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Abstract. Some notions of conditionally dominated random variables are
introduced and characterized, Under rather minimal assumptions on random
variables {X, X,,,n > 1}, some limit theorems of Jamison’s type of weighted
sums of random variables are obtained.
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1. Introduction

It is of interesting in probability theory and statistics to consider the con-
vergence of weighted sums > ), wnr[Xe — E(Xi|Fi-1)], see e.g. [2],[4],[5],[6]
and many results have been made in the field. Conditions of independent
random variables are basic in historic results due to Bernoulli, Borel and
Komogrov(cf.[5]). Recently, serious attempts have been made to relax these
strong conditions(cf.[4]). Such as stochastically dominated conditions of some
kind, and these have played an increasingly important role as a key condition
in proving laws of large numbers. In Y. Adler and A. Rosasky, for example,
the authors considered a sequence of independent random variables.

In the present paper, we are interesting in introducing a new set of con-
ditions to be called conditionally dominated in Cesaro sense concerning the
array {wn} for a sequence of random variables, and we will show some sta-
bility results of Jamison type weighted sums of arbitrary random variables in
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more general settings.
2. Preliminary work

Some definitions and preliminary results will be presented prior to establish
the main results.

Let (2, F, Fn, u,n € N) be a probability space and N denote the set of non-
negativ integer, where {F,, = o(Xo, -, X,),n € N} is an increasing sequence
of sub o— algebras of the basic c—algebra F and Fy is the trivial c—algebra
{#,Q}. Suppose that {X, X,,,n € N} be a stochastic sequence defined on this
underlying probability space.

For all n € N, A, Ao, Ay, -+, A, € B(B is the Borel o algebra on R),

X € A} = / Pl 1)
and

plXo€ A Xpe A= [ [ e aulde i)
€A TnEAR
(2)

and denote the conditional pmf(pdf) by

pn(Z'Oa e 73771)
(3)
Pr—1(To, -+, Tn_1)

where p(z), p,(- - - ) are probability mass functions(pmf) or probability density
functions(pdf) w.r.t.u. In nearly all cases p and is either the Lebesgue or
counting measures.

Let {ax,k > 1} be a sequence of positive real numbers, b = sup{ay, k >
1} < 0o,W = {wp,1 <k <n,n > 1} be a triangular array of positive real
numbers, where

pn(xn’*Q:Oa e 73:71—1) =

ag/on, fork<mn
Wnk =
0, for k>n

satisfying ) wpr < 1 and with o,, T co. We shall study the Jamison type
weighted sums of the form

To(W) = war[Xp — E(Xg|Fir)] (4)
k=1
for all n € N.

Definition 1.Let{ X, X,,n € N}be a sequence of random variables, the
conditionally moment generating function and conditional tail probability mo-
ment generating function of X with respect to ax as follows:

o0

Mn(s; Lo, -« 7‘1'71—1) = / eanxspn(l"xoa to 7xn—1)ﬂ(dm)' (5)

(e 9]
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n(S;20, 0, Tpet) (6)

/ / Paltlzo, - r)dtp(de)

—/ e“"“/ Pu(t|To, -+ Xp1)dtp(dx).
and let

M(s / / t)dtp(dr) / / t)dtu(dz). (7)
/ / Hdtu(dz), M / / t)dtu(dz). (8)

provided that the integrals exit for s € (—sg, so) for some sy > 0.
Definition 2. (cf.[6])Let { X, X,,,n € N} be a sequence of random variables,
and is said to be :
1) conditionally dominated by a random variable X in double sides(we write
{X,,n € N} < X) if there exists a constant C' > 0, for almost every w € €2,
such that
sup pi{ X, > z|Fo1} < Cpu{X >z}  forall x> 0.
neN

and
sup pi{ X, < z|Foo1} < Cpu{X <z} forall z <O.

neN
2) conditionally dominated in Cesaro sense by a random variable X, con-
cerning the array {wyx}, in double sides(we write {X,,n € N} < X(C)) if
there exists a constant C' > 0, for almost every w € €2, such that

suprnk,u{Xk > x| Fro1} < Cp{X >z} forall x > 0.
nGNk 1

and

suprnk,u{Xk < x|Fro} < Cp{X <z} forall x <O0.
nGNk 1

Remark. In the particular case of array

1/n, fork<n
Wnk =
0, for k>n

the condition of {wy}-stochastically dominated in Cesaro sense is the domi-
nated in Cesaro sense. _
Lemma 1.Let M, (s; xq, -+, Zp-1), M (8; Zo, - -+ ,xn—1) be defined as above,

then
MTL , y T s dbn— — 1 V]
(S Lo x 1) = anMn(s; Zo, - ,Z'n—1> (9)
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and

M., (0) = E(X, |20, -+ , Tn_1) (10)
Proof. Since
AGEREE I Yy g
0

s = s pn(x’];Oa e 7xn—1>ﬂ(dm)

ansa:

0
eansT _
+/ ——u(z|x0, - - 1) p(d)

d/ pu(t|zo, -+ xp_1)dt
0

+/ — d/ Pu(t|zo, -+ Tpy)dt

1 — eans®

- / pultlzo, -, Tuon)dHl|E°
/ “"“/ Pu(t|zo, -+ Tpo1)dtu(dr)
el LI pron T

—an/ e“"“/ Pu(t|To, -+ ) Ty )dtp(dz) = anM, (5320, -+ Tn_1).

(9) follows. (10) can also be obtained immediately from integration by parts.
U

3. Mainstream

Theorem 1.Let {X, X,,,n € N} be defined as before. If {X,,n € N} < X
with EX < oo and let 0, T o0 as n — oo. Then

li£n T, (W)=0, p—a.s. (11)
Proof. Putting @l )
e e (k| o, - -, Tt
pr(s;vx) = M (s )
and
Pn(8; o, "+ +  Tn) = Po(Zo) Hpk(ssl“k): n=12--.
Therefore p,(s;zo, -+ ,x,) is a pmf orkpiif of n + 1 variables, let us define

5n(5§X07"'7Xn) . .
s onl g f the denominator > 0
An(s,w) = { e

0, otherwise
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From reference [3], we have

limsupo, logA,(s;w) <0,  p—a.s. (12)
Note that
log An(s;w) =5 Y axXp — Y logMy(s; Xo, -+, Xp1) (13)
k=1 k=1

By (12) and (13),we have

1 n n
lim sup — s Z ap Xy — Z log Mk (s; Xoy -+, Xg—1)] <0, p—a.s. (14)
no In o k=1

Thus

n 1 n
I <1i - X, Xp1), fi— a.s.
1mnsupsanka < hmnsup p Zlong(s,Xo, , Xg-1), p—a.s. (15)
k=1 k=1
By the property of the superior limit lim sup,,(a, — b,) < 0 — limsup,,(a, —
¢n) < limsup, (b, — ¢,) and note that E(Xy|Fr_1) < o0, a.s. k = 1,2,---.
Dividing two sides of (15) by s, we have, by lemma 1, for any s € (—so,0),

lim inf Z Wk [ X — E(Xg| Frz1)]
k=1

1 = logMyg(s; Xo, -, Xp_
> liminf—Z[ o8 k(S’ Rl Tk 1) — akE<Xk’fk_1)], n—a.s. (16)
noOn s

From the inequality logz < z — 1(x > 0) and lemma 1, we have

1 M Xn oo X0 ) =1
lim inf T, (W) > lim inf — 3| k(s Xo, -+ Xi1)
" it s

— akE<Xk’fk_1)]

n

S Ny
= lim mfa— Zak[Mk(s; Xo, oy Xio1) —E(Xy| Fr-1)], p—a.s. (17)
" k=1
Let

o(s) = lirrhianwnk[Mk(s; Xo,- -, Xpo1) — E(Xg|Fre1)], s € (—50,0) (18)
k=1
If —sp < s < s+ As <0, by (18) and noticing that {X,,n € N} < X and
Y pei Wnk < 1, we have

(s +As) = o(s)

= lin%zianwnk[Mk(s +As; X, Xp1) — My (0; Xo, -+, Xpt)]
k=1
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_hH}zianwnk[Mk(SSXO: s Xer) = M(0; Xo, -+, Xpon)]
k=1

= hH}zianwnk[Mk(s + As; Xo, -+, Xio1) — M (0; Xo, -+, Xp1)]
k=1

+limsupzwnk[Mk(O;X0: s Xpor) — Mi(s; Xo, -, Ximy)]
" k=1

< lim Supzwnk[Mk(S + As; Xo, -+, Xim1) — Mi(s; Xo, -+, Xio1)]
" k=1

= limsup Y wpi| / (eawtsH89) _ gants) (X > t|Fp_y)dt
" k=1 0

0
. / (eakt(s+As) . e“’“ts),u(Xk < t|fk_1)dt]

—00

= limsup Y wu / R (MBS _ 1) (X, >t Freey )dt
" k=1 0

0
_/ eakts(eakt'AS _ 1)M(Xk < t|fk_1)dt]

n

< C'lim suprnk [/ ek (MRS 1) y(X > t)dt
" k=1 0

0
_ / e (WA — 1)u(X < t)di]

n

< Clim suprnk[/ ("2 — Du(X > t)dt
0

k=1

0
—/ e (PR — D (X < t)dt]

< 0[/00((3“'& S (X > )t — /0 M3 (AT 1) (X < )]

—00

= C{[M*(As) — MIT(0)] — [M~ (s + As) — M ()]}

which follows that ¢(s) is continuous on (—sg,0), let s — 0 in (17), we obtain

liminf T,(W) >0, p— a.s.

Similarly, we can get

limsupT,(A) <0, u—a.s.

n

These complete the proofs of the Theorem 1. O
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Theorem 2.Let { X, X,,,n € N} be defined as above and {X,,,n € N} < X(C)
with EX < oco. If 0, T 00 as n — o0, then

IimT, (W) =0, u—a.s.

Corollary 1.(SLLN) Let {X, X,,n € N} be a sequence of independent
random variables, if

sup p{|Xyn| > 2} < Cup{|X| >z} for all x > 0.
neN

or
suprnk,u{\Xk] >} < Cu{|X|>=x} forall x> 0.
neN )

then
IimT, (W) =0, pu—a.s.
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