$\liminf_{n} \mathbb{T}_{n}(\mathbf{W}) \geq \liminf_{n} \frac{1}{\sigma_{n}} \sum_{k=1}^{n} \left[\frac{\mathbb{M}_{k}(s; X_{0}, \cdots, X_{k-1}) - 1}{s} - a_{k} \mathbb{E}(X_{k} | \mathcal{F}_{k-1}) \right]$$

$$= \liminf_{n} \frac{1}{\sigma_n} \sum_{k=1}^{n} a_k [\widetilde{\mathbb{M}}_k(s; X_0, \cdots, X_{k-1}) - \mathbb{E}(X_k | \mathcal{F}_{k-1})], \ \mu-a.s.$$
 (17)

Let

$$\varphi(s) = \liminf_{n} \sum_{k=1}^{n} w_{nk} [\widetilde{\mathbb{M}}_{k}(s; X_{0}, \cdots, X_{k-1}) - \mathbb{E}(X_{k} | \mathcal{F}_{k-1})], s \in (-s_{0}, 0)$$
 (18)

If $-s_0 \le s < s + \Delta s < 0$, by (18) and noticing that $\{X_n, n \in \mathbb{N}\} \prec X$ and $\sum_{k=1}^n w_{nk} \le 1$, we have

$$\varphi(s + \Delta s) - \varphi(s)$$

$$= \liminf_{n} \sum_{k=1}^{n} w_{nk} [\widetilde{M}_{k}(s + \Delta s; X_{0}, \cdots, X_{k-1}) - \widetilde{M}_{k}(0; X_{0}, \cdots, X_{k-1})]$$

$$\begin{split} &-\lim\inf_{n} \sum_{k=1}^{n} w_{nk} [\widetilde{\mathbb{M}}_{k}(s;X_{0},\cdots,X_{k-1}) - \widetilde{\mathbb{M}}_{k}(0;X_{0},\cdots,X_{k-1})] \\ &= \lim\inf_{n} \sum_{k=1}^{n} w_{nk} [\widetilde{\mathbb{M}}_{k}(s+\Delta s;X_{0},\cdots,X_{k-1}) - \widetilde{\mathbb{M}}_{k}(0;X_{0},\cdots,X_{k-1})] \\ &+ \lim\sup_{n} \sum_{k=1}^{n} w_{nk} [\widetilde{\mathbb{M}}_{k}(0;X_{0},\cdots,X_{k-1}) - \widetilde{\mathbb{M}}_{k}(s;X_{0},\cdots,X_{k-1})] \\ &\leq \lim\sup_{n} \sum_{k=1}^{n} w_{nk} [\widetilde{\mathbb{M}}_{k}(s+\Delta s;X_{0},\cdots,X_{k-1}) - \widetilde{\mathbb{M}}_{k}(s;X_{0},\cdots,X_{k-1})] \\ &= \lim\sup_{n} \sum_{k=1}^{n} w_{nk} [\int_{0}^{\infty} (e^{a_{k}t(s+\Delta s)} - e^{a_{k}ts})\mu(X_{k} > t | \mathcal{F}_{k-1})dt \\ &- \int_{-\infty}^{0} (e^{a_{k}t(s+\Delta s)} - e^{a_{k}ts})\mu(X_{k} < t | \mathcal{F}_{k-1})dt] \\ &= \lim\sup_{n} \sum_{k=1}^{n} w_{nk} [\int_{0}^{\infty} e^{a_{k}ts} (e^{a_{k}t\cdot\Delta s} - 1)\mu(X_{k} > t | \mathcal{F}_{k-1})dt \\ &- \int_{-\infty}^{0} e^{a_{k}ts} (e^{a_{k}t\cdot\Delta s} - 1)\mu(X_{k} < t | \mathcal{F}_{k-1})dt] \\ &\leq C \lim\sup_{n} \sup_{k=1}^{n} w_{nk} [\int_{0}^{\infty} e^{a_{k}ts} (e^{a_{k}t\cdot\Delta s} - 1)\mu(X > t)dt \\ &- \int_{-\infty}^{0} e^{a_{k}ts} (e^{a_{k}t\cdot\Delta s} - 1)\mu(X < t)dt] \\ &\leq C \lim\sup_{n} \sup_{k=1}^{n} w_{nk} [\int_{0}^{\infty} (e^{bt\cdot\Delta s} - 1)\mu(X > t)dt \\ &- \int_{-\infty}^{0} e^{bts} (e^{bt\cdot\Delta s} - 1)\mu(X < t)dt] \\ &\leq C [\int_{0}^{\infty} (e^{bt\cdot\Delta s} - 1)\mu(X > t)dt - \int_{-\infty}^{0} e^{bts} (e^{bt\cdot\Delta s} - 1)\mu(X < t)dt] \\ &\leq C [\int_{0}^{\infty} (e^{bt\cdot\Delta s} - 1)\mu(X > t)dt - \int_{-\infty}^{0} e^{bts} (e^{bt\cdot\Delta s} - 1)\mu(X < t)dt] \\ &= C \{ [\widetilde{\mathbb{M}}^{+}(\Delta s) - \widetilde{\mathbb{M}}^{+}(0)] - [\widetilde{\mathbb{M}}^{-}(s + \Delta s) - \widetilde{\mathbb{M}}^{-}(s)] \} \end{aligned}$$

which follows that $\varphi(s)$ is continuous on $(-s_0, 0)$, let $s \to 0$ in (17), we obtain

$$\liminf_{n} \mathbb{T}_n(\mathbf{W}) \ge 0, \ \mu - a.s.$$

Similarly, we can get

$$\limsup_{n} \mathbb{T}_n(\mathbf{A}) \le 0, \ \mu - a.s.$$

These complete the proofs of the Theorem 1.

Theorem 2.Let $\{X, X_n, n \in \mathbb{N}\}$ be defined as above and $\{X_n, n \in \mathbb{N}\} \prec X(C)$ with $\mathbb{E}X < \infty$. If $\sigma_n \uparrow \infty$ as $n \to \infty$, then

$$\lim_{n} \mathbb{T}_n(\mathbf{W}) = 0, \quad \mu - a.s.$$

Corollary 1.(SLLN) Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of independent random variables, if

$$\sup_{n\in\mathbb{N}} \mu\{|X_n| > x\} \le C\mu\{|X| > x\} \quad \text{for all } x > 0.$$

or

$$\sup_{n \in \mathbb{N}} \sum_{k=1}^{n} w_{nk} \mu\{|X_k| > x\} \le C \mu\{|X| > x\} \quad \text{for all } x > 0.$$

then

$$\lim_{n} \mathbb{T}_{n}(\mathbf{W}) = 0, \quad \mu - a.s.$$

References

- [1] C. Su ,T. J. Tong, Almost sure convergence of the general Jamison weighted sum of B-valued random variables, Acta Mathematica Sinica, English Series, (20)(2004), 181-192.
- [2] H. H. Dug, I. V. Andrei, Marcinkiewicz-type law of large numbers for double arrays, J.Korean Math. Soc. 36(6)(1999), 1133-1143.
- [3] K. L. Chung, A Course in Probability Theory, 2nd ed, Academic Press, New York, 1988.
- [4] O. C. Manuel, I. V. Andrei, Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability, Mathematical Analysis and Applications, 305(2005): 644-658.
- [5] W. F. Stout, Almost sure convergence, New York-London: Academic Press, 1974.
- [6] Y. Adler, A. Rosasky, Some general strong laws for weighted sums of stochastically domainated random variables, Stochastic Analysis and Application. 5(1)(1987):1-16.

Received: November 2, 2007