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Abstract

In this work, we have studied the solution of the second order dif-
ferential equation with two turning points case. It is well known that
the solutions of the equation are obtained by the asymptotic solution.
The aim of this article is to show the higher order distribution nega-
tive eigenvalues of Sturm-Liouville problem with Neumann boundary
conditions in two turning points case.
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1 Introduction

In the case of ordinary differential equations the book by Wasow [6] discusses
several aspects with detail and rigour. One of the basic tools in the sturm-
liouville theory is the idea of asymptotic of solution, for example see [1]. The
start of the systematic investigations of the asymptotic eigenvalues of sturm-
Liouville problems has been made in Haupt [3] and Richardson[4]. In [5] we
obtained the positive asymptotic eigenvalues for sturm-liouville problems with
boundary condition w′(a) = w′(b) = 0 with two turning points. The purpose
of this paper is to derive asymptotic eigenvalue for differential equation

d2w

dξ2
= {u2(1 − ξ2) + ϕ(ξ)}w (1)

in which the independent variable ξ range over (a, b), and u is a large parameter
and the ϕ(ξ) is continuous function on (a, b). We also saw the asymptotic eigen-
values for equation (1), when the boundary conditions are w(a) = w(b) = 0
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with one turning point (see [2]). In this paper we study the negative asymp-
totic eigenvalues with Neumann boundary condition w′(a) = w′(b) = 0 with
two turning points case.

2 Relevant properties of parabolic functions

In this paper we will consider the equation (1). Any particular integral of the
equation whereas the general solution of the corresponding homogeneous equa-
tion. This section we study the standard form of approximating differential
equation

d2W

dx2
= (l − 1

4
x2)W (2)

when l > 0, the turning points are at x = ±2l
1
2 and for large positive l when

l = 1
2
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√
2, by [1] the solutions of (2) are in following form
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where η = 3
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3 Derivative of solutions

For next section, in Neumann boundary condition, we need the derivative of
solutions. For this purpose, let θ = ( η
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= θ′ = 1
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We consider differential equation (1). By [1] for ξ > 0 have two solutions in
following form

w1(u, ξ) = k
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(6)
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where ε1 and ε2 are error terms. So the derivative of this solution are
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where the Mi are given by
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We suppose

ψ1 = −M1sinα+M2cosα, ψ2 = −M3cosα+M4sinα,
ψ′

1 = α′(b)(−M1cosα−M2sinα), ψ′
2 = α′(b)(−M3sinα+M4cosα)

ψ3 = −M6cosβ −M5sinβ, ψ4 = −M5cosβ +M6sinβ,
ψ′

3 = β ′(a)(−M5cosβ−M6sinβ), ψ′
4 = β ′(a)(−M5sinβ+M6cosβ),
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−1
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For ξ < −1 the solutions of equation (1) are in form of
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w1(u, a) = 2−
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similarly
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The derivative of w1(u, a) and w2(u, a) are in form of
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4 Asymptotic of the eigenvalues

Now we will study distribution of eigenvalue of equation (1) with Neumann
condition w′(a) = w′(b) = 0. The eigenvalue of equation (1) are the zero of
Δ(u) = 0 where Δ(u) is defined as following form
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Similarly we will have

−M5 cosβ −M6 sinβ = −(u0 +O(u−1)) cosβ

M2 cosα +M4 sinα = O(u−1)
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Therefore by substituting (19) in Δ(u) then we will have
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Hence we get
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Theorem 2 Under the conditions of the given Neumann problem, the eigen-
values of Neumann at the origin are
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