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Abstract

Simple lower bounds for A-, D-, E- and L-efficiency of some two-
way elimination of heterogeneity designs are derived. The bounds are
obtained on the basis of the eigenvalues of information matrix for treat-
ment effects.
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1 Introduction and notation

Any arrangement of the v treatments in the b1 rows and b2 columns is called
a two-way elimination of heterogeneity design. Let r = (r1, ..., rv)

′
, k1 =

(k11 , ..., k1b1
)
′
and k2 = (k21 , ..., k2b2

)
′
denote a vector of treatment replications,

a vector of row sizes and a vector of column sizes, respectively. Let R and K1

and K2 be the diagonal matrices with the successive elements of r, k1 and k2 on
their diagonals. Moreover, let N1 be the v×b1 treatment-row incidence matrix,
let N2 be the v × b2 treatment-column incidence matrix. The C-matrices of
the two related subdesigns are

Ch = R −NhK
−1
h N

′
h (1)

with h = 1 for treatment-row subdesigns and h = 2 for treatment-column
subdesigns.
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In this paper we consider designs with information matrix for the treatment
effects defined by [3]:

C = ξ1C1 + ξ2C2 − ξ0C0, (2)

where ξ1 > 0, ξ2 > 0, and ξ0 > 0, C0 = R − rr
′
/n and n is the number

of experimental units. Let D (n, v, b1, b2, rmin, rmax, k1max, k2max, h) denotes the
collection of two-way elimination of heterogeneity designs whose C-matrix ad-
mit a representation in the form (2), where rmin = min

1≤i≤v
ri, rmax = max

1≤i≤v
ri,

k1max = max
1≤j≤b1

k1j
, k2max = max

1≤j≤b2
k2j

, and h is the rank of C (h ≤ v − 1, if

h = v − 1 then a design is said to be connected).
It should be noted that in the theory of experimental designs, A-, D- and E-

optimality is often considered. For example, [8] and [11] considered A-, D- and
E-optimality for designs for quadratic and cubic growth curve models and for
designs for polynomial growth models with auto-correlated errors, respectively.
A-optimal chemical balance weighing designs and A-optimal designs under a
quadratic growth curve model in the transformed time interval are presented
respectively by [6] and [9]. On the E-optimality of nested row-column designs,
of designs in irregular BIB settings, of designs with three treatments and of
designs under an interference model are considered by [2], [12], [13] and [7], re-
spectively. Note that A-, D-, E- and L-efficiency for block designs are presented
by [5].

2 Results

For a design d ∈ D (n, v, b1, b2, rmin, rmax, k1max, k2max, h) let 0 = μd0 ≤ μd1 ≤
... ≤ μdv−1 denote eigenvalues of its C-matrix. Define

φA(d) =
v−1∑

i=v−h

μ−1
di

, φD(d) =
v−1∏

i=v−h

μ−1
di

, φE(d) = μdv−h
, φL(d) =

v−1∑
i=v−h

μdi
. (3)

A design d is A- or D-optimal if it minimises the φA(d) or φD(d) values among
all the possible from some class of designs. A design d is E- or L-optimal if it
maximises the φE(d) or φL(d) values among all the possible from some class
of designs. The A-, D-, E- and L-efficiency of a design d is defined to be

eA(d) =
φA (d∗

A)

φA(d)
, eD(d) =

φD (d∗
D)

φD(d)
,

eE(d) =
φE (d)

φE/R(d∗
E)

, eL(d) =
φL (d)

φL(d∗
L)

,

(4)

where d∗
A, d∗

D, d∗
E and d∗

L are A-, D-, E- and L-optimal designs, respectively.
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One problem with these definitions is that optimal designs are known only
for some special cases. Therefore, in the next section simple lower bounds of
(4) will be given as some conservative measures of the efficiencies of design d.

2.1 Lower bounds of eA and eD

Note that for d ∈ D (n, v, b1, b2, rmin, rmax, k1max, k2max, h) from (1) and (2) we
have
μdv−1 = p′Cp = ξ1p

′Rp + ξ2p
′Rp − ξ1p

′N1K
−1
1 N′

1p − ξ2p
′N2K

−1
2 N′

2p −
ξ0p

′Rp + ξ0p
′ r′r

n
p ≤ (ξ1 + ξ2) rmax + ξ0r

2
maxp

′11′p = (ξ1 + ξ2) rmax.
From above and (3) we have

φA (d∗
A) ≥ h

(ξ1 + ξ2) rmax
and φD (d∗

D) ≥ 1

((ξ1 + ξ2) rmax)h . (5)

2.2 Another lower bounds of eA and eD

From (1) and (2) we have

tr (C) =

ξ1

v∑
i=1

⎛
⎝ri −

b1∑
j=1

n2
1ij

k1j

⎞
⎠+ ξ2

v∑
i=1

⎛
⎝ri −

b2∑
j=1

n2
2ij

k2j

⎞
⎠− ξ0

v∑
i=1

(
ri − r2

i

n

)
≤

ξ1n

(
1 − 1

k1max

)
+ ξ2n

(
1 − 1

k2max

)
− ξ0n + ξ0

vr2
max

n
=

n

(
ξ1

(
1 − 1

k1max

)
+ ξ2

(
1 − 1

k2max

)
− ξ0

(
1 − vr2

max

n

))
= t

(6)

and

μ̄d =

∑v−1
i=v−h μdi

h
≤ t

h
(7)

Observe that

v−1∑
i=v−h

μ−1
di

≥ h

μ̄d
and

v−1∏
i=v−h

μ−1
di

≥ 1

μ̄h
d

(8)

From (7) and (8) we have, in particular,

φA (d∗
A) ≥ h2

t
and φD (d∗

D) ≥
(

h

t

)h

(9)

From (5) and (9) follows that

eA (d∗
A) ≥ max

{
h

(ξ1 + ξ2)rmax
,

h2

t

}
, eD (d∗

D) ≥ max

⎧⎨
⎩ 1

((ξ1 + ξ2)rmax)h ,

(
h

t

)h
⎫⎬
⎭
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which leads (see (4)) to

eA(d) ≥
max

{
h

((ξ1+ξ2)rmax
, h2

t

}
φA(d)

, eD(d) ≥
max

{
h

(ξ1+ξ2)rmax
,
(

h
t

)h
}

φD(d)
(10)

and therefore two efficiency lower bounds of eA and eD are defined as

e′A(d) =
max

{
h

(ξ1+ξ2)rmax
, h2

t

}
φA(d)

, e′D(d) =
max

{
1

((ξ1+ξ2)rmax)h ,
(

h
t

)h
}

φD(d)
. (11)

2.3 Lower bounds of eE

Let block designs dh, h = 1,2 with information matrix Ch (see 1) contain a
block which consists of m common distinct treatments and 2 ≤ m ≤ v−1. We
assume, by eventually relabelling the treatments and reshuffling the blocks,
that the first block consists of m distinct treatments with numbers 1, ..., m.
Then

μd1 ≤
v

m(v − m)
(ξ1Pd1(m) + ξ2Pd2(m) − ξ0Pd0(m)) = Pd(m), (12)

where Pdh
(m) =

∑m
i=1 ri

(
1 − 1

khmax

)
− (kh1 − 1) [4] and principal minor of C0

is at least from Pd0(m) =
∑m

i=1 ri − (mrmax)2

n
, because

∑m
i=1 ri − 1

n

∑m
i,j=1 rirj ≤∑m

i=1 ri − (mrmax)2

n
. Note that in the paper of [4] we have weak inequalities

Pd0(m) =
∑m

i=1 ri − (
∑m

i=1
ri)

2

n
. On the other hand

μd1 ≤
v

v − 1
(ξ1Td1 + ξ2Td2 − ξ0Td0) = Td, (13)

where Tdh
= rmin

(
1 − 1

k2max

)
[4] and Td0 = rmax

(
1 − rmin

n

)
because i-th diago-

nal element of C0 is equal to ri− r2
i

n
, and ri− r2

i

n
= ri

(
1 − ri

n

)
≤ rmax

(
1 − rmin

n

)
.

Note that in the paper of [4] we have weak inequalities Td0 = rmin

(
1 − rmin

n

)
.

From (12) and (13) we have

φE (d∗
E) ≤ min{Pd(m), Td}. (14)

From (14) and (4) it follows that

eE (d) ≥ φE(d)

min{Pd(m), Td} (15)

and therefore the lower bound of eE is defined as

e′E (d) =
φE(d)

min{Pd(m), Td} . (16)
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2.4 Lower bounds of eL

From (3) and (6) we have

φL (d∗
L) ≤ t, (17)

where t is defined by (6). Formulae (17) and (4) imply that

eL(d) ≥ φL(d)

t
(18)

and therefore the lower bound of eL is defined as

e′L(d) =
φL(d)

t
. (19)

3 Examples

We consider A-, D-, E-, L-efficiency of the designs shown in Tables 1 and 2.

Table 1

Columns
Rows 1 2 3 4

1 1 2 4 3
2 7 8 5 6
3 5 6 1 2
4 3 4 8 7

Table 2

Columns
Rows 1 2 3 4 5 6 7

1 3 5 2
2 4 6 3
3 5 7 4
4 5 6 1
5 6 7 2
6 3 7 1
7 2 4 1

In the case of Table 1, d ∈ D(16, 8, 4, 4, 2, 2, 4, 4, 7) with ξ1 = ξ2 = ξ0 = 1
and μd1 = μd2 = μd3 = μd4 = 1, μd5 = μd6 = μd7 = 2, [10]. We calculate

φ.(d) occurring in (3) as: φA(d) = 4 · 1 + 3 · 1
2

= 11
2

, φD(d) = 14 ·
(

1
2

)3
= 1

8
,

φE(d) = 1 and φL(d) = 4 · 1 + 3 · 2 = 10. But d1 and d2 have no block with
m distinct treatments, then we calculate only Td occurring in (13) as Td =
8
7
·
(
2
(
1 − 1

4

)
+ 2

(
1 − 1

4

)
− 2

(
1 − 2

16

))
= 10

7
. Hence according to formulae

(11), (16) and (17) we obtain:

e′A(d) =
max{ 7

4
, 49

40}
11
2

= 7
22

≈ 0.32 e′D(d) =
max

{
( 1

4)
7
, ( 7

40)
7
}

11
2

= 1
211 ≈ 0.00049

e′E(d) = 1
10
7

= 0.7 and e′L(d) = 10
16· 5

2

= 0.25. We have obtained a high e′E(d)

value, therefore we consider that the discussed design is close to the E-optimal
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design, but this design is far from the A-, D- and L-optimal design.

In Table 2, d ∈ D(21, 7, 7, 7, 3, 3, 3, 3, 6) with ξ1 + ξ2 = 1, ξ0 = 4
9

and
μd1 = μd2 = μd3 = μd4 = μd5 = μd6 = 1 [1]. From (3) we have: φA(d) =
φL(d) = 6 and φD(d) = φE(d) = 1. But d1 and d2 have block with m = 3
distinct treatments, then we calculate Pd(3) and Td occurring in (12) and (13),

respectively; Pd(3) = 7
3·4
(
4 − 16

7

)
= 1 and Td = 7

6

(
2 − 8

7

)
= 1. From (11),

(16) and (17) we obtain:

e′A(d) =
max{2, 9

14}
6

= 1
3
≈ 0.33, e′D(d) =

max

{
( 1

2)
6
, ( 9

14)
6
}

1
= 1

26 ≈ 0.0156,
e′E(d) = 1

min{1,1} = 1 and e′L(d) = 6

21·( 2
3
+ 8

9)
= 18

119
≈ 0.15. The discussed

design is far from the A-, D- and L-optimal design and it is E-optimal design
(e′E(d) = 1).
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