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Abstract 

Here we construct an algorithm based on the minimisation of data by using 
a compressed matrix for parallel matrix computations. The idea is to minimise the 
communication between master and slave by eliminating the all zero elements of 
coefficient matrix.  

 

1. Introduction  

The non-singular matrix B, in the fBx =  system is compressed to a vector 
format and used in the simulation of the matrix of the system to be solved by a 
MC using both max-norm and row-norm solutions.  

We expect to observe the same behavior in computation in the solution of 
SLAE, when using the individual row-norm values and the maximum row-norm 
value to be same as the case of the non-compressed matrix. We do expect a 
difference in the speed of computation. In completed tests, a system containing a 
diagonally dominant sparse matrix was used. It is through the manipulation of the 
sparse matrix (i.e. the elimination of any dependence on the zero elements) that 
we seek to further reduce the computation time. 

The use of Monte Carlo methods can give a good estimation of the solution 
of large sparse systems in particular diagonally dominant systems. The use of 
Monte Carlo methods for solving SLAE gives us an inherent parallelism. The 
solution can be realized in a distributed form and amalgamated at the end of the 
computation allowing a completely parallel method. 
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The SLAE is presented in the form fAxx += , where f  is a given vector 
and we are looking for solution vector x. Note that A=I-B, I is an identity matrix 
of size n, A is an n×n coefficient matrix. 

We seek to reduce the computational time by introducing a cut off point into 
the algorithm. When the solution element is within the required accuracy variable 
for two successive returned values then the solution of that element is deemed to 
be complete and a new component of the solution is computed. 

 

2. The storage of requirements 

One of the most important parameters in computational problems is the 
required memory for the storage of data. To reduce the cost of storage and 
complete the computation, we require two different steps to independently 
perform our computations. Since the zero elements of the coefficient matrix are 
not needed, then the elimination of zero elements of the matrix is considered. It 
means, we compress a given matrix where the number of elements in compressed 
matrix directly depends on density (or sparsity) of the matrix. Suppose A is nm×  
matrix and the density of A is s% then the number of elements in the compressed 
matrix (or the number of non-zero elements in matrix A) can be computed by: 

nms ××= %ω ,                                           (4) 

and the number of zero elements of matrix A is determined by 

nms ××−= %)1(η ,                                    (5). 

 Equation (5) shows that how many numbers of elements of matrix A should 
be eliminated in the compressed matrix.  

The compression of a given matrix is not a complex procedure. However 
there are a few methods for storing data, we select the simplest way for doing this 
task. We save the amount of the elements of the matrix in a format with its 
corresponding indices and the value of the corresponding elements. This 
constructs a matrix with 3 columns. The compressed matrix has ω  rows which is 
obtained from (4). The number of rows in the compressed matrix is equal to NNZ 
(or the number of non-zero) elements of A. We can summaries these explanations 
by the following algorithm: 

2. Compressing Algorithm: 

;0int =k  
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For i=0 to n-1 

  For j=0 to n-1 

        If (a[i,j]!=0.0) then 

        Stork[k]=a[i,j]; 

        Istor [i]=i; 

        Jstor[j]=j; 

        k+=0; 

        End If 

     End of J Loop 

End of I Loop 

Print the stored vector Stor and the relevant indexes Istor and Jstor as a 
compressed matrix. 

End of Algorithm 

 

In the algorithm in this paper, we send our data from the master processor to 
the slave processors. We send only the realized compressed matrix, instead of 
sending the all elements of matrix A. We note that any computational results such 
as, the solution of linear systems, inversion matrices and etc have the same 
accuracy in comparison with computational results based on sending the all 
elements of matrix. Here, we intend to join the previous method for the reduction 
of Markov chains iteration in the solution of SLAE. By applying the row-norm 
value instead of the max-norm value, we expect that this method will effectively 
increase the speed of computation. 

 

3. Sparse Matrix Compression 

Consider a general m×n matrix A; the matrix will contain density (sparsity) 
factors. The non-zero elements of a matrix can be described by 
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]},1[],1[,|0{)( nmjiaANonz ij ×∈≠=                 (1) 

If we define the number of non-zero elements in the matrix as λ , the 
density of the matrix is therefore 

nm×
=

λκ ,                                    (2) 

the sparsity can now be described as 1-κ. 

The diagonally dominant matrix is converted to a vector format as described 
above. As we are only dealing with the non-zero elements we have row-norm 
array in the form of vector. 

We recall that the number of required Markov chains is given by 
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, where ||A|| is the norm (max-norm) value for the matrix 

A [2]. 

The optimum norm for each row-norm is given by (2) and the maximum 
norm is given in (1).  

We are using a Monte Carlo Markov Chain with a simple random walk. 
Corresponding to the estimator of SLAE i.e. )(gΘ , we drop the chain when 

δ<|| ii fW , where δ is a value of accuracy that indicates the termination of the 
Markov chain [1]. We recall that for a ittt →→→ ...10 , we have: 
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where ig  is the thi element of vector g defined in the dot product of <g ,x>, ip  is 
the thi  element of the initial probability of Markov chain and the value if  is the 

thi  element of f, in x=Ax+f  [4]. 

The value β  reduces the number of chains in comparison with the previous 
summation and the present. If the previous and present result show no marked 
variation then it is reasonable to assume that the solution is complete or is close 
enough to the solution to stop the Markov chains, i.e. β<Θ−Θ + || )()1( k

i
k

i  is valid 
we drop the random walks.  
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To calculate the solution vector x, in fAxx kk +=+ )()1(  k=0,1,…,n, if 

1||max||||)(
1

<=≤ ∑
=

n

j
iji aAAρ , then the solution of xx k →)( as ∞→k , where x is 

the exact solution of given SLAE. 

Then Monte Carlo estimation of the vector solution is given by: 

∑
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sji ie

N
x

1

* )]([1ˆ                              (9) 

where N is the number of Markov chains and sj ie )]([Θ  is the value of )]([ iejΘ  in 
the sth chain. 

 

4. Parallel implementation 

The solution was achieved using PVM (Parallel Virtual Machine) with a 
standard master / slave format, the master being responsible for all partitioning 
and the amalgamation of results. The methods were limited to the methods used in 
[4] i.e. each slave comprised only one machine and used only the memory 
allocation of that machine. 

To achieve a reasonable balance, the matrix was partitioned using the 
number of Markov chains determined by the row-norm. 

The very nature of the Monte Carlo method ensures that the data passing 
between master and slave is minimised. The whole A =I-B matrix was sent to 
each slave processor with only the relevant segments of the solution vector 
returned. 

It is data independence that also allows the scale of the SLAE to be 
increased. 

Alexandrov et al [2], passed the full matrix to the slave to allow the 
independent processing of the solution. In a diagonally dominant sparse matrix 
this involved a considerable amount of redundancy in the form of the repeated 
zero elements. In this system only the non-zero elements were passed to reduce 
the primary storage.  
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5. Balancing  

Balancing in this method distributes approximately the same information 
(data) to each slave for the relevant computations. After compressing the (sparse) 
coefficient matrix included 160 rows, we consider the number of slaves to be 2,4 
or 8 and so on for our computations. If we use three slaves, this could cause an 
imbalance by 2 processors (slaves) with the same partition will take 50 rows and 
third one takes 60 rows. In this case, when two slaves have completed their 
computation and returned their results to the master, the master will still have to 
wait for third slave to complete its results. 

Trivially, if the matrix and compressed matrix are big enough then the 
balance procedure can be ignored. For example if the compressed matrix has 100 
rows and we use 3 slaves then the distributed data are such that, slaves 1,2 with 33 
and slave 3 with 34 rows. Since this difference is not significant it will not affect 
the computation.  Balancing here is used for those cases where the differences in 
amounts of data in individual partitions are high. In this case we have to use the 
number of processors in such a way that an efficient balance of data between them 
is available. Experimentally, it is better to consider balance with regards to the 
number of Markov chains for each row i.e. iN  also. 

 

6. Experimental results 

The following tables show the test results from the row-norm and max-norm 
cases for solving the SLAE. 

The time taken is determined from the end of the spawn to the return of the 
completed solution vector.  

The max-norm method which passed the full matrix to each machine may 
not be used successfully on our limited system for any matrix of appreciable size 
over 1000×1000. This meant that there was no table for a 10000×10000 matrix for 
the max-norm method. 

Also, the correlation coefficient between the time required to complete the 
computation T, and the number of processors P used can be determined by (3), 
where ip  is the number of processors, it is the required time corresponding to ip  
processors. 

The results of R lie between 1 and –1. A negative result tends to -1 shows 
that there is a high negative dependency on the number of processors to the  
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reduction in time. A positive result tends to +1 shows there is a high positive 
dependency on the number of processors for an increase in time. In both cases the 
relationship between the required time T and the number of processors P can be 
shown as T=a+bP 
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To interpret the graphs we exchange the symbols y and x to T and P 
respectively as in the equation T=a+bP 

 
Table 1: Time in seconds to reach the solution vector using NMAX 

 

 

Processors 
Matrix size 

1 2 4 6 8 10 R 

100 286.318 143.397 72.178 52.302 40.271 32.93 -0.83 

500 1494.473 574.193 302.706 219.099 174.823 166.83 -0.79 

1000 8856.155 4480.574 2487.332 1633.333 1470.917 1162.348 -0.83 
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Figure 1: Regression model of computational times using max-norm 

 

Table 2: Time in seconds to reach the solution vector x using row-norm compression 

Processors 
Matrix size 

1 2 4 6 8 10 R 
 

100 117.426 63.544 34.729 28.826 19.414 16.940 -0.85 

500 220.652 117.467 62.059 54.285 45.315 31.757 -0.84 

1000 959.988 632.583 378.824 343.722 317.141 309.62 -0.83 

10000 4213.898 2157.642 1194.339 748.385 587.491 449.717 -0.85 
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Figure 2: Regression model of computational times using row-norm 

 

 

Table 3: Rate of required time 

Matrix 
size 

summation the time of 
Max-norm 

Summation the time of 
Row_norm 

T_max-norm/T_Row-
norm 

100 627.393 280.879 2.23 

500 2932.124 531.535 5.52 

1000 20090.659 2941.878 6.82 

 

 

 

 

size 500 using Row_norm
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Figure 3: The progress of method on computational time 

 

The model given for the speed of computation shows a significant reduction 
in computation time, we can use the realized model of the rate of computational 
time for prediction while computing larger matrices. It is well known that the 
regression model can be used for a prediction of future. For example, we can 
estimate the approximate rate of computational time based on our obtained model: 
Y=2.0024Ln(X)-6.9756, for any matrix size n> 1500 so, where X is the size of 
matrix and Y is the rate of computational time. Then we can consider the 
following table: 

Table 4: Rate of required time by estimated model 

size 2000 5000 10000 20000 50000 100000 200000 

21 / TT  8.24 10.08 11.48 12.86 14.69 16.08 17.47 

 

As the results are shown in the above table, we see the rate of improvement 
in terms of reduced computational time for dimension n=5000 is about 10 (i.e. 
method with compressed matrix n=5000 is 10 times faster) and for n=200000, the 
rate of improvement is expected to be 17. 

 

7. Conclusion   

We observed the following results: 

For a rapid approximate calculation, the experimental results show that there 
is an improvement using the individual row-norm value as an indicator of the 
optimum number of Markov chains to be used and the reduction of the matrix to  
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only the non-zero elements.  Using this method, we have achieved a reduction of 
2 to 7 times of computational time in comparison with the more conventional 
method of full matrix with max-norm for the values tested.  

The comparison of given tables shows that in the case of using the row-
norm value with a matrix compression, not only we have an increased dependency 
between the time taken and the number of processors, but we also have a 
reduction in the computational time by at least two times.   

We have noted that although there was a reduction in the number of Markov 
chains used, there were some problems which required ‘at least’ the estimated 
optimum number of Markov chains as determined by the row-norm value. The 
passing of a greatly reduced representation of a matrix in the form of a vector and 
eliminating the zero elements is extremely effective when processing sparse 
matrices. However with dense matrices obviously little or no reduction can be 
achieved. 

Although only diagonally dominant sparse matrices were used in the initial 
trials the compression approach holds for all sparse matrices, as a reduction in 
both storage and processing can be made by elimination of unnecessary or 
duplicated elements. 
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