Strong Convergence Theorems for Nonself I-Asymptotically Quasi-Nonexpansive Mappings¹

Si-Sheng Yao

Department of Mathematics, Kunming Teachers College Kunming, Yunnan, 650031, P.R. China yaosisheng@yahoo.com.cn

Lin Wang

College of Statistics and Mathematics Yunnan University of Finance and Economics Kunming, 650021, P.R. China WL64mail@yahoo.com.cn

Abstract

Let X be a real uniformly convex Banach space, C be a nonempty closed convex subset of X. Let $I: C \to X$ be a nonself asymptotically nonexpansive mapping and $T: C \to X$ be a nonself I-asymptotically quasi-nonexpansive mapping. Let $\{x_n\}$ be a sequence generated by: for any given $x_1 \in C$,

$$\begin{array}{rcl} y_n & = & P(\beta_n T(PT)^{n-1} x_n + (1-\beta_n) x_n), \\ x_{n+1} & = & P(\alpha_n I(PI)^{n-1} y_n + (1-\alpha_n) x_n), \end{array} \quad n \geq 1,$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two real sequences in $[\varepsilon, 1-\varepsilon]$ for some $\varepsilon > 0$. The strong convergnece theorems of $\{x_n\}$ to some $x \in F(T) \cap F(I)$ are proved under some appropriate conditions.

Keywords: Common fixed point; nonself I-asymptotically quasi-nonexpansive mapping; Condition (A'); Uniformly convex Banach space

1 Introduction

Let C be a nonempty subset of a real Banach space X. Let T be a self-mapping of C. T is said to be asymptotically nonexpansive if there exists a

 $^{^1{\}rm This}$ work was supported by The Research Foundation of Yunnan Educational Commission ($07{\rm c}10208$).

real sequence $\{\lambda_n\} \subset [0, +\infty)$, with $\lim_{n\to\infty} \lambda_n = 0$ such that $\|T^nx - T^ny\| \le (1+\lambda_n)\|x-y\|$ for all $x,y\in C$. T is called nonexpansive if $\|Tx-Ty\| \le \|x-y\|$ for all $x,y\in C$. A mapping T is called uniformly L-Lipschitzian if there exists a real number L>0 such that $\|T^nx - T^ny\| \le L\|x-y\|$ for every $x,y\in K$ and each $n\ge 1$. It was proved in [4] that if X is uniformly convex and if C is a bounded closed convex subset of X, then every asymptotically nonexpansive mapping has a fixed point.

Let $T, I: C \to C$, then T is called I-nonexpansive on C if $||Tu - Tv|| \le ||Iu - Iv||$ for all $u, v \in C$. T is called I-asymptotically nonexpansive on C if there exists a sequence $\{\gamma_k\} \subset [0, \infty)$ with $\lim_{k\to\infty} \gamma_k = 0$ such that $||T^ku - T^kv|| \le (\gamma_k + 1)||I^ku - I^kv||$ for all $u, v \in C$ and $k = 1, 2 \cdots$. T is called quasi-nonexpansive provided $||Tu - f|| \le ||u - f||$ for all $u \in C$ and $f \in F(T)$ and $k \ge 1$. T is called asymptotically quasi-nonexpansive if there exists a sequence $\{\mu_k\} \subset [0, \infty)$ with $\lim_{k\to\infty} \mu_k = 0$ such that $||T^ku - f|| \le (\mu_k + 1)||u - f||$ for all $u \in C$ and $f \in F(T)$ and $k \ge 1$.

In the past few decades, many results of fixed points on asymptotically non-expansive, quasi-nonexpansive and asymptotically quasi-nonexpansive mappings in Banach sapce and metric spaces (see, e.g., [3,5,14]) have been obtained. Very recently, Rhoades and Temir [10] studied weak convergence theorems for I-nonexpansive mappings. Temir and Gul [17] also studied the weak convergence theorems for I-asymptotically quasi-nonexpansive mapping in Hilbert space. But they did not obtain any strong convergence theorems for these mappings.

Ishikawa iteration scheme is defined as follows: $x_1 \in C$,

$$\begin{array}{rcl}
 x_{n+1} & = & (1-a_n)x_n + a_n T y_n, \\
 y_n & = & (1-b_n)x_n + b_n T x_n,
 \end{array} \qquad n \ge 1,
 \tag{1.1}$$

where T is a mapping on C, $\{a_n\}$ and $\{b_n\}$ are two real sequences in [0,1]. The iteration scheme has been widely used to approximate fixed points of nonlinear mappings [see, e.g. 1,7,9,11]. The convexity of C then ensures that the sequence $\{x_n\}$ generated by (1.1) is well defined. But, when C is a proper subset of the real Banach space X and T maps C into X (as the case in many applications), then the sequence given by (1.1) may not be well defined. In recent years, some authors [see, e.g. 6,13,19] obtained the strong convergence theorems for nonself nonexpansive mappings by modifying the iteration (1.1). In 2003, Chidume, Ofoedu and Zegeye [2] introduced the concept of nonself asymptotically nonexpansive mapping and obtained some strong and weak convergence theorems for such mappings by modifying (1.1) as follows: for $x_1 \in C$,

$$\begin{aligned}
 x_{n+1} &= P((1-a_n)x_n + a_nT(PT)^{n-1}y_n), \\
 y_n &= P((1-b_n)x_n + b_nT(PT)^{n-1}x_n),
 \end{aligned}
 \qquad n \ge 1,$$
(1.2)

where P is a retraction from X onto C, $\{a_n\}$ and $\{b_n\}$ are two real sequences in [0,1].

Definition 1.1. Let C be a nonempty subset of a real normed space X, $P: X \to C$ be a nonexpansive retraction of X onto C. A nonself mapping $T: C \to X$ is called asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ as $n \to \infty$ such that for each $n \in \mathbb{N}$,

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le k_n||x - y||, \text{ for every } x, y \in C.$$

T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

$$||T(PT)^{n-1}x - T(PT)^{n-1}y|| \le L||x - y||, \quad for \ every \ x, y \in C.$$

Recently, Wang [18] further extended Chidume, Ofoedu and Zegeye's results and obtained the strong and weak convergence theorems of $\{x_n\}$ to common fixed points of a pair of nonself asymptotically nonexpansive mappings.

From Definition 1.1, it is easy to see that every nonself asymptotically nonexpansive mapping is uniformly L-Lipschitzian, where $L = \sup k_n$.

Motivated by above works, we introduce concept of nonself I-asymptotically quasi-nonexpansive mapping to generalize the concept introduced by Chidume, Ofoedu and Zegeye [2]. The strong convergence theorems for such mappings are also obtained.

2 Preliminaries

Throughout this paper, we denote the set of all fixed points of a mapping T by F(T), $T^0 = E$, where E denotes the mapping $E: C \to C$ defined by Ex = x, respectively. A subset C of X is said to be retract if there exists continuous mapping $P: X \to C$ such that Px = x for all $x \in C$. It is well known that every closed convex subset of a uniformly convex Banach space is a retract. A mapping $P: X \to C$ is said to be a retraction if $P^2 = P$. Let D be subsets of C where C is a subset of a Banach space X. Then a mapping $P: C \to D$ is said to be sunny if for each $x \in C$ and $t \geq 0$ with $Px + t(x - Px) \in C$, P(Px + t(x - Px)) = Px. Let C be a subset of a Banach space X. For all $x \in C$, define a set $I_C(x)$ by $I_C(x) = \{x + \lambda(y - x) : \lambda > 0, y \in C\}$. A nonself mapping $T: C \to X$ is said to be inward if $Tx \in I_C(x)$ for all $x \in C$ and T is said to be weakly inward if $Tx \in I_C(x)$ for all $x \in C$.

Definition 2.1. Let C be a nonempty closed convex subset of a real uniformly convex Banach space X and $T:C\to X$ be a non-self mapping. Then the mapping T is said to be

- (1) demiclosed at y if whenever $\{x_n\} \subset C$ such that $x_n \to x \in C$ and $Tx_n \to y$ then Tx = y.
- (2) semi-compact if for any bounded sequence $\{x_n\}$ in C such that $||x_n Tx_n|| \to 0$ as $n \to \infty$, there exists a subsequence say $\{x_{n_k}\}$ of $\{x_n\}$ such that x_{n_k} converges strongly to some x^* in K.
- (3) completely continuous if the sequence $\{x_n\}$ in C converges weakly to x_0 implies that $\{Tx_n\}$ converges strongly to Tx_0 .

For approximating fixed points of nonexpansive mappings, Senter and Dotson [12] introduced a Condition (A). Later on, Maiti and Ghosh [8], Tan and Xu [16] studied the Condition (A) and pointed out that Condition (A) is weaker than the requirement of semi-compactness on mapping.

Definition 2.2. A mapping $T:C\to C$ is said to satisfy Condition (A) if there exists a nondecreasing function $f:[0,+\infty)\to [0,+\infty)$ with f(0)=0, f(r)>0, for all $r\in (0,+\infty)$ such that $\|x-Tx\|\geq f(d(x,F(T)))$ for all $x\in C$, where $d(x,F(T))=\inf\{d(x,x^*):x^*\in F(T)\}$, F(T) is the fixed point set of T.

For two mappings, Condition (A) can be written as follow.

Definition 2.3. The mappings $S,T:C\to C$ are said to satisfy Condition (A') if there exists a nondecreasing function $f:[0,+\infty)\to[0,+\infty)$ with f(0)=0, f(r)>0 for all $r\in(0,+\infty)$ such that $\frac{1}{2}(\|x-Tx\|+\|x-Sx\|)\geq f(d(x,F_1))$ for all $x\in C$, where $F_1=F(S)\bigcap F(T)$ and $d(x,F_1)=\inf\{d(x,x^*):x^*\in F_1\}$.

We restate the following lemmas which play key roles in our proofs.

Lemma 2.1 [14]. Let $\{\alpha_n\}$ and $\{t_n\}$ be two nonnegative sequences satisfying

$$\alpha_{n+1} \le \alpha_n + t_n, \quad \forall n \ge 1.$$

If $\sum_{n=1}^{\infty} t_n < \infty$, then $\lim_{n\to\infty} \alpha_n$ exists.

Lemma 2.2 [11]. Let X be a real uniformly convex Banach space and $0 \le p \le t_n \le q < 1$ for all positive integer $n \ge 1$. Also suppose $\{x_n\}$ and $\{y_n\}$ are two sequences of X such that $\limsup_{n \to \infty} ||x_n|| \le r$, $\limsup_{n \to \infty} ||y_n|| \le r$ and $\limsup_{n \to \infty} ||t_n x_n + (1 - t_n)y_n|| = r$ hold for some $r \ge 0$, then $\lim_{n \to \infty} ||x_n - y_n|| = 0$.

Lemma 2.3 [2]. Let X be a real uniformly convex Banach space, C be a nonempty closed subset of X, and let T be a nonself asymptotically nonexpansive mapping with a sequence $\{k_n\} \subset [1, \infty)$ and $k_n \to 1$ as $n \to \infty$. Then E - T is demiclosed at zero.

Lemma 2.4 [15]. Let X be a real smooth Banach space, C be a nonempty closed convex subset of X with P as a sunny nonexpansive retraction and $T: C \to X$ be a mapping satisfying weakly inward condition. Then F(PT) = F(T).

3 Main Results

Firstly, we introduce the following definition.

Definition 3.1 Let C be a nonempty closed convex subset of a real Banach space $X, T, I : C \to X$ be two non-self mappings. Then the mapping T is said to be a nonself I-asymptotically quasi-nonexpansive mapping if there exists a sequence $\{l_n\} \subset [1, \infty)$ with $l_n \to 1$ as $n \to \infty$ such that for each $n \in \mathbb{N}$,

$$||T(PT)^{n-1}x-f|| \le l_n ||I(PI)^{n-1}x-f||, \text{ for all } x \in C \text{ and } f \in F(T) \cap F(I),$$

where P is a retraction from X onto C.

Secondly, for approximating the common fixed points of nonself I-asymptotically quasi-nonexpansive mapping T and nonself mapping I, we generalize the scheme (1.2) as follows: for given $x_1 \in C$,

where $\{\alpha_n\}, \{\beta_n\}$ are two real sequences in [0, 1].

Lemma 3.1. Let C be a nonempty closed convex subset of a normed linear space X. Let $T: C \to X$ be a nonself I-asymptotically quasi-nonexpansive mapping with sequence $\{k_n\} \subset [1,\infty), \sum_{n=1}^{\infty} (k_n-1) < \infty, \ I: C \to X$ be a nonself asymptotically nonexpansive mapping with sequence $\{l_n\} \subset [1,\infty), \sum_{n=1}^{\infty} (l_n-1) < \infty, \ P$ be a retraction from X onto C. Suppose the sequence $\{x_n\}$ is generated by (3.1). If $F_1 = F(T) \cap F(I) \neq \emptyset$, then $\lim_{n\to\infty} ||x_n-x^*||$ exists for any $x^* \in F_1$.

Proof. Setting $k_n = 1 + s_n$, $l_n = 1 + r_n$. Since $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, $\sum_{n=1}^{\infty} (l_n - 1) < \infty$, so $\sum_{n=1}^{\infty} r_n < \infty$, $\sum_{n=1}^{\infty} s_n < \infty$. Taking $x^* \in F_1$, we have

```
\begin{split} & \|x_{n+1} - x^*\| \leq \|\alpha_n I(PI)^{n-1} y_n + (1 - \alpha_n) x_n - x^*\| \\ & \leq & \alpha_n \|I(PI)^{n-1} y_n - x^*\| + (1 - \alpha_n) \|x_n - x^*\| \\ & \leq & \alpha_n (1 + r_n) \|y_n - x^*\| + (1 - \alpha_n) \|x_n - x^*\| \\ & \leq & \alpha_n (1 + r_n) \|\beta_n (T(PT)^{n-1} x_n - x^*) + (1 - \beta_n) (x_n - x^*)\| + (1 - \alpha_n) \|x_n - x^*\| \\ & \leq & \alpha_n \beta_n (1 + r_n) (1 + s_n) \|I(PI)^{n-1} x_n - x^*\| + \alpha_n (1 - \beta_n) (1 + r_n) \|x_n - x^*\| + (1 - \alpha_n) \|x_n - x^*\| \\ & \leq & \alpha_n \beta_n (1 + s_n) (1 + r_n)^2 \|x_n - x^*\| + \alpha_n (1 - \beta_n) (1 + r_n)^2 (1 + s_n) \|x_n - x^*\| \\ & + (1 - \alpha_n) (1 + r_n)^2 (1 + s_n) \|x_n - x^*\| \\ & \leq & (1 + r_n)^2 (1 + s_n) \|x_n - x^*\|. \end{split}
```

Since $\sum_{n=1}^{\infty} r_n < \infty$, $\sum_{n=1}^{\infty} s_n < \infty$, it follows from Lemma 2.1 that $\lim_{n\to\infty} ||x_n - x^*||$ exists. This completes the proof.

Lemma 3.2. Let X be a uniformly convex Banach space. Let $C, T, I, \{x_n\}$ be same as in Lemma 3.1. If T is uniformly L-Lipschitzian for some L > 0 and $F_1 \neq \emptyset$, then $\lim_{n \to \infty} ||Tx_n - x_n|| = \lim_{n \to \infty} ||Ix_n - x_n|| = 0$.

Proof. By Lemma 3.1, for any $x^* \in F_1$, $\lim_{n\to\infty} ||x_n - x^*||$ exists, then $\{x_n\}$ is bounded. Assume $\lim_{n\to\infty} ||x_n - x^*|| = c \ge 0$. From (3.1), we have

$$||y_{n} - x^{*}|| \leq ||\beta_{n}T(PT)^{n-1}x_{n} + (1 - \beta_{n})x_{n} - x^{*}||$$

$$\leq |\beta_{n}||T(PT)^{n-1}x_{n} - x^{*}|| + (1 - \beta_{n})||x_{n} - x^{*}||$$

$$\leq |\beta_{n}(1 + s_{n})||I(PI)^{n-1}x_{n} - x^{*}|| + (1 - \beta_{n})||x_{n} - x^{*}||$$

$$\leq |\beta_{n}(1 + s_{n})(1 + r_{n})||x_{n} - x^{*}|| + (1 - \beta_{n})(1 + s_{n})(1 + r_{n})||x_{n} - x^{*}||$$

$$\leq (1 + s_{n})(1 + r_{n})||x_{n} - x^{*}||.$$

Taking limsup on both sides in above inequality, we obtain

$$limsup_{n\to\infty} ||y_n - x^*|| \le c. (3.2)$$

Since

$$||I(PI)^{n-1}y_n - x^*|| \le (1 + r_n)||y_n - x^*||.$$

Taking limsup on both sides in above inequality and using (3.2) we have

$$lim sup_{n\to\infty} ||I(PI)^{n-1}y_n - x^*|| \le c.$$

Since $\lim_{n\to\infty} ||x_{n+1} - x^*|| = c$, then $\lim_{n\to\infty} ||\alpha_n(I(PI)^{n-1}y_n - x^*)| + (1 - \alpha_n)(x_n - x^*)|| = c$. It follows from Lemma 2.2 that

$$\lim_{n \to \infty} ||I(PI)^{n-1}y_n - x_n|| = 0.$$
(3.3)

Next,

$$||x_n - x^*|| \le ||x_n - I(PI)^{n-1}y_n|| + ||I(PI)^{n-1}y_n - x^*||$$

$$< ||x_n - I(PI)^{n-1}y_n|| + (1+r_n)||y_n - x^*||$$

gives that $c = \lim_{n \to \infty} ||x_n - x^*|| \le \liminf_{n \to \infty} ||y_n - x^*||$. By (3.2), we have $\lim_{n \to \infty} ||y_n - x^*|| = c$.

Since $||T(PT)^{n-1}x_n - x^*|| \le (1+s_n)||I(PI)^{n-1}x_n - x^*|| \le (1+s_n)(1+r_n)||x_n-x^*||$, we have $\lim\sup_{n\to\infty} ||T(PT)^{n-1}x_n-x^*|| \le c$. Further, $\lim\limits_{n\to\infty} ||y_n-x^*|| = c$ means that

$$\lim_{n\to\infty} \|\beta_n (T(PT)^{n-1}x_n - x^*) + (1 - \beta_n)(x_n - x^*)\| = c.$$

Thus by Lemma 2.2, we have

$$\lim_{n \to \infty} ||T(PT)^{n-1}x_n - x_n|| = 0.$$
(3.4)

Also,

$$||I(PI)^{n-1}x_n - x_n||$$

$$\leq ||I(PI)^{n-1}x_n - I(PI)^{n-1}y_n|| + ||I(PI)^{n-1}y_n - x_n||$$

$$\leq (1+r_n)||x_n - y_n|| + ||I(PI)^{n-1}y_n - x_n||$$

$$= (1+r_n)||\beta_n(x_n - T(PT)^{n-1}x_n)|| + ||I(PI)^{n-1}y_n - x_n||$$

$$\leq \beta_n(1+r_n)||x_n - T(PT)^{n-1}x_n|| + ||I(PI)^{n-1}y_n - x_n||.$$

Thus by (3.3) and (3.4), we have

$$\lim_{n \to \infty} ||I(PI)^{n-1}x_n - x_n|| = 0.$$
(3.5)

Further, it follows from (3.4) and (3.5) that

$$\lim_{n \to \infty} ||I(PI)^{n-1}x_n - T(PT)^{n-1}x_n|| = 0.$$
(3.6)

In addition, $||x_{n+1} - x_n|| \le \alpha_n ||I(PI)^{n-1}y_n - x_n||$, by (3.3)

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. (3.7)$$

Since $||I(PI)^{n-1}y_n - x_{n+1}|| \le ||I(PI)^{n-1}y_n - x_n|| + ||x_n - x_{n+1}||$, we have

$$\lim_{n \to \infty} ||I(PI)^{n-1}y_n - x_{n+1}|| = 0.$$
(3.8)

So,

$$||x_{n+1} - y_n|| \leq ||x_{n+1} - I(PI)^{n-1}y_n|| + ||I(PI)^{n-1}y_n - y_n||$$

$$\leq ||x_{n+1} - I(PI)^{n-1}y_n|| + ||y_n - x_n|| + ||x_n - I(PI)^{n-1}y_n||$$

$$\leq ||x_{n+1} - I(PI)^{n-1}y_n|| + \beta_n||T(PT)^{n-1}x_n - x_n|| + ||x_n - I(PI)^{n-1}y_n||.$$

Using (3.3), (3.4) and (3.8), we obtain

$$\lim_{n \to \infty} ||x_{n+1} - y_n|| = 0. (3.9)$$

$$||x_{n} - Ix_{n}|| = ||x_{n} - I(PI)^{n-1}x_{n} + I(PI)^{n-1}x_{n} - I(PI)^{n-1}y_{n-1} + I(PI)^{n-1}y_{n-1} - Ix_{n}||$$

$$\leq ||x_{n} - I(PI)^{n-1}x_{n}|| + ||I(PI)^{n-1}x_{n} - I(PI)^{n-1}y_{n-1}|| + ||I(PI)^{n-1}y_{n-1} - Ix_{n}||$$

$$\leq ||x_{n} - I(PI)^{n-1}x_{n}|| + (1+r_{n})||x_{n} - y_{n-1}|| + (1+r_{1})||I(PI)^{n-2}y_{n-1} - x_{n}||.$$

It follows from (3.5), (3.8) and (3.9), we obtain

$$\lim_{n\to\infty} ||x_n - Ix_n|| = 0.$$
 (3.10)

Since T is uniformly L-Lipschitzian for some L > 0,

$$||Tx_{n} - x_{n}|| \leq ||T(PT)^{n-1}x_{n} - x_{n}|| + ||T(PT)^{n-1}x_{n} - Tx_{n}||$$

$$\leq ||T(PT)^{n-1}x_{n} - x_{n}|| + L||T(PT)^{n-2}x_{n} - x_{n}||$$

$$\leq ||T(PT)^{n-1}x_{n} - x_{n}|| + L||T(PT)^{n-2}x_{n} - T(PT)^{n-2}x_{n-1}||$$

$$+ L||T(PT)^{n-2}x_{n-1} - x_{n-1}|| + L||x_{n-1} - x_{n}||$$

$$\leq ||T(PT)^{n-1}x_{n} - x_{n}|| + L^{2}||x_{n} - x_{n-1}|| + (L + L^{2})||T(PT)^{n-2}x_{n-1} - x_{n-1}||.$$

By (3.4) and (3.7), we have

$$\lim_{n \to \infty} ||Tx_n - x_n|| = 0. (3.11)$$

This completes the proof.

Theorem 3.3. Let X be a uniformly convex Banach space and $C, T, I, \{x_n\}$ be same as in Lemma 3.2. If T, I satisfy the Condition (A'), then $\{x_n\}$ converges strongly to a common fixed point of T and I.

Proof. By Lemma 3.1, $\lim_{n\to\infty} ||x_n - x^*|| = c \ge 0$ exists for all $x^* \in F_1$. If c = 0, there is nothing to prove.

Suppose that c > 0, by Lemma 3.2, we have

$$\lim_{n\to\infty} ||Tx_n - x_n|| = \lim_{n\to\infty} ||Ix_n - x_n|| = 0.$$

In the proof of Lemma 3.1, we obtain

$$||x_{n+1} - x^*|| \le (1 + r_n)^2 (1 + s_n) ||x_n - x^*||.$$
(3.12)

From (3.12), we have $0 \le d(x_{n+1}, F_1) \le d(x_n, F_1)$. Then, $\lim_{n\to\infty} d(x_n, F_1)$ exists. Now condition (A') guarantees that

$$\lim_{n\to\infty} f(d(x_n, F_1)) = 0.$$
 (3.13)

Since f is a nondecreasing function and f(0) = 0, it follows that $\lim_{n \to \infty} d(x_n, F_1) = 0$.

For any $\varepsilon > 0$, since $\lim_{n \to \infty} d(x_n, F_1) = 0$, there exists natural number N_1 such that when $n \geq N_1$, $d(x_n, F_1) < \frac{\varepsilon}{3}$. Thus, there exists $x'^* \in F_1$ such that for above ε there exists positive integer $N_2 \geq N_1$ such that as $n \geq N_2$, $||x_n - x'^*|| < \frac{\varepsilon}{2}$. Now for arbitrary $n, m \geq N_2$, consider $||x_n - x_m|| \leq ||x_n - x'^*|| + ||x_m - x'^*|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. This implies $\{x_n\}$ is a cauchy sequence.

Let $x_n \to x$. Now $\lim_{n\to\infty} d(x_n, F_1) = 0$ gives that $d(x, F_1) = 0$. By the routine method we can easily show that F_1 is closed, therefore $x \in F_1$. The proof is completed.

Theorem 3.4. Let $X, C, T, I, \{x_n\}$ be same as in Lemma 3.2. If $F_1 \neq \emptyset$ and I is a semi-compact mapping, then $\{x_n\}$ converges to a common fixed point of T and I.

Proof. Since I is a semi-compact mapping, $\{x_n\}$ is bounded and $\lim_{n\to\infty} \|x_n - Ix_n\| = 0$, then there exists a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\{x_{n_j}\}$ converges to x^* . It follows from Lemma 2.3, $x^* \in F(I)$. Further, $\|Tx_{n_j} - x^*\| \le \|Tx_{n_j} - x_{n_j}\| + \|x_{n_j} - Ix_{n_j}\| + \|Ix_{n_j} - Ix^*\| + \|Ix^* - x^*\|$. Thus, $\lim_{n\to\infty} \|Tx_{n_j} - x^*\| = 0$. This implies that $\{Tx_{n_j}\}$ converges strongly to x^* . Since T is uniformly L-Lipschitzian for some L > 0, $Tx^* = x^*$. Since the subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\{x_{n_j}\}$ converges to x^* and $\lim_{n\to\infty} \|x_n - x^*\|$ exists, then $\{x_n\}$ converges strongly to the common fixed point $x^* \in F(T) \cap F(I)$. The proof is completed.

- **Theorem 3.5.** Let $X, C, T, I, \{x_n\}$ be same as in Lemma 3.2. If $F_1 \neq \emptyset$, I is completely continuous mapping, then $\{x_n\}$ converges strongly to a common fixed point of T and I.
- **Proof.** By Lemma 3.1, $\{x_n\}$ is bounded. Since $\lim_{n\to\infty} ||x_n Ix_n|| = \lim_{n\to\infty} ||x_n Tx_n|| = 0$, then $\{Tx_n\}$ and $\{Ix_n\}$ are bounded. Since I is completely continuous, that exists subsequence $\{Ix_{n_j}\}$ of $\{Ix_n\}$ such that $\{Ix_{n_j}\} \to p$ as $j \to \infty$. Thus, we have $\lim_{j\to\infty} ||x_{n_j} Tx_{n_j}|| = \lim_{j\to\infty} ||x_{n_j} Ix_{n_j}|| = 0$. So, by the continuity of I and Lemma 2.3, we have $\lim_{j\to\infty} ||x_{n_j} p|| = 0$, $p \in F(I)$. And $\|Tx_{n_j} p\| \le \|Tx_{n_j} x_{n_j}\| + \|x_{n_j} Ix_{n_j}\| + \|Ix_{n_j} Ip\| + \|Ip p\|$. Thus, $\lim_{n\to\infty} ||Tx_{n_j} p|| = 0$. This implies that $\{Tx_{n_j}\}$ converges strongly to p. Since T is continuous, Tp = p. Further, from Lemma 3.1, $\lim_{n\to\infty} ||x_n p||$ exists. Thus $\lim_{n\to\infty} ||x_n p|| = 0$. The proof is completed.

References

- [1] S.S. Chang, Y.J. Cho, H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., 38 (2001), 1245-1260.
- [2] C.E. Chidume, E.U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 280 (2003), 364-374.
- [3] M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl., 207 (1997), 96-103.
- [4] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically non-expansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
- [5] Hafiz Fukhar-ud-din, S.H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl., 328 (2007), 821-829.
- [6] J.S. Jung, S.S. Kim, Strong convergence theorems for nonexpansive nonself mappings in Banach spaces, Nonlinear Anal. 3(33) (1998), 321-329.
- [7] S.H. Khan, H. Fukhar-ud-din, Weak and strong convergenc of a scheme with errors for two nonexpansive mappings, Nonlinear Anal., 61 (2005), 1295-1301.
 - [8] M. Maiti, M.K. Gosh, Approximating fixed points by Ishikawa iterates,

- Bull. Austral. Math. Soc. 40, (1989), 113-117.
- [9] M.O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings, J. Math. Anal. Appl., 256 (2001), 431-445.
- [10] B.E. Rhoades and Seyit Temir, Convergence theorems for I-nonexpansive mappings, International Journal of Mathematics and Mathematical Sciences, 2006, 1-4.
- [11] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1991), 407-413.
- [12] H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansie mappings, Proc. Amer. Math. Soc., 44(2), (1974), 375-380.
- [13] N. Shahzad, Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear Anal., 61 (2005), 1031-1039.
- [14] N. Shahzad, H. Zegeye, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Applied Mathematics and Computation, in press.
- [15] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers, Inc., Yokohama, 2000.
- [16] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308.
- [17] S. Temir, O. Gul, Convergence theorem for I-asymptotically nonexpansive mapping in Hilbert sapce, J. Math. Anal. Appl. in press.
- [18] L. Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math Anal. Appl., 323 (2006), 550-557.
- [19] H.K. Xu, X.M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Anal. 2(24) (1995), 223-228.

Received: October 4, 2007