

Applied Mathematical Sciences, Vol. 2, 2008, no. 4, 149 - 159

Monte Carlo Matrix Computations

based on Compression

Behrouz Fathi Vajargah

University of Guilan, Iran
fathi@guilan.ac.ir

Abstract

Here we construct an algorithm based on the minimisation of data by using
a compressed matrix for parallel matrix computations. The idea is to minimise the
communication between master and slave by eliminating the all zero elements of
coefficient matrix.

1. Introduction

The non-singular matrix B, in the fBx = system is compressed to a vector
format and used in the simulation of the matrix of the system to be solved by a
MC using both max-norm and row-norm solutions.

We expect to observe the same behavior in computation in the solution of
SLAE, when using the individual row-norm values and the maximum row-norm
value to be same as the case of the non-compressed matrix. We do expect a
difference in the speed of computation. In completed tests, a system containing a
diagonally dominant sparse matrix was used. It is through the manipulation of the
sparse matrix (i.e. the elimination of any dependence on the zero elements) that
we seek to further reduce the computation time.

The use of Monte Carlo methods can give a good estimation of the solution
of large sparse systems in particular diagonally dominant systems. The use of
Monte Carlo methods for solving SLAE gives us an inherent parallelism. The
solution can be realized in a distributed form and amalgamated at the end of the
computation allowing a completely parallel method.

150 Behrouz Fathi Vajargah

The SLAE is presented in the form fAxx += , where f is a given vector
and we are looking for solution vector x. Note that A=I-B, I is an identity matrix
of size n, A is an n×n coefficient matrix.

We seek to reduce the computational time by introducing a cut off point into
the algorithm. When the solution element is within the required accuracy variable
for two successive returned values then the solution of that element is deemed to
be complete and a new component of the solution is computed.

2. The storage of requirements

One of the most important parameters in computational problems is the
required memory for the storage of data. To reduce the cost of storage and
complete the computation, we require two different steps to independently
perform our computations. Since the zero elements of the coefficient matrix are
not needed, then the elimination of zero elements of the matrix is considered. It
means, we compress a given matrix where the number of elements in compressed
matrix directly depends on density (or sparsity) of the matrix. Suppose A is nm×
matrix and the density of A is s% then the number of elements in the compressed
matrix (or the number of non-zero elements in matrix A) can be computed by:

nms ××= %ω , (4)

and the number of zero elements of matrix A is determined by

nms ××−= %)1(η , (5).

 Equation (5) shows that how many numbers of elements of matrix A should
be eliminated in the compressed matrix.

The compression of a given matrix is not a complex procedure. However
there are a few methods for storing data, we select the simplest way for doing this
task. We save the amount of the elements of the matrix in a format with its
corresponding indices and the value of the corresponding elements. This
constructs a matrix with 3 columns. The compressed matrix has ω rows which is
obtained from (4). The number of rows in the compressed matrix is equal to NNZ
(or the number of non-zero) elements of A. We can summaries these explanations
by the following algorithm:

2. Compressing Algorithm:

;0int =k

Monte Carlo Matrix computations 151

For i=0 to n-1

 For j=0 to n-1

 If (a[i,j]!=0.0) then

 Stork[k]=a[i,j];

 Istor [i]=i;

 Jstor[j]=j;

 k+=0;

 End If

 End of J Loop

End of I Loop

Print the stored vector Stor and the relevant indexes Istor and Jstor as a
compressed matrix.

End of Algorithm

In the algorithm in this paper, we send our data from the master processor to
the slave processors. We send only the realized compressed matrix, instead of
sending the all elements of matrix A. We note that any computational results such
as, the solution of linear systems, inversion matrices and etc have the same
accuracy in comparison with computational results based on sending the all
elements of matrix. Here, we intend to join the previous method for the reduction
of Markov chains iteration in the solution of SLAE. By applying the row-norm
value instead of the max-norm value, we expect that this method will effectively
increase the speed of computation.

3. Sparse Matrix Compression

Consider a general m×n matrix A; the matrix will contain density (sparsity)
factors. The non-zero elements of a matrix can be described by

152 Behrouz Fathi Vajargah

]},1[],1[,|0{)(nmjiaANonz ij ×∈≠= (1)

If we define the number of non-zero elements in the matrix as λ , the
density of the matrix is therefore

nm×
=

λκ , (2)

the sparsity can now be described as 1-κ.

The diagonally dominant matrix is converted to a vector format as described
above. As we are only dealing with the non-zero elements we have row-norm
array in the form of vector.

We recall that the number of required Markov chains is given by

2

2

2

2

||)||1(
||||6745.0
A

fN
−

≥
ε

, where ||A|| is the norm (max-norm) value for the matrix

A [2].

The optimum norm for each row-norm is given by (2) and the maximum
norm is given in (1).

We are using a Monte Carlo Markov Chain with a simple random walk.
Corresponding to the estimator of SLAE i.e.)(gΘ , we drop the chain when

δ<|| ii fW , where δ is a value of accuracy that indicates the termination of the
Markov chain [1]. We recall that for a ittt →→→ ...10 , we have:

∑
∞

=

=Θ
00

0][
j

tj
t

t

j
fW

p
g

g and 0W =1,
jj

jj

tt

tt
jj p

a
WW

1

1

1
−

−

−= , (8)

where ig is the thi element of vector g defined in the dot product of <g ,x>, ip is
the thi element of the initial probability of Markov chain and the value if is the

thi element of f, in x=Ax+f [4].

The value β reduces the number of chains in comparison with the previous
summation and the present. If the previous and present result show no marked
variation then it is reasonable to assume that the solution is complete or is close
enough to the solution to stop the Markov chains, i.e. β<Θ−Θ + ||)()1(k

i
k

i is valid
we drop the random walks.

Monte Carlo Matrix computations 153

To calculate the solution vector x, in fAxx kk +=+)()1(k=0,1,…,n, if

1||max||||)(
1

<=≤ ∑
=

n

j
iji aAAρ , then the solution of xx k →)(as ∞→k , where x is

the exact solution of given SLAE.

Then Monte Carlo estimation of the vector solution is given by:

∑
=

Θ=Θ≈
N

s
sji ie

N
x

1

*)]([1ˆ (9)

where N is the number of Markov chains and sj ie)]([Θ is the value of)]([iejΘ in
the sth chain.

4. Parallel implementation

The solution was achieved using PVM (Parallel Virtual Machine) with a
standard master / slave format, the master being responsible for all partitioning
and the amalgamation of results. The methods were limited to the methods used in
[4] i.e. each slave comprised only one machine and used only the memory
allocation of that machine.

To achieve a reasonable balance, the matrix was partitioned using the
number of Markov chains determined by the row-norm.

The very nature of the Monte Carlo method ensures that the data passing
between master and slave is minimised. The whole A =I-B matrix was sent to
each slave processor with only the relevant segments of the solution vector
returned.

It is data independence that also allows the scale of the SLAE to be
increased.

Alexandrov et al [2], passed the full matrix to the slave to allow the
independent processing of the solution. In a diagonally dominant sparse matrix
this involved a considerable amount of redundancy in the form of the repeated
zero elements. In this system only the non-zero elements were passed to reduce
the primary storage.

154 Behrouz Fathi Vajargah

5. Balancing

Balancing in this method distributes approximately the same information
(data) to each slave for the relevant computations. After compressing the (sparse)
coefficient matrix included 160 rows, we consider the number of slaves to be 2,4
or 8 and so on for our computations. If we use three slaves, this could cause an
imbalance by 2 processors (slaves) with the same partition will take 50 rows and
third one takes 60 rows. In this case, when two slaves have completed their
computation and returned their results to the master, the master will still have to
wait for third slave to complete its results.

Trivially, if the matrix and compressed matrix are big enough then the
balance procedure can be ignored. For example if the compressed matrix has 100
rows and we use 3 slaves then the distributed data are such that, slaves 1,2 with 33
and slave 3 with 34 rows. Since this difference is not significant it will not affect
the computation. Balancing here is used for those cases where the differences in
amounts of data in individual partitions are high. In this case we have to use the
number of processors in such a way that an efficient balance of data between them
is available. Experimentally, it is better to consider balance with regards to the
number of Markov chains for each row i.e. iN also.

6. Experimental results

The following tables show the test results from the row-norm and max-norm
cases for solving the SLAE.

The time taken is determined from the end of the spawn to the return of the
completed solution vector.

The max-norm method which passed the full matrix to each machine may
not be used successfully on our limited system for any matrix of appreciable size
over 1000×1000. This meant that there was no table for a 10000×10000 matrix for
the max-norm method.

Also, the correlation coefficient between the time required to complete the
computation T, and the number of processors P used can be determined by (3),
where ip is the number of processors, it is the required time corresponding to ip
processors.

The results of R lie between 1 and –1. A negative result tends to -1 shows
that there is a high negative dependency on the number of processors to the

Monte Carlo Matrix computations 155

reduction in time. A positive result tends to +1 shows there is a high positive
dependency on the number of processors for an increase in time. In both cases the
relationship between the required time T and the number of processors P can be
shown as T=a+bP

n

pbt
a

n

i
i

n

i
i ∑∑

==

−
= 11 (10)

where

2

11

2

111

)()(

))(()(

∑∑

∑∑∑

==

===

−

−
= n

i
i

n

i
i

n

i
i

n

i
i

n

i
ii

ppn

tptpn
b

To interpret the graphs we exchange the symbols y and x to T and P
respectively as in the equation T=a+bP

Table 1: Time in seconds to reach the solution vector using NMAX

Processors
Matrix size

1 2 4 6 8 10 R

100 286.318 143.397 72.178 52.302 40.271 32.93 -0.83

500 1494.473 574.193 302.706 219.099 174.823 166.83 -0.79

1000 8856.155 4480.574 2487.332 1633.333 1470.917 1162.348 -0.83

156 Behrouz Fathi Vajargah

Figure 1: Regression model of computational times using max-norm

Table 2: Time in seconds to reach the solution vector x using row-norm compression

Processors
Matrix size

1 2 4 6 8 10 R

100 117.426 63.544 34.729 28.826 19.414 16.940 -0.85

500 220.652 117.467 62.059 54.285 45.315 31.757 -0.84

1000 959.988 632.583 378.824 343.722 317.141 309.62 -0.83

10000 4213.898 2157.642 1194.339 748.385 587.491 449.717 -0.85

size 100 using Nmax

y = -104.76Ln(x) + 248.28
R2 = 0.9122

0

100

200

300

0 5 10 15

Processors

Ti
m

e
in

 S
ec

on
ds

size 500 using Nmax

y = -534.06Ln(x) + 1223.3
R2 = 0.8344

-500
0

500
1000
1500
2000

0 5 10 15
Processors

Ti
m

e
in

 S
ec

on
ds

size 1000 using Nmax

y = -3196.1Ln(x) + 7744.8
R2 = 0.9104

0

5000

10000

0 5 10 15

Processors

Ti
m

e
in

 S
ec

on
ds

Monte Carlo Matrix computations 157

Figure 2: Regression model of computational times using row-norm

Table 3: Rate of required time

Matrix
size

summation the time of
Max-norm

Summation the time of
Row_norm

T_max-norm/T_Row-
norm

100 627.393 280.879 2.23

500 2932.124 531.535 5.52

1000 20090.659 2941.878 6.82

size 500 using Row_norm

y = -103.92Ln(x) + 202.55
R2 = 0.9388

0
100
200
300

0 2 4 6 8

Processors

Ti
m

e
in

 S
ec

on
ds

size 1000 using Row_norm

y = -281.72Ln(x) + 877.83
R2 = 0.9141

0

500
1000

1500

0 5 10 15

Processors

Ti
m

e
in

 s
ec

on
ds

size 10000 using Row_norm

y = -1573.3Ln(x) + 3722.7
R2 = 0.9275

0
2000

4000
6000

0 5 10 15

Processors

Ti
m

e
in

 S
ec

on
ds

size 100 using Row_norm

y = -41.982Ln(x) + 104.56
R2 = 0.9282

0
50

100
150

0 5 10 15

Processors

Ti
m

e
in

 S
ec

on
ds

158 Behrouz Fathi Vajargah

Figure 3: The progress of method on computational time

The model given for the speed of computation shows a significant reduction
in computation time, we can use the realized model of the rate of computational
time for prediction while computing larger matrices. It is well known that the
regression model can be used for a prediction of future. For example, we can
estimate the approximate rate of computational time based on our obtained model:
Y=2.0024Ln(X)-6.9756, for any matrix size n> 1500 so, where X is the size of
matrix and Y is the rate of computational time. Then we can consider the
following table:

Table 4: Rate of required time by estimated model

size 2000 5000 10000 20000 50000 100000 200000

21 / TT 8.24 10.08 11.48 12.86 14.69 16.08 17.47

As the results are shown in the above table, we see the rate of improvement
in terms of reduced computational time for dimension n=5000 is about 10 (i.e.
method with compressed matrix n=5000 is 10 times faster) and for n=200000, the
rate of improvement is expected to be 17.

7. Conclusion

We observed the following results:

For a rapid approximate calculation, the experimental results show that there
is an improvement using the individual row-norm value as an indicator of the
optimum number of Markov chains to be used and the reduction of the matrix to

Speed of Calculations

y = 2.0024Ln(x) - 6.9756
R2 = 0.9996

0
2
4
6
8

0 500 1000 1500

Size of Matrix

T-
N

m
ax

/T
-R

ow
-

no
rm

Monte Carlo Matrix computations 159

only the non-zero elements. Using this method, we have achieved a reduction of
2 to 7 times of computational time in comparison with the more conventional
method of full matrix with max-norm for the values tested.

The comparison of given tables shows that in the case of using the row-
norm value with a matrix compression, not only we have an increased dependency
between the time taken and the number of processors, but we also have a
reduction in the computational time by at least two times.

We have noted that although there was a reduction in the number of Markov
chains used, there were some problems which required ‘at least’ the estimated
optimum number of Markov chains as determined by the row-norm value. The
passing of a greatly reduced representation of a matrix in the form of a vector and
eliminating the zero elements is extremely effective when processing sparse
matrices. However with dense matrices obviously little or no reduction can be
achieved.

Although only diagonally dominant sparse matrices were used in the initial
trials the compression approach holds for all sparse matrices, as a reduction in
both storage and processing can be made by elimination of unnecessary or
duplicated elements.

References

 [1] E. Cinlar, Introduction to Stochastic Processes, Prentice-hall, Englewood
Cliffs, New Jersey, 1975.

 [2] B. Fathi. Vajargah, PhD thesis, Parallel Monte Carlo Methods for Matrix
Computations, UK, Reading University, 2003.

 [3] R.Y. Rubinstein Simulation and the Monte Carlo method, John Wiley &
Sons, New York , 1981.

 [4] I.M. Sobol, Monte Carlo numerical methods, Moscow, Nauka, 1973 (in
Russian).

Received: September 21, 2008

