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Abstract

In this paper we consider the partial difference equation with contin-
uous variables, Some sufficient conditions for all solutions of this equa-
tion to be oscillatory are obtained.
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1 Introduction

Partial difference equations arise in applications involving population dynamics
with spatial migrations, chemical reactions (see [1,2]). Recently, the qualitative
analysis of Partial difference equations has received much more attention (see
[3]). In particular, the oscillation of partial difference equations with continu-
ous variables has been investigated in some papers (see [4-8] and the references
theirin). To further the qualitative analysis of Partial difference equations, in
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this paper we shall consider the Partial difference equation with continuous
variables

d1A(x+ a, y + b) + d2A(x+ a, y) + d3A(x, y + b) − d4A(x, y)

+Σn
i=1pi(x, y)A(x− τi, y − σi) = 0

(1)

Where pi ∈ C(R+×R+, R+), a, b, τi and σi are positive, d1 ≥ 0, d2, d3 ≥ d4 > 0.
By a solution of (1), we mean a continuous function A(x, y) which satisfies

(1) for x ≥ x0 ≥ 0, y ≥ y0 ≥ 0. A solution A(x, y) of equations is said to be
eventually positive if A(x, y) > 0 for all large x and y, and eventually negative
if A(x, y) < 0 for all large x and y. It is said to be oscillatory if it is neither
eventually positive nor eventually negative.

In this paper we will concern with the oscillation of the equations (1).
Equation (1) has been investigated by [8,9]. Our purpose is to obtain new
oscillation criteria for the oscillation of (1) by new techniques. Our studies are
motivated by the work of [10]. Some new sufficient conditions for this equation
to be oscillatory are derived, which is easier to be verified than that of [9], and
our results certainly extend/implement the oscillation results in [9].

2 Main results

In what follows we will assume the following for i = 1, 2, . . . , n:
(1) τi = kia + θi, σi = lib + ψi, where ki, li are nonnegative

integers, θi ∈ [0, a), ψi ∈ [0, b);
(2)

Qi(x, y) = min{pi(z, w)|x ≤ z ≤ x+a, y ≤ w ≤ y+ b, x ≥ x0 ≥ 0, y ≥ y0 ≥ 0}

and

lim inf
x,y→∞ Qi(x, y) = qi ≥ 0, i = 1, 2, · · · , n.

(3) k0 = min{ki}, l0 = min{li}, ηi = min{ki, li}, i = 1, 2, · · · , n.
Similar to [8,9], we have the following result:
Lemma 2.1 Let A(x, y) be an eventually positive solution of equation (1).

Set

ω(x, y) =
∫ x+a

x

∫ y+a

y
A(u, v)dudv,

Then ω(x, y) is an eventually positive solution of the difference inequality

d1ω(x+ a, y + b) + d2ω(x+ a, y) + d3ω(x, y + b) − d4ω(x, y)

+
∑n

i=1Qi(x, y)ω(x− kia, y − lib) ≤ 0,
(3)
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and ∂ω
∂x
< 0, ∂ω

∂y
< 0.

In view of lemma 2.1, we have, for all x and y sufficiently large
Lemma 2.2

ω(x+ a, y + b) < ω(x, y), ω(x+ a, y) < ω(x, y),

ω(x, y + b) < ω(x, y), ω(x, y) < ω(x− kia, y − lib).

The followings are the main results of the paper
Theorem 2.2 Suppose that one of the following four conditions holds :
(i)k0 > 0, l0 > 0:

1

d4

n∑
i=1

qi(
d1 + d2 + d3

d4
)ηi

(ηi + 1)ηi+1

ηηi
i

> 1; (6)

(ii)k0 > 0, l0 = 0:

1

d4

n∑
i=1

qi(
d2

d4

)ki
(ki + 1)ki+1

kki
i

> 1; (7)

(iii)k0 = 0, l0 > 0:

1

d4

n∑
i=1

qi(
d3

d4
)li

(li + 1)li+1

llii
> 1; (8)

(iv)k0 = 0, l0 = 0:
1

d4

n∑
i=1

qi > 1; (9)

then every solution of equation (1) is oscillatory.
Proof: Suppose, to the contrary, A(x, y) is an eventually positive solution

of (1). Let ω(x, y) be defined as in lemma 2.1. We consider the above four
cases:

Case 1 k0 > 0, l0 > 0: By the monotonicity of ω(x, y) with respect to x,
y and Lemma 2.1, for sufficiently large x and y, we obtain

(d1 + d2 + d3)ω(x+ a, y + b)

d4ω(x, y)
− 1

<
d1ω(x+ a, y + b) + d2ω(x+ a, y) + d3ω(x, y + b)

d4ω(x, y)
− 1

≤ − 1

d4

n∑
i=1

Qi(x, y)
ω(x− kia, y − lib)

ω(x, y)

≤ − 1

d4

n∑
i=1

Qi(x, y)
ω(x− ηia, y − ηib)

ω(x, y)

= − 1

d4

n∑
i=1

Qi(x, y)
ω(x− ηia, y − ηib)

ω(x− ηia+ a, y − ηib+ b)
· · · ω(x− a, y − b)

ω(x, y)
.

(10)
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Define

S(x, y) =
ω(x, y)

ω(x+ a, y + b)
, (11)

Notice that ω(x, y) is monotone decreasing and bounded, it is easy to see that
S(x, y) is bounded and also S(x, y) > 1. Substituting (11) into (10), we get

d1 + d2 + d3

d4S(x, y)
− 1 < − 1

d4

n∑
i=1

Qi(x, y)
ηi∏

j=1

S(x− ja, y − jb). (12)

Denote that ξ = limx,y→∞ infS(x, y), Obviously ξ ∈ [1,+∞). From (12) and
the definition of ξ, we have

d1 + d2 + d3

d4ξ
− 1 ≤ − 1

d4

n∑
i=1

qiξ
ηi. (13)

which implies that

ξ >
d1 + d2 + d3

d4
,

∑n
i=1 qiξ

ηi+1

d4ξ − (d1 + d2 + d3)
≤ 1 (14)

Let

f(ξ) =
ξηi+1

d4ξ − (d1 + d2 + d3)
, (15)

Differentiate f(ξ) with respect to ξ, we have

f ′(ξ) =
ξηi[d4ξηi − (ηi + 1)(d1 + d2 + d3)]

[d4ξ − (d1 + d2 + d3)]2

Let f ′(ξ) = 0, we can get

ξ =
d1 + d2 + d3

d4

· ηi + 1

ηi

Since ηi ≥ 0, then we have

min{f(ξ)} =
1

d4
(
d1 + d2 + d3

d4
)ηi

(ηi + 1)ηi+1

ηηi
i

(16)

In view of (14) and (16), we have

1

d4

n∑
i=1

qi(
d1 + d2 + d3

d4
)ηi

(ηi + 1)ηi+1

ηηi
i

≤ 1 (17)

which is contrary to the assumption (i), hence every solution of (1) oscillates.
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Case 2 k0 > 0, l0 = 0: By the monotonicity of ω(x, y) and Lemma 2.1,
we obtain

d2ω(x+ a, y)

d4ω(x, y)
− 1

≤ d1ω(x+ a, y + b) + d2ω(x+ a, y) + d3ω(x, y + b)

d4ω(x, y)
− 1

≤ − 1

d4

n∑
i=1

Qi(x, y)
ω(x− kia, y − σi)

ω(x, y)

= − 1

d4

n∑
i=1

Qi(x, y)
ω(x, y − σi)

ω(x, y)

ki∏
j=1

ω(x− ja, y − σi)

ω(x− ja + a, y − σi)

< − 1

d4

n∑
i=1

Qi(x, y)
ki∏

j=1

ω(x− ja, y − σi)

ω(x− ja + a, y − σi)

. (18)

Let

S(x, y) =
ω(x, y)

ω(x+ a, y)
, (19)

It is easy to see that S(x, y) is bounded, in particular S(x, y) > 1, thus

d2

d4S(x, y)
− 1 < − 1

d4

n∑
i=1

Qi(x, y)
ki∏

j=1

S(x− ja, y − σi) (20)

Denote
ξ = lim

x,y→∞ infS(x, y), then ξ ∈ [1,+∞). (21)

Now from (20) and (21), it follows that

d2

d4ξ
≤ 1 − 1

d4

n∑
i=1

qiξ
ki, (22)

Obviously

ξ >
d2

d4
,

∑n
i=1 qiξ

ki+1

d4ξ − d2
≤ 1 (23)

Let

f(ξ) =
ξki+1

d4ξ − d2

, (24)

Similar to the case 1, we have

min{f(ξ)} =
1

d4

(
d2

d4

)ki
(ki + 1)ki+1

kki
i

(25)

Substituting (25) into (23), it follows that

1

d4

n∑
i=1

qi(
d2

d4
)k1

(ki + 1)ki+1

kki
i

≤ 1 (26)
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which is contrary to the assumption (ii) of theorem 2.2, hence every solution
of equation (1) oscillates.

Case 3 k0 = 0, l0 > 0, The proof is similar to that of k0 > 0, l0 = 0, and
thus, is omitted.

Case 4 k0 = 0, l0 = 0, Similarly, we have

0 <
d1ω(x+ a, y + b) + d2ω(x+ a, y) + d3ω(x, y + b)

d4ω(x, y)

≤ 1 − 1

d4

n∑
i=1

Qi(x, y)
ω(x− τi, y − σi)

ω(x, y)
,

(27)

Due to
ω(x− τi, y − σi)

ω(x, y)
> 1, (28)

we have
1

d4

n∑
i=1

Qi(x, y) ≤ 1. (29)

Which implies that
1

d4

n∑
i=1

qi ≤ 1.

This contradicts the assumption (iv), so every solution of the equation (1)
oscillates. The proof is complete.

3 Example

To illustrate the applications of Theorem 2.1, we consider the following two
examples

Example 1 Consider the partial difference equation

A(x+ 2π, y + 2π) + A(x+ 2π, y) + A(x, y + 2π) − A(x, y)

+p(x, y)A(x− π, y − 3π) = 0,
(30)

Where p(x, y) = 7
2

+ sin x+ sin y. From the equation (30), we have

u = 1, k = 0, l = 1, d1 = d2 = d3 = d4 = 1

q = min
x ≤ z ≤ x+ 2π
y ≤ w ≤ y + 2π

p(z, w) =
3

2
. (31)

Then
1

d4

n∑
i=1

qi(
d3

d4
)li

(li + 1)li+1

llii
=

1

1
· 3

2
· 11 · (1 + 1)1+1

11
= 6 > 1, (32)
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According to the assumption (i) of Theorem 2.1, every solution of (30) oscil-
lates.

If we apply the Cor2.2 of [9], first we must calculate the parameter eλ∗

which should satisfy

d4(1 − eλ∗
) =

n∑
i=1

qie
−(ki+li)λ∗

(
d2

d4

)ki(
d3

d4

)li. (33)

From (31), we have

eλ∗
= 1 − 3

2
eλ∗

(34)

but from [9] we find that in order to get (34), the following condition is neces-
sary

1

d4

n∑
i=1

qi(
d2

d4
)ki(

d3

d4
)li < 1 (35)

Substituting (31) into the left side of (35), we have

1

1
· 3

2
· (1

1
)0 · (1

1
)1 =

3

2
> 1

Obviously the condition (35) does not hold, So we can not use cor2.2 of [9]
to discuss the oscillation of equation (30). Hence the theorem 2.1 provides a
complement for that of paper[9].

Example 2 Consider the partial difference equation:

A(x+ 2π, y + 2π) + A(x+ 2π, y) + A(x, y + 2π) −A(x, y)

+p1(x, y)A(x− π, y − 3π) + p2(x, y)A(x− 3π, y − 5π) = 0,
(36)

Where p1(x, y) = 11
5

+sinx+sin y, p2(x, y) = 5
2
+sinx− sin y. It is easy to see:

n = 2, k1 = 0, l1 = 1, k2 = 1, l2 = 1, d1 = d2 = d3 = d4 = 1,

q1 = min
x ≤ z ≤ x+ 2π
y ≤ w ≤ y + 2π

p1(z, w) = 1
5

q2 = min
x ≤ z ≤ x+ 2π
y ≤ w ≤ y + 2π

p2(z, w) = 1
2

(37)

By calculating, the equation (36) satisfies the assumption (iii) of theorem 2.1:

1

d4

n∑
i=1

qi(
d3

d4
)li

(li + 1)li+1

llii
=

1

1
· 1
5
· (1

1
)1 · (1 + 1)1+1

11
+

1

1
· 1
2
· (2 + 1)2+1

22
=

77

40
> 1

(38)
Thus the solution of (36) oscillates.
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Now we use the oscillation criteria of paper [7] to discuss the oscillation of
(36), From [7], we know that if

(1 − eλ∗
)eλ∗

(d1d4

d2d3
eλ∗

+ 2)

1 − (1 − eλ∗)eλ∗(d1d4

d2d3
eλ∗ + 2)

+ (1 − eλ∗
) > 1. (39)

Where eλ∗
satisfies (33), then every solution of (1) oscillates.

But in view of (33), we have

1 − eλ∗
=

1

5
· e−λ∗

+
1

2
· e−3λ∗

,

Then

10e4λ∗ − 10e3λ∗
+ 2e2λ∗

+ 5 = 0. (40)

It is a higher-order equation about eλ∗
, So it is difficult to use condition (39)

to discuss the oscillation of (36). Obviously theorem 2.1 of this paper is easier
to be verified than that of paper[7].
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