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Abstract

We give a new proof of the classical Watson theorem for the summa-
tion of a 3F2 hypergeometric series of unit argument. The proof relies
on the two well-known Gauss summation theorems for the 2F1 function.
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1. Introduction

The classical Watson theorem for the summation of a 3F2 hypergeometric
function of unit argument takes the form
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(1.1)
provided Re(2c − a − b) > −1 and the parameters are such that the series
on the left is defined. The proof of this result when one of the parameters a
or b is a negative integer was given by Watson in [7], and subsequently was
established more generally in the non-terminating case by Whipple in [8].
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The standard proof of the general case given in [2, p. 149; 6, p. 54] relies
on the following transformation due to Thomae
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where s = d + e − a − b − c is the parametric excess, combined with Dixon’s
theorem for the evaluation of the sum on the right when d = 1
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and e = 2c. An alternative and more involved proof [4, p. 363] exploits the
quadratic transformations for the Gauss hypergeometric function. A third
proof, due to Bhatt in [3], exploits a known relation between the F2 and F4

Appell functions combined with a comparison of the coefficients in their series
expansions.

In this note, we give a simple proof of (1.1) that relies only on the well-
known Gauss summation theorems for the 2F1 function, namely [1, pp. 556,
557]
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, Re(c − a − b) > 0 (1.2)
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We shall also require the following elementary identities for the Pochhammer
symbol, or ascending factorial, (a)n = Γ(a + n)/Γ(a) given by
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for nonnegative integers m and k, together with

Lemma 1 Let k be a nonnegative integer and c be (in general) a complex
parameter satisfying 2c �= −1,−2, . . . . Then
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where �k/2� is the integer part of k/2.

The proof of this lemma uses (1.2) to express the ratio of Pochhammer
symbols as a terminating Gauss hypergeometric function in the form
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The result (1.5) then follows upon making use of the identity
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2. Proof of Watson’s theorem (1.1)

We denote the left-hand side of (1.1) by F and express the 3F2 function as a
series to find
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by Lemma 1. Upon reversal of the order of summation, making use of the
easily established result [5, p. 57]

∞∑
k=0

�k/2�∑
m=0

A(m, k) =
∞∑

m=0

∞∑
k=2m

A(m, k) =
∞∑

m=0

∞∑
k=0

A(m, k + 2m),

then

F =
∞∑

m=0

∞∑
k=0

(a)k+2m (b)k+2m 2−k−4m

(1
2
a + 1

2
b + 1

2
)k+2m (c + 1

2
)m m! k!

=
∞∑

m=0

(a)2m (b)2m 2−4m

(1
2
a + 1

2
b + 1

2
)2m (c + 1

2
)m m!

∞∑
k=0

(a + 2m)k (b + 2m)k 2−k

(1
2
a + 1

2
b + 1

2
+ 2m)k k!

(2.1)

by the second equation in (1.4).
The inner sum in (2.1) can be expressed as a 2F1 function in the form

2F1

(
a + 2m, b + 2m

1
2
a + 1

2
b + 1

2
+ 2m

; 1
2

)
=

Γ(1
2
) Γ(1

2
a + 1

2
b + 1

2
)

Γ(1
2
a + 1

2
) Γ(1

2
b + 1

2
)

(1
2
a + 1

2
b + 1

2
)2m

(1
2
a + 1

2
)m (1

2
b + 1

2
)m

which has been summed by Gauss’ second theorem in (1.3). Substitution of
this summation into (2.1), combined with use of the first equation in (1.4),
then yields
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This last sum can be summed by Gauss’ first theorem in (1.2) when Re(2c −
a − b) > −1, and the desired result in (1.1) follows. This completes the proof
of Watson’s theorem.
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