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Abstract 
 

In this paper, we consider two types of failure data namely grouped and non-grouped, 
which can be motivated from a linear mixed degradation model. We propose a 
Bayesian approach to estimate the parameters of the time-to-failure distribution and 
its percentiles. A simulation study conducted to study the performance of the 
proposed method showed that in terms of the mean squares error and the length of the 
bootstrap confidence intervals, the behavior of the proposed method is satisfactory. 
Also, it showed that the Bayesian approach with non-grouped data is better than the 
Bayesian approach with a grouped data. Application to a real data set is given.   
  
Keywords: Reliability; Bayesian; Degradation; Grouped data; Non-grouped data; 
Bootstrap Confidence Interval 
 
 
1 Introduction 
 
In measuring the reliability of a product, the observed quantity of interest is usually 
the time-to-failure. Recently, with today’s high technology, some life tests result in  
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no or very few failures by the end of the test, thus it is difficult to assess the reliability 
by the traditional reliability analysis.  
In the literature, Lu and Meeker (1993) used a nonlinear mixed- effects model with 
random effect parameters that follow a multivariate normal distribution. They used 
the two-stage method to estimate the model parameters that leads to estimate the 
time–to-failure distribution. Wu and Shao (1999) established the asymptotic 
properties of the ordinary and weighted least squares estimators under the nonlinear 
mixed-effect degradation model. Alodat and Al-Haj Ebrahem (2007) used the ranked 
set sampling to estimate the parameters of the time-to-failure distribution of a linear 
degradation model. Al-Haj Ebrahem (2007) estimated the variance components of 
accelerated degradation models.  
Etro and Giorgio (2002) presented a generalized practical Bayesian estimator of the 
parameters of the Weibull distribution and the inverse power law model under 
accelerated test. Gebraeel et al. (2005) used a Bayesian method to update the random 
parameters of an exponential degradation model. Al-Hussaini and Abdel-Hamid 
(2004) used a Bayesian approach to estimate the parameters of the time-to-failure 
distribution which is considered as a mixture of two Weibull components. Robinson 
and Crowder (2000) described a Bayesian approach to estimate and predict the time-
to-failure distribution. For more details see Al-Haj Ebrahem and Higgins (2005), 
Meeker and Escobar (1998),  Bagdonavicius and Nikulin (2000), Wang and Daescu 
(2002) and Hamada (2005). 

From the above literature, it is known that some times the time-to-failure of a unit 
can't be observed exactly, but it can be observed up to intervals. Many studies of 
degradation models interpolate these time-to-failure data. In this study, we will 
analyze the linear degradation model without interpolating the time-to-failure data, 
but we will treat it as a grouped data.  

 This paper is organized as follows. In Section 2, we present the time-to-failure 
distribution which can be motivated from a linear mixed degradation model.  In 
Section 3, we propose a Bayesian approach to estimate the parameters of the time-to-
failure distribution and its percentiles using non grouped data, while in Section 4 we 
estimate the parameters of the time-to-failure distribution and its percentiles using 
grouped data. Simulation study and results are presented in Section 5. An application 
to real data set is presented in Section 6. Conclusions are discussed in Section 7.  

 

2.  Time-to-Failure Distribution and its Percentiles 
 

Consider the following linear mixed degradation model, 

                                     ,ijjij ty εθφ ++=                                                                  (1) 
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where yij is the degradation for unit i at time tj, φ  is a fixed effect parameter, θ  is a 
random effect parameter which is assumed to have an exponential distribution with 
mean μ  and ijε ’s are the random error terms which are assumed to be independent 

and identically distributed with zero mean and constant variance 2
εσ , i =1, 2,…, n, j = 

1, 2,…, m, where n is the number of tested units, m is the number of observations 
measured for each unit. We assume ijε ’s and θ  are independent. 

In degradation analysis, we say that the failure occurs at time T when the degradation 
of a unit reaches a critical degradation level D.   

To obtain the time-to-failure distribution of T, let TD θφ += , so under the 
assumption that θ  has an exponential distribution with meanμ , the cumulative 
distribution of T, )(xFT is given by, 
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Thus, the 100pth percentile tp of the time-to-failure distribution is given by,  
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3.  A Bayesian Approach with Non Grouped Data 
 

Consider the model defined in equation (1). We assume that φ  has a uniform prior 
distribution )(1 φπ  and μ  has an inverse gamma prior distribution )(2 μπ , 

where, 
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We choose the uniform prior distribution )(1 φπ , since our model assumes that the 
failure occurs when the degradation of a unit reaches a critical degradation level D 
and this is valid when the value of the interceptφ is less than D, also from 
probability density function of T given in equation (2) we should have D<< φ0 . We 
choose an inverse gamma prior distribution )(2 μπ , since the slope of a linear 
degradation model will be positive and the inverse gamma distribution is natural 
conjugate prior forμ , which also quite flexible. 

Let x1, x2,…, xn be an observed random sample of failure times from the probability 
density function given in equation (2). The likelihood function of ),...,,( 21 nxxxx = is 
given by, 
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The posterior density of φ and μ  given x is given by, 
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The derivation of c is given in Appendix A. 

Under the squared error loss function, the Bayesian estimators forφ and μ  are, 
respectively, Bφ̂  and Bμ̂ ,  

where, 
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          ∫
∞

=
0

)|(ˆ μμμμ dxpB ,                                                                      (4) 

( )xp |φ  and )|( xp μ  are the marginal posterior density of φ  and μ respectively. 

The derivation of Bφ̂  and Bμ̂  are given in Appendix A. 
After computing Bφ̂  and Bμ̂ , we can estimate the 100pth percentile tp of the time-to-
failure distribution by,  
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4. A Bayesian Approach with Grouped Data 
 

 The time interval [0, ∞) will be partitioned into (k+1) subintervals, I1, I2, …, Ik+1, 
where,  

Ij = [ ( j-1) δ , j δ ),     j = 1, 2, .., k,  Ik+1 = [ k δ , ∞ ) and δ  is the length of the first k 
subintervals. Since our model assumes the linear degradation path, then each unit will 
fail in one and only one of these subintervals. 

Let zj be the number of time-to-failures occur within the subinterval Ij,  j =1, 2, ..., 
k+1. The probability that a random unit fails in the subinterval Ij is given by, 
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Thus, z = ( z1, z2, .., zk+1 ) is distributed as Multinomial (n; p1, p2, …, pk+1), with 
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, the number of sampled units. 

The likelihood function of ),...,,( 121 += kzzzz  is given by, 
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In this section, we will propose a Bayesian approach to estimate the model 
parameters φ  andμ  using a grouped data. Assumeφ has a uniform prior 
distribution )(1 φπ on (0, D) and μ  has an inverse gamma prior distribution 

)(2 μπ with shape parameterα  and scale parameter β , the same priors given in 
Section 3. The posterior density function of φ and μ  given z is given by, 
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The derivation of c* is given in Appendix B. 

 

Under the squared error loss function the Bayesian estimators for φ and μ  are Gφ̂  
and Gμ̂ , respectively,  

where, 
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( )zp |φ  and )|( zp μ  are the marginal posterior density of φ  and μ respectively. 

The derivation of Gφ̂  and Gμ̂  are given in Appendix B. 

After computing Gφ̂  and Gμ̂ , we can estimate the 100pth  percentile tp of the time-to-
failure distribution by, 
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5. Simulation Study and Results 
 
To study the performance of the estimators Bφ̂ , Bμ̂ , pBt̂ , Gφ̂ , Gμ̂  and pGt̂ ,  we 
conducted a simulation study. The mean bias (MB) and the mean squares error 
(MSE) of the estimators for p = {0.05, 0.1, 0.15} with number of iterations l = 
200000 are computed. Simulation indices are: φ  = 1.5,  μ  = 3, k = 5, 7, 9, δ  = 0.75, 
1, 1.25, 2 and D = 5. 
To construct a 95% Bootstrap confidence interval for the time-to-failure percentiles 
using   a non grouped data, we used the following steps: 

1. Generate a random sample of sample size n = 20, 40 or 60 from the 
probability density function given in equation (2). 

2. Select a sample of size n with replacement from the sample generated in step 
1. 

3. Compute pBt̂  as given in equation (5) for p = 0.05, 0.1, 0.15. 

4. Repeat steps 2 and 3 for B times where B = 20000 and let )1(ˆ
pBt , )2(ˆ

pBt , …, 

)(ˆ Bt pB be the ordered value of pBt̂ ’s. 
5. The 95% Bootstrap confidence interval is ( LB , UB ), where 

)025.0(ˆ BtL pBB =              and           )975.0(ˆ BtU pBB = . 
Similar steps will be used to construct a 95% bootstrap C.I for the time-to-failure 
percentiles using a grouped data. Simulation results are presented in Tables 1- 4. 
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  Table 1: MB and MSE of Bφ̂ , Bμ̂ , pBt̂  Using Non Grouped Data 
 
Simulation Setting Parameter MB MSE 
n = 10, α =5,  β =1/12 φ  

μ  
t0.05 
t0.1 
t0.15 

0.38401 
-0.306698 
0.010169 
0.013231 
0.016059 
 

0.292706 
0.214334 
0.011178 
0.018921 
0.027874 
 

n = 15, α =5, β =1/12 φ  
μ  
t0.05 
t0.1 
t0.15 

0.365319  
-0.306195 
0.009345 
0.012159 
0.014757 

0.244291 
0.187717 
0.008493 
0.014375 
0.021176 

n = 20, α =5, β =1/12 φ  
μ  
t0.05 
t0.1 
t0.15 

0.357398  
-0.303319 
0.007932 
0.010319 
0.012525 
 

0.217566 
0.168951 
0.006766 
0.011453 
0.016871 

 
  
 
 

Table 2: A 95% Bootstrap C.I Using Non Grouped Data
n tp A 95% Bootstrap C.I Length of C.I 
    

 20 
  

t0.05  = 0.5007 
t0.1   = 0.6514 
t0.15 = 0.7907 

( 0.2910, 0.6452 )      
( 0.3787, 0.8394 ) 
( 0.4596, 1.0188 ) 

0.3542 
0.4608 
0.5592 

  
 40 

  

t0.05  = 0.5007 
t0.1   = 0.6514 
t0.15 = 0.7907 

( 0.3115, 0.6215 ) 
( 0.4052, 0.8085 ) 
( 0.4918, 0.9813 ) 

0.3099 
0.4033 
0.4895 

 60 
  

t0.05  = 0.5007 
t0.1   = 0.6514 
t0.15 = 0.7907 

( 0.4127, 0.6661 ) 
( 0.5370, 0.8666 ) 
( 0.6517, 1.0518 ) 

0.2534 
0.3296 
0.4001 
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Table 3: MB and MSE of Gφ̂ , Gμ̂  , pGt̂  Using a Grouped Data 
Simulation Setting Parameter MB MSE 
k = 5, δ =2, n =10, α = 5, β =1/12       φ  

μ  
t0.05 

t0.1 
t0.15 

0.567609 
-0.210507 
-0.019247 
-0.025040 
-0.030392 

0.63447 
0.227966 
0.016398 
0.027756 
0.040888 

k = 5, δ = 2, n =15, α = 5, β = 1/12       φ  
μ  

t0.05 
t0.1 
t0.15 
 

0.506522 
-0.230992 
-0.012547 
-0.016324 
-0.019812 

0.495692 
0.206522 
0.013265 
0.022453 
0.033076 

k = 5, δ = 2, n =20, α = 5, β = 1/12      φ  
μ  

t0.05 
t0.1 
t0.15 

 

0.471655 
-0.243477 
-0.008609 
-0.011201 
-0.013595 

0.422869 
0.174515 
0.011421 
0.019333 
0.028479 

k = 5, δ =2, n =20, α = 5, β = 1/14      φ  
μ  

t0.05 

t0.1 
t0.15 

 

0.192991 
-0.086218 
-0.000706 
-0.000919 
-0.001116 

0.284928 
0.194581 
0.007523 
0.012735 
0.01876 

k = 7, δ =2, n =20, α = 5, β = 1/14      φ  
μ  

t0.05 
t0.1 
t0.15 

0.194589 
-0.084690 
-0.000990 
-0.001289 
-0.001564 

0.285016 
0.194205 
0.007527 
0.012741 
0.018769 

k = 9, δ =2, n =20, α = 5, β =1/14     φ  
μ  

t0.05 

t0.1 
t0.15 

 

0.19065 
-0.089349 
-0.000030 
-0.000039 
-0.000048 

0.289405 
0.198316 
0.007649 
0.012947 
0.019072 

k = 5, δ = 0.75, n =10,  
α = 5, β = 0.125    

φ  
μ  

t0.05 

t0.1 
t0.15 
 

0.108634 
-0.0846556 
0.0228952 
0.0297874 
0.0361537 

0.216754 
0.0674372 
0.0245107 
0.0414888 
0.0611184 

k = 5, δ = 1, n =10, α=5, β = 0.125   φ  
μ  

t0.05 

t0.1 
t0.15

0.129602 
-0.0773405 
0.0177719 
0.0231218 
0.0280635 

0.237091 
0.0680464 
0.0248097 
0.0419948 
0.0618639 
 

k = 5, δ = 1.25, n =10, α=5, β = 0.125   φ  
μ  

t0.05 
t0.1 
t0.15 

0.148398 
-0.0721267 
0.0139955 
0.0182086 
0.0221002 

0.263004 
0.070081 
0.0257068 
0.0435134 
0.064101 
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Table 4: A 95% Bootstrap C.I Using a Grouped Data  

n True value of tp 95% Bootstrap C.I Length of C.I 

   10 
t0.05 = 0.500712 ( 0.14032, 0.75219 ) 0.61187 
t0.1  = 0.651442 ( 0.18256, 0.97863 ) 0.79607 
t0.15 = 0.790672 ( 0.22158, 1.18779 ) 0.96621 

   15 
t0.05 = 0.500712 ( 0.24599, 0.72279 ) 0.47681 
t0.1  = 0.651442 ( 0.32003, 0.94037 ) 0.62034 
t0.15 = 0.790672 ( 0.38843, 1.14135 ) 0.75292 

   20 
t0.05 = 0.500712 ( 0.17905, 0.60894 ) 0.42989 
t0.1  = 0.651442 ( 0.23294, 0.79224 ) 0.55930 
t0.15 = 0.790672 ( 0.28273, 0.96157 ) 0.67884 

 
 
From the above tables, we can conclude that the MB and MSE of the estimators 
decreases as n increases. MB and MSE of pBt̂ and pGt̂  increases as p increases.  MB 

and MSE of Gφ̂ , Gμ̂  and pGt̂  increases as δ increases and as the number of intervals k 
increases no obvious trend is observed. The length of the bootstrap confidence 
interval decreases as n increases and increases as p increases. 
By comparing the results obtained using non-grouped and a grouped data in terms of 
MSE’s, we conclude that using non-grouped data, the Bayesian estimators are more 
efficient than the Bayesian estimators obtained using a grouped data. In general, the 
confidence intervals obtained using a grouped data are wider than those obtained by a 
non-grouped data. 
 
6. Real Data Application  
 
In this section, we consider the Laser data from Meeker and Escobar (1998), Table 
C.17, page 642. The Laser data are analyzed using the Bayesian approach with non-
grouped and a grouped data. The MSE’s of the estimators are obtained using 
bootstrap method. A 95% confidence interval of the parameters of the time-to-failure 
distribution and its percentiles are computed. 
 
6.1 Data Description 
Over the life of laser devices, degradation causes a decrease in light output. Figure 1 
shows the percent increase in operating current, relative to original operating current, 
over time for a sample of 15 GaAs lasers tested at 80oC. The measurements are taken 
at time range from 250 to 4000 hours with step equals to 250. In this analysis, we will 
scale these times by dividing them by 250, failure is assumed to be occurred at a 
critical degradation level D = 5.  
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Figure 1: The Percent Increase in Operating Current for GaAs Laser Tested at 
80oC  

 
 
6.2 Data Analysis 
Figure 1 shows that the laser data follow a linear degradation path which enables us 
to use the linear degradation model discussed in Section 2. The estimates ofφ , μ  
and pt , for p = 0.05, 0.1 and 0.15, are obtained using the formulas presented in the 
previous sections. We assumed α = 5, β  = 0.35, k = 5 and δ  =2. The results are 
presented in Tables (5) and (6), where Table 5 shows the results obtained using non-
grouped data and Table 6 shows the results obtained using a grouped data. 
 
 
                      
                    Table 5: Results Using Non-Grouped Data 

Parameter Estimate MSE 95% C.I Length 
φ  1.49427 0.00381 ( 1.37869, 1.61839 ) 0.2397 
μ 0.3912 0.00012 ( 0.37004, 0.4128 ) 0.04276 

t0.05 2.99142 0.01880 ( 2.73448, 3.26672 ) 0.53224 
t0.1 3.89193 0.03182 ( 3.55764, 4.2501 ) 0.69246 
t0.15 4.72374 0.04688 ( 4.3181, 5.15846 ) 0.84046 
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                      Table 6: Results Using a Grouped Data 

Parameter Estimate MSE 95% C.I Length 
φ  0.83824 0.17460 ( 0.65837, 1.23227 ) 0.57389 
μ 0.42576 0.00555 ( 0.35090, 0.47692 ) 0.12601 

t0.05 3.26293 0.17149 ( 2.68429, 4.02931 ) 1.34503 
t0.1 4.24517 0.29027 ( 3.49234, 5.24226 ) 1.74992 
t0.15 5.15247 0.42761 ( 4.23874, 6.36267 ) 2.12392 

 
 
From the analysis of Laser degradation data, we see in terms of MSE that the 
estimates obtained by the Bayesian approach with non-grouped data are more 
efficient than the estimates obtained by the Bayesian approach with grouped data. 
Also, we see that the length of the 95% bootstrap confidence interval obtained using 
the Bayesian approach with non-grouped data is shorter than the length of the 95% 
bootstrap confidence interval obtained using the Bayesian approach with grouped 
data. 
 
 
 
7. Conclusions 
 
In this section we summarize our finding. In terms of the MSE, the estimators ofμ , 
φ  and tp obtained by the Bayesian approach with non-grouped data are more efficient 
than those obtained by the Bayesian approach with a grouped data. The length of a 
95% bootstrap confidence interval of the estimates obtained by the Bayesian 
approach with non-grouped data is shorter than the length of a 95% bootstrap 
confidence interval obtained by the Bayesian approach with a grouped data. 
The MSE’s of the estimators of φ , μ  and tp decreases as the sample size increases, 
MB and MSE of the estimators of tp increase as p increases and the length of the 95% 
bootstrap confidence interval decreases as the sample size increases and increases as 
p increases. 
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Appendix A 
The derivation of the Bayesian estimators forφ and μ  using non grouped data, 
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Appendix B 
 

The derivation of the Bayesian estimators forφ and μ  using a grouped data, 
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