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Abstract 

   
The discovery of relationships connecting data in cubical array is pertinent to data 
analysis. New equations that interrelate data at the vertices, edges, and sides of a cube are 
obtained by the shifting operator. A new center point estimator is described. It competes 
with the mean and the median as illustrated by examples.  
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1. Introduction 
 
 The identities of trigonometry have been known for centuries as relationships 
among angles. It has recently been pointed out that they also represent formerly unknown  
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relationships among points in two- and three-dimensional space [3]. This paper illustrates 
the derivation of new relationships among data at the vertices and center points of the 
faces of a cube. It also describes a new sequence of expressions that estimate the centers 
of ordered numbers. Its members compete with the mean and the median as estimators of 
central tendency.  
 
 
2. Relations among data at the vertices and face-center points of the 
cube 
 
 A trigonometric identity expressed in the three letters x, y, z appears as Eq. (1). 
Let Eq. (1) and subsequent identities be converted to their Euler forms. Let the symbol 
F(x,y,z) denote an unknown function at the center point E of the cube in Fig. 1. Eq. (1) 
can be multiplied by the third-power of the function, F3(x,y,z) or E3, as illustrated in Ref. 
[3]. The result of this operation simplifies to Eq. (2). The center point of a face of the 
cube is given a four-letter designation such as BDIG. See Fig. 1. 
 
2sin(x)cos(x)cos(x–y–z) – 2cos(x)2sin(x–y–z) + sin(x–y–z) + 2sin(x)cos(x)cos(x+y–z)  
– 2sin(x+y–z)cos(x)2 + sin(x+y–z) = sin(x+y+z) + sin(x–y+z)        (1) 
 
(B – H + D – F – I + A – G + C)E2 + (BDIG + ACHF)[(H + F)(BDIG)  

– (B + D)(ACHF)] = 0            (2) 
 
Another three-parameter identity appears as Eq. (3). The foregoing procedure 

converts it into Eq. (4).  
 
2sin(x)cos(x)cos(x+y+z) – 2sin(x+y+z)cos(x)2 + 2sin(x)cos(x)cos(x–y–z)  
– 2cos(x)2sin(x–y–z) + 2sin(x)cos(x)cos(x+y–z) – 2sin(x+y–z)cos(x)2  
+ sin(x+y–z) – sin(x–y+z)  = 0                                          (3) 
 
(D – F – G + C)E2 + (BDIG + ACHF)[(H + A + F)(BDIG) – (ACHF)(D + B + I)] = 0 
                (4) 
 

Eqs. (2) and (4) are exact on linear numbers in cubic array as in Fig. 1. They are 
also exact when these numbers appear as arguments of simple functions like 2x, as well as 
sin(x), cos(x), their two-member linear combinations, and sinh(x), cosh(x) and their two-
member linear combinations. Eqs. (2) and (4) are used to estimate the datum at the center 
of one face of the cube given the vertex data A-I and the datum at the center of the 
opposing face. The cube can be rotated so that Eqs. (2) and (4) can be applied to the 
estimation of other face-center points [4].  
 

Eqs. (2) and (4) are sensitive to translation of the data. Eq. (2) can be augmented 
by adding a parameter t to each datum. Eq. (5) results when the parameter is allowed to  
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increase indefinitely. Eq. (6) results when Eq. (4) is similarly treated. Both equations are 
exact on trilinear numbers and their squares arranged as in Fig. 1. Elimination of BDIG 
and ACHF yields Eq. (7), a simple relationship among the numbers at the vertices of the 
cube. It is exact on trilinear numbers and their squares but otherwise it is not a good 
predictor.  
 
4(BDIG – ACHF) – B + H – D + F – I + A – G + C = 0       (5) 
 
6(BDIG – ACHF) – 2B + 2H – D + F – 2I + 2A – G + C = 0      (6) 
 
B – H – D + F + I – A – G + C = 0          (7) 
 

A three-parameter identity can be multiplied by the third power of the unknown 
function at the center point of the cube as illustrated by Eq. (8).  The result of this 
operation is Eq. (9). It can be rewritten as Eq. (10). 

 
E3[cos(x+y+z) + cos(x+y–z) + cos(x–y+z) + cos(y+z–x)  

– (4)cos(x)cos(y)cos(z)] = 0           (8) 
 
E2[(A+I)/2 + (D+F)/2 + (G+C)/2 + (H+B)/2]  
 – 4[((BDIG + ACHF)/2)((CDIH + ABGF)/2)((FGIH + ABDC)/2)] = 0     (9) 
 
(A + B + C + D + F + G + H + I)E2  

– (BDIG + ACHF)(CDIH + ABGF)(ABDC + FGIH) = 0      (10) 
  

Let a term t be added to every datum in Eq. (10). Let t increase without limit. The 
result of this operation is Eq. (11), another equation connecting the face-center points to 
the center and corner points of the cube. Eq. (11) is exact on the first, second, and third 
powers of linear numbers as applied to the vertices of the cube. It is insensitive to 
translation of the data. Eq. (11) is not new but its connection to operational equations like 
Eq. (10) has not been previously demonstrated. 
 
(A + B + C + D + F + G + H + I + 16E) – 4(BDIG + ACHF + CDIH + ABGF + ABDC  
+ FGIH) = 0                  (11) 
 
 Let an arbitrary, three-parameter sum or product be selected for examination. One 
choice is cos(x+y+z)cos(x–y–z)cos(x–y+z)cos(x+y–z). It can be expanded into a sum of 
products of the powers of the cosines of one letter as in Eq. (12).  
 
cos(x+y+z)cos(x–y–z)cos(x–y+z)cos(x+y–z) =  

   (4)cos(x)2cos(y)2cos(z)2 – (2)cos(x)2cos(y)2 – (2)cos(y)2cos(z)2  
– (2)cos(x)2cos(z)2 + cos(x)4 + cos(y)4 + cos(z)4       (12) 
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Eq. (12) can be multiplied by the sixth power of an arbitrary function: F6(x,y,z) or 

E6. The result is Eq. (13). It relates the numbers at the vertices, center point, and face-
center points of the cube as in Fig. 1. Eq. (11) results when Eq. (13) is treated by the 
parameter-addition and limit process so Eq. (11) has at least two precursor equations.  
 
E2((I + A)/2)((B + H)/2)((C + G)/2)((D + F)/2)  

– (4)((BDIG + ACHF)/2)2((CDIH + ABGF)/2)2((FGIH + ABDC)/2)2  
+ 2E2((BDIG + ACHF)/2)2((ABGF + CDIH)/2)2  
+ 2E2((ABGF + CDIH)/2)2((ABDC + FGIH)/2)2  
+ 2E2((BDIG + ACHF)/2)2((ABDC + FGIH)/2)2 
– E2((BDIG + ACHF)/2)4 – E2((ABGF + CDIH)/2)4 – E2((ABDC + FGIH)/2)4  
= 0               (13) 

 
 
3. New measure of central tendency 
  
The most popular measure of central tendency is the arithmetic average or mean. It has 
many advantages: familiarity, simplicity, exactness on linear numbers, invariance under 
translation of the data, and a differentiable connection to each datum. A disadvantage is 
its sensitivity to an aberrant datum or “outlier.” The second popular choice of center point 
estimator is the median. It is less familiar than the average but it supplies invariance 
under translation of the data and it is insensitive to an outlier. The median has two 
disadvantages: it requires the data to be sorted by magnitude and it has no connection to 
the data by means of an easily differentiable expression.  

 
Two sequences of operational estimators of central tendency have recently been 

illustrated [5]. The members of one sequence are denoted (P4E), (P5E), (P6E) and (P8E) 
in Ref. [5]. Rousseeuw suggests a desirable property of center point estimators is 
invariance under translation of the data [2]. If Rousseeuw is correct, the sequence of  
center point estimators denoted by suffix E is flawed because it does not provide the 
desirable property of translational invariance.  
 

Another sequence of center point estimators in Ref. [5] is denoted by the suffix P. 
That sequence meets Rousseeuw’s criterion of invariance under translation of the data. It 
has the advantages of exactness on linear numbers and their squares. No other common 
estimators of central tendency combine translational invariance with exactness on linear 
numbers and their squares. The members of the sequence of terms suffixed by P are also 
more resistant than the mean to the adverse effects of an aberrant datum or “outlier.” The 
described attributes have been illustrated by Tables 1-6 in Ref. [5]. Note that the third and 
fourth column headings in Table 5 of Ref. [5] should read Eq. (6) and Eq. (7), 
respectively. The title of Table 6 should read Eqs (8) and (10). 
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The presentation of the first three members of the P sequence in Ref. [5] is 

awkward and their properties were not described. To make the subject clearer, the first 
three members of the sequence are rewritten as Eqs. (14)-(16). The symbols P4P, P6P, 
and P8P represent estimates of the centers of the four, six, and eight numbers, 
respectively. They apply to numbers ordered by magnitude denoted z1, z2, z3… .  
 
P4P = [(z4–z1)2(z3+z2) – (z4+z1)(z3–z2)2] / [2(z4–z1)2 – 2(z3–z2)2]             (14) 
 
 
 
P6P =  
[2(z6–z1)2(z5–z2)2(z4+z3) – (z6–z1)2(z5+z2)(z4–z3)2 – (z6+z1)(z5–z2)2(z4–z3)2] 
/ [4(z6–z1)2(z5–z2)2 – 2(z6–z1)2(z4–z3)2 – 2(z5–z2)2(z4–z3)2]   (15) 
 
P8P =  
[3(z8–z1)2(z7–z2)2(z6–z3)2(z5+z4) – (z8–z1)2(z7–z2)2(z6+z3)(z5–z4)2  
– (z8–z1)2(z7+z2)(z6–z3)2(z5–z4)2 – (z8+z1)(z7–z2)2(z6–z3)2(z5–z4)2]  
/ [6(z8–z1)2(z7–z2)2(z6–z3)2 – 2(z8–z1)2(z7–z2)2(z5–z4)2  
– 2(z8–z1)2(z6–z3)2(z5–z4)2 – 2(z7–z2)2(z6–z3)2(z5–z4)2)]    (16) 

 
The formulas display patterns in their numerators. For example, the numerator of 

P4P contains two members. The first one has a positive sign and coefficient 1. The 
remaining member has a negative sign and coefficient 1. Each member consists of two 
terms. The numerator of P6P contains three members. The first one has a positive sign 
and coefficient 2. The remaining members have negative signs and coefficients 1. Each 
member consists of three terms. The numerator of P8P has four members. The first one 
has a positive sign and coefficient 3. The remaining members have negative signs and 
coefficients 1. Each member consists of four terms. The positive sign migrates within the  
numerators of the individual members. The described rules apply to successive formulas 
that apply at least up to 16 ordered numbers. 
  

The denominators also display patterns. The denominator of P4P contains two 
members. The first one has a positive sign and coefficient 2. The other one has a negative 
sign and coefficient 2. Each member contains one term. The denominator of P6P contains 
three members. The first one has a positive sign and coefficient 4. The remaining 
members have negative signs and coefficients 2. Each member has two terms. The 
denominator of P8P has four members. The first one has a positive sign and coefficient 6. 
The remaining members have negative signs and coefficients 2. Each member has three 
terms. The rules apply to expressions up to at least 16 ordered numbers. 
  

The numbers in P4P, P6P, and P8P are denoted zX where z represents a sorted 
number and suffix X is its ordered position rank. The suffixes X in the numerators and 
denominators exhibit patterns. The first number in each term has the largest value of X.  



 

124                                                                                                                       G. L. Silver 
 
 
 
The sum of the two X suffixes inside each term is the same. In the numerators of P6P and 
successive estimators, the plus sign migrates from right to left. If N data are concerned, 
the numerators contain N/2 members of N/2 terms each. The denominators contain N/2 
members of N/2–1 terms each. Terms that represent squared differences remain the same 
or decrease from left to right.  

 
Successive members of the suffix-P sequence are formed by induction based on 

generalizing observed patterns in numerators and denominators. Generation of the 
successive estimators by induction applies up to expressions for 16 ordered numbers at 
least. This observation suggests the series can be extended indefinitely. It also suggests 
the existence of a general expression for the estimators based on the sign of summation 
(Sigma notation) and another general expression based on the sign of integration. These 
presumed expressions are not known so they are opportunities for research. An additional 
challenge is the presentation of analogous formulas for the suffix-E series of operational 
center point estimators [5].  
 

As an example of an operational formula, choose the ten numbers suggested by 
Rousseeuw [2]. After ordering them, they are: 40,75,80,83,86,88,90,92,93,95. He gives 
the mean of the numbers as 82.2, the median as 87.0, the LMS estimate of their center as 
90.5, and the reweighted mean as 86.9 [2]. The operational estimate of the center of the 
ten numbers, using a ten-number, suffix-P formula, is 87.0. The operational estimate 
agrees with the median.  

 
The mean and the median are easier to apply than the operational formulas. On 

the other hand, computers make the operational estimators easy to store and easy to 
apply. The mean and the median do not fail when encountering identical numbers as data. 
The operational estimators fail when the data are all equal numbers. They may also fail if 
several data are equal. The mean and the operational formulas can be differentiated with 
respect to any datum. The median is not readily differentiated with respect to any datum. 
The mean, median, and the operational estimators require a minimum of two, three, and 
four numbers, respectively.    

 
 
For purposes of illustration, let eight basis numbers be chosen as the first eight 

ordered integers. Their mean and median are both 4.5. Operations M can be applied to 
4.5 as well to the basis numbers. Thus, if M2 is the squaring operation, the “true” center 
of the eight data is M(4.5) or 20.25. Table 1 illustrates that both the median and the 
operational formula P8P render estimates of the center of the data that are closer to the 
“true” values than the mean. That is, the median and the operational estimate are often 
more accurate than the mean in the context of the illustration. 
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 In order to estimate the center of an odd-numbered set of ordered data by an 
operational formula, remove the median. An even number of ordered data remains. 
Estimate the center of remaining data with an operational formula taken from the 
described sequence. Call this estimate Q. The center of the original set of ordered 
numbers is the arithmetic average of its median and Q. That is, the expression (median + 
Q)/2 is the operational estimate of a set of an odd number of ordered data [5]. 
 

Other sequences of operational center point formulas have been described [5,6,7]. 
Two of them yield estimators that are sensitive to translation of the data. In spite of their 
potential accuracies, they are deficient from Rousseeuw’s point of view. One approach 
depends on the repetitive application of a four-point operational formula. Computers can 
be programmed to execute those operations. However, the approach can fail on two or 
more equal, successive numbers or four successive, linear numbers. Sorted data often 
contain such sequences so the cited method is more difficult to apply. 
 
 
4. Discussion 

 
The series typified by Eqs. (14)-(16) represents  the operational analog of the 

arithmetic mean. The series denoted by the suffix E is the operational analog of the 
geometric mean [5]. Unlike the geometric mean, the operational formulas are not reduced 
to zero when they encounter one zero as a datum. This advantage partially compensates 
for the disadvantage of their complexity. The ten-number, suffix-E center-point formula, 
P10E, renders 87.0 as the center of Rousseeuw’s trial data cited above [2,5]. Copies of 
the first seven members of each series are available from the author.  

 
The identity in Eq. (17) can be converted to its Euler form and multiplied by E2 as 

described above. This converts it into Eq. (18), an equation connecting data at the centers 
of the faces of the cube (four letter notations) and at two of its vertices (single letter 
notations) as in Fig. 1. Two-letter notations like GI represent a datum at the midpoint of 
edge GI in Fig. 1. Eq. (18) is exact on linear numbers and simple expressions like 2x, 
sin(x), sinh(x), and x2. It is invariant under translation of the data. Eq. (18) is an example 
of how the shifting operator can be used to relate data in a cubical array.  
 
sin(x)sin(y) + sin(z)sin(x+y+z) – sin(x+z)sin(y+z) = 0         (17) 
 
(BDIG – ACHF)(CDIH – ABGF) + (FGIH – ABDC)(I – A) – (GI – AC)(HI – AB) = 0 
                (18) 

 
Eq. (19) is a relationship connecting the midpoints of the faces of the cube in Fig. 

1. It is exact on simple forms like 2x, sin(x), and sinh(x). It is sensitive to translation of 
the data. A term t can be added to each term in Eq. (19). A second relationship is  
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obtained when t is permitted to increase indefinitely. The new form is Eq. (20). It is exact 
on linear data and there squares, as illustrated in Fig. 1, and it is invariant under their 
translation. Eqs. (18)-(20) can be used to estimate data that are missing from prismatic 
arrays [8,9].   
 
[(FGIH)(ABDC) – (ACHF)(BDIG)](CDIH)2  
+ (ABGF)(CDIH)[(BDIG)2 + (ACHF)2 – (FGIH)2 – (ABDC)2]  
+ (FGIH)2(BDIG)(ACHF) – (FGIH)(ABDC)(BDIG)2 – (FGIH)(ABDC)(ACHF)2  
– (ABGF)2(BDIG)(ACHF) + (FGIH)(ABDC)(ABGF)2 + (ABDC)2(BDIG)(ACHF) = 0   
               (19) 
[(2((ACHF) + (BDIG) – (ABGF) – (CDIH))(FGIH)  
+ ((BDIG) – (ACHF))2 – ((ABGF) – (CDIH))2)](ABDC)  
+ [(CDIH) – (BDIG) – (ACHF) + (ABGF)](ABDC)2 
+ [((BDIG) – (ACHF))2 – ((CDIH) – (ABGF))2](FGIH) 
+ [(CDIH) – (BDIG) – (ACHF) + (ABGF)](FGIH)2 
– [((BDIG) – (ACHF))2 + 2(ABGF)((ACHF) + (BDIG))](CDIH)  
+ [(ACHF) + (BDIG)][(ABGF)2 + (CDIH)2] 
– [(BDIG) – (ACHF)]2(ABGF) = 0              (20) 
  

 
Eq. (21) is an identity whose operational interpretation is Eq. (22). That equation 

relates data at the midpoints of the edges of the cube in Fig. 1. Eq. (22) is exact on 
trilinear numbers and their squares and it is invariant under translation of the data. It is 
likewise exact on trilinear numbers as exponents in simple expressions like 2x, and in 
cos(x) and cosh(x). Eq. (23) yields Eq. (24) as its operational interpretation. Eqs. (22) and 
(24) have similar properties. 
 
sin(x – z)sin(x + z) – sin(y – z)sin(y + z) – sin(x – y)sin(x + y) = 0                (21) 
 
(BD – FH)(GI – AC) – (CD – FG)(HI – AB) – (BG – CH)(DI – AF) = 0    (22) 
 
sin(y – z)sin(x)2sin(y + z) – sin(x – z)sin(y)2sin(z + x) + sin(x – y)sin(z)2sin(x + y) = 0 
              (23) 
 
(CD – FG)(BDIG – ACHF)2(HI – AB) – (BD – FH)(CDIH – ABGF)2(GI – AC) 
        + (BG – CH)(FGIH – ABDC)2(DI – AF) = 0        (24) 

 
Operational equations are part of a subject called symbolic methods. They are 

based on application of the shifting operator to trigonometric identities. They are new 
instruments for data analysis. A brief introduction to the history of symbolic methods, 
including their reception by society, can be found in the book by E. T. Bell [1].  
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Table 1. Comparisons of the centers of eight ordered data generated by applying selected 
functions M to the integers 1-8. The centers of the data are estimated by the mean, the 
median, and formula P8P in the text.  The true value is taken as M(4.5). 

 
Function Mean Median Formula P8P True value 
M 4.5 4.5 4.5 4.5 
M2 25.5 20.5 20.3 20.3 
M3 162 94.5 91.8 91.1 
2M 63.8 24.0 23.3 22.6 
Ln(M) 1.33 1.50 1.50 1.50 
(M)Ln(M!) 28.4 18.3 17.9 17.8 
100/M 34.0 22.5 22.3 22.2 
100/M2 19.1 5.13 5.04 4.94 
MM/100 22064 16.9 16.6 8.70 
Ln(MM) 7.41 6.80 6.76 6.77 

 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
             Fig. 1. The nine-point cube. 
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