Applied Mathematical Sciences, Vol. 2, 2008, no. 19, 919-928

Strong Convergence Theorems for Nonself I-Asymptotically Quasi-Nonexpansive Mappings ${ }^{1}$

Si-Sheng Yao
Department of Mathematics, Kunming Teachers College
Kunming, Yunnan, 650031, P.R. China
yaosisheng@yahoo.com.cn

Lin Wang
College of Statistics and Mathematics
Yunnan University of Finance and Economics
Kunming, 650021, P.R. China
WL64mail@yahoo.com.cn

Abstract

Let X be a real uniformly convex Banach space, C be a nonempty closed convex subset of X. Let $I: C \rightarrow X$ be a nonself asymptotically nonexpansive mapping and $T: C \rightarrow X$ be a nonself I-asymptotically quasi-nonexpansive mapping. Let $\left\{x_{n}\right\}$ be a sequence generated by: for any given $x_{1} \in C$, $$
\begin{aligned} y_{n} & =P\left(\beta_{n} T(P T)^{n-1} x_{n}+\left(1-\beta_{n}\right) x_{n}\right), \quad n \geq 1, \\ x_{n+1} & =P\left(\alpha_{n} I(P I)^{n-1} y_{n}+\left(1-\alpha_{n}\right) x_{n}\right), \quad n \geq 1 \end{aligned}
$$ where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are two real sequences in $[\varepsilon, 1-\varepsilon]$ for some $\varepsilon>0$. The strong convergnece theorems of $\left\{x_{n}\right\}$ to some $x \in F(T) \cap F(I)$ are proved under some appropriate conditions.

Keywords: Common fixed point; nonself I-asymptotically quasi-nonexpansive mapping; Condition (A'); Uniformly convex Banach space

1 Introduction

Let C be a nonempty subset of a real Banach space X. Let T be a selfmapping of $C . T$ is said to be asymptotically nonexpansive if there exists a

[^0]real sequence $\left\{\lambda_{n}\right\} \subset[0,+\infty)$, with $\lim _{n \rightarrow \infty} \lambda_{n}=0$ such that $\left\|T^{n} x-T^{n} y\right\| \leq$ $\left(1+\lambda_{n}\right)\|x-y\|$ for all $x, y \in C$. T is called nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$. A mapping T is called uniformly L-Lipschitzian if there exists a real number $L>0$ such that $\left\|T^{n} x-T^{n} y\right\| \leq L\|x-y\|$ for every $x, y \in K$ and each $n \geq 1$. It was proved in [4] that if X is uniformly convex and if C is a bounded closed convex subset of X, then every asymptotically nonexpansive mapping has a fixed point.

Let $T, I: C \rightarrow C$, then T is called I-nonexpansive on C if $\|T u-T v\| \leq$ $\|I u-I v\|$ for all $u, v \in C . T$ is called I-asymptotically nonexpansive on C if there exists a sequence $\left\{\gamma_{k}\right\} \subset[0, \infty)$ with $\lim _{k \rightarrow \infty} \gamma_{k}=0$ such that $\left\|T^{k} u-T^{k} v\right\| \leq\left(\gamma_{k}+1\right)\left\|I^{k} u-I^{k} v\right\|$ for all $u, v \in C$ and $k=1,2 \cdots . T$ is called quasi-nonexpansive provided $\|T u-f\| \leq\|u-f\|$ for all $u \in C$ and $f \in F(T)$ and $k \geq 1$. T is called asymptotically quasi-nonexpansive if there exists a sequence $\left\{\mu_{k}\right\} \subset[0, \infty)$ with $\lim _{k \rightarrow \infty} \mu_{k}=0$ such that $\left\|T^{k} u-f\right\| \leq$ $\left(\mu_{k}+1\right)\|u-f\|$ for all $u \in C$ and $f \in F(T)$ and $k \geq 1$.

In the past few decades, many results of fixed points on asymptotically nonexpansive, quasi-nonexpansive and asymptotically quasi-nonexpansive mappings in Banach sapce and metric spaces (see, e.g., $[3,5,14]$) have been obtained. Very recently, Rhoades and Temir [10] studied weak convergence theorems for I-nonexpansive mappings. Temir and Gul [17] also studied the weak convergence theorems for I-asymptotically quasi-nonexpansive mapping in Hilbert space. But they did not obtain any strong convergence theorems for these mappings.

Ishikawa iteration scheme is defined as follows: $x_{1} \in C$,

$$
\begin{align*}
x_{n+1} & =\left(1-a_{n}\right) x_{n}+a_{n} T y_{n}, \quad n \geq 1 \tag{1.1}\\
y_{n} & =\left(1-b_{n}\right) x_{n}+b_{n} T x_{n},
\end{align*}
$$

where T is a mapping on $C,\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two real sequences in $[0,1]$. The iteration scheme has been widely used to approximate fixed points of nonlinear mappings [see, e.g. $1,7,9,11$]. The convexity of C then ensures that the sequence $\left\{x_{n}\right\}$ generated by (1.1) is well defined. But, when C is a proper subset of the real Banach space X and T maps C into X (as the case in many applications), then the sequence given by (1.1) may not be well defined. In recent years, some authors [see, e.g. 6,13,19] obtained the strong convergence theorems for nonself nonexpansive mappings by modifying the iteration (1.1). In 2003, Chidume, Ofoedu and Zegeye [2] introduced the concept of nonself asymptotically nonexpansive mapping and obtained some strong and weak convergence theorems for such mappings by modifying (1.1) as follows: for $x_{1} \in C$,

$$
\begin{align*}
x_{n+1} & =P\left(\left(1-a_{n}\right) x_{n}+a_{n} T(P T)^{n-1} y_{n}\right), \quad n \geq 1 \tag{1.2}\\
y_{n} & =P\left(\left(1-b_{n}\right) x_{n}+b_{n} T(P T)^{n-1} x_{n}\right), \quad n
\end{align*}
$$

where P is a retraction from X onto $C,\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two real sequences in $[0,1]$.

Definition 1.1. Let C be a nonempty subset of a real normed space X, $P: X \rightarrow C$ be a nonexpansive retraction of X onto C. A nonself mapping $T: C \rightarrow X$ is called asymptotically nonexpansive if there exists a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ with $k_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that for each $n \in \mathbf{N}$,

$$
\left\|T(P T)^{n-1} x-T(P T)^{n-1} y\right\| \leq k_{n}\|x-y\|, \quad \text { for every } \quad x, y \in C .
$$

T is said to be uniformly L-Lipschitzian if there exists a constant $L>0$ such that

$$
\left\|T(P T)^{n-1} x-T(P T)^{n-1} y\right\| \leq L\|x-y\|, \quad \text { for every } \quad x, y \in C .
$$

Recently, Wang [18] further extended Chidume, Ofoedu and Zegeye's results and obtained the strong and weak convergence theorems of $\left\{x_{n}\right\}$ to common fixed points of a pair of nonself asymptotically nonexpansive mappings.

From Definition 1.1, it is easy to see that every nonself asymptotically nonexpansive mapping is uniformly L-Lipschitzian, where $L=\sup k_{n}$.

Motivated by above works, we introduce concept of nonself I-asymptotically quasi-nonexpansive mapping to generalize the concept introduced by Chidume, Ofoedu and Zegeye [2]. The strong convergence theorems for such mappings are also obtained.

2 Preliminaries

Throughout this paper, we denote the set of all fixed points of a mapping T by $F(T), T^{0}=E$, where E denotes the mapping $E: C \rightarrow C$ defined by $E x=x$, respectively. A subset C of X is said to be retract if there exists continuous mapping $P: X \rightarrow C$ such that $P x=x$ for all $x \in C$. It is well known that every closed convex subset of a uniformly convex Banach space is a retract. A mapping $P: X \rightarrow C$ is said to be a retraction if $P^{2}=P$. Let D be subsets of C where C is a subset of a Banach space X. Then a mapping $P: C \rightarrow D$ is said to be sunny if for each $x \in C$ and $t \geq 0$ with $P x+t(x-P x) \in C, P(P x+t(x-P x))=P x$. Let C be a subset of a Banach space X. For all $x \in C$, define a set $I_{C}(x)$ by $I_{C}(x)=\{x+\lambda(y-x): \lambda>0, y \in C\}$. A nonself mapping $T: C \rightarrow X$ is said to be inward if $T x \in I_{C}(x)$ for all $x \in C$ and T is said to be weakly inward if $T x \in \overline{I_{C}(x)}$ for all $x \in C$.

Definition 2.1. Let C be a nonempty closed convex subset of a real uniformly convex Banach space X and $T: C \rightarrow X$ be a non-self mapping. Then the mapping T is said to be
(1) demiclosed at y if whenever $\left\{x_{n}\right\} \subset C$ such that $x_{n} \rightharpoonup x \in C$ and $T x_{n} \rightarrow y$ then $T x=y$.
(2) semi-compact if for any bounded sequence $\left\{x_{n}\right\}$ in C such that $\| x_{n}-$ $T x_{n} \| \rightarrow 0$ as $n \rightarrow \infty$, there exists a subsequence say $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}}$ converges strongly to some x^{*} in K.
(3) completely continuous if the sequence $\left\{x_{n}\right\}$ in C converges weakly to x_{0} implies that $\left\{T x_{n}\right\}$ converges strongly to $T x_{0}$.

For approximating fixed points of nonexpansive mappings, Senter and Dotson [12] introduced a Condition (A). Later on, Maiti and Ghosh [8], Tan and $\mathrm{Xu}[16]$ studied the Condition (A) and pointed out that Condition (A) is weaker than the requirement of semi-compactness on mapping.

Definition 2.2. A mapping $T: C \rightarrow C$ is said to satisfy Condition (A) if there exists a nondecreasing function $f:[0,+\infty) \rightarrow[0,+\infty)$ with $f(0)=0, f(r)>0$, for all $r \in(0,+\infty)$ such that $\|x-T x\| \geq f(d(x, F(T)))$ for all $x \in C$, where $d(x, F(T))=\inf \left\{d\left(x, x^{*}\right): x^{*} \in F(T)\right\}, F(T)$ is the fixed point set of T.

For two mappings, Condition (A) can be written as follow.
Definition 2.3. The mappings $S, T: C \rightarrow C$ are said to satisfy Condition (A') if there exists a nondecreasing function $f:[0,+\infty) \rightarrow[0,+\infty)$ with $f(0)=0, f(r)>0$ for all $r \in(0,+\infty)$ such that $\frac{1}{2}(\|x-T x\|+\| x-$ $S x \|) \geq f\left(d\left(x, F_{1}\right)\right)$ for all $x \in C$, where $F_{1}=F(S) \bigcap F(T)$ and $d\left(x, F_{1}\right)=$ $\inf \left\{d\left(x, x^{*}\right): x^{*} \in F_{1}\right\}$.

We restate the following lemmas which play key roles in our proofs.
Lemma 2.1 [14]. Let $\left\{\alpha_{n}\right\}$ and $\left\{t_{n}\right\}$ be two nonnegative sequences satisfying

$$
\alpha_{n+1} \leq \alpha_{n}+t_{n}, \quad \forall n \geq 1
$$

If $\Sigma_{n=1}^{\infty} t_{n}<\infty$, then $\lim _{n \rightarrow \infty} \alpha_{n}$ exists.
Lemma 2.2 [11]. Let X be a real uniformly convex Banach space and $0 \leq p \leq t_{n} \leq q<1$ for all positive integer $n \geq 1$. Also suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences of X such that $\limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq r, \limsup _{n \rightarrow \infty}\left\|y_{n}\right\| \leq r$ and $\limsup _{n \rightarrow \infty}\left\|t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right\|=r$ hold for some $r \geq 0$, then $\lim _{n \rightarrow \infty}^{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.3 [2]. Let X be a real uniformly convex Banach space, C be a nonempty closed subset of X, and let T be a nonself asymptotically nonexpansive mapping with a sequence $\left\{k_{n}\right\} \subset[1, \infty)$ and $k_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then $E-T$ is demiclosed at zero.

Lemma 2.4 [15]. Let X be a real smooth Banach space, C be a nonempty closed convex subset of X with P as a sunny nonexpansive retraction and $T: C \rightarrow X$ be a mapping satisfying weakly inward condition. Then $F(P T)=$ $F(T)$.

3 Main Results

Firstly, we introduce the following definition.
Definition 3.1 Let C be a nonempty closed convex subset of a real Banach space $X, T, I: C \rightarrow X$ be two non-self mappings. Then the mapping T is said to be a nonself I-asymptotically quasi-nonexpansive mapping if there exists a sequence $\left\{l_{n}\right\} \subset[1, \infty)$ with $l_{n} \rightarrow 1$ as $n \rightarrow \infty$ such that for each $n \in \mathbf{N}$,
$\left\|T(P T)^{n-1} x-f\right\| \leq l_{n}\left\|I(P I)^{n-1} x-f\right\|, \quad$ for all $x \in C$ and $f \in F(T) \cap F(I)$,
where P is a retraction from X onto C.
Secondly, for approximating the common fixed points of nonself I-asymptotically quasi-nonexpansive mapping T and nonself mapping I, we generalize the scheme (1.2) as follows: for given $x_{1} \in C$,

$$
\begin{array}{cl}
x_{n+1} & =P\left(\alpha_{n} I(P I)^{n-1} y_{n}+\left(1-\alpha_{n}\right) x_{n}\right) \tag{3.1}\\
y_{n} & =P\left(\beta_{n} T(P T)^{n-1} x_{n}+\left(1-\beta_{n}\right) x_{n}\right)
\end{array}
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are two real sequences in $[0,1]$.
Lemma 3.1. Let C be a nonempty closed convex subset of a normed linear space X. Let $T: C \rightarrow X$ be a nonself I-asymptotically quasi-nonexpansive mapping with sequence $\left\{k_{n}\right\} \subset[1, \infty), \sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty, I: C \rightarrow X$ be a nonself asymptotically nonexpansive mapping with sequence $\left\{l_{n}\right\} \subset[1, \infty)$, $\sum_{n=1}^{\infty}\left(l_{n}-1\right)<\infty, P$ be a retraction from X onto C. Suppose the sequence $\left\{x_{n}\right\}$ is generated by (3.1). If $F_{1}=F(T) \cap F(I) \neq \emptyset$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists for any $x^{*} \in F_{1}$.

Proof. Setting $k_{n}=1+s_{n}, l_{n}=1+r_{n}$. Since $\sum_{n=1}^{\infty}\left(k_{n}-1\right)<\infty, \sum_{n=1}^{\infty}\left(l_{n}-\right.$ $1)<\infty$, so $\sum_{n=1}^{\infty} r_{n}<\infty, \sum_{n=1}^{\infty} s_{n}<\infty$. Taking $x^{*} \in F_{1}$, we have

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\| \leq\left\|\alpha_{n} I(P I)^{n-1} y_{n}+\left(1-\alpha_{n}\right) x_{n}-x^{*}\right\| \\
\leq & \alpha_{n}\left\|I(P I)^{n-1} y_{n}-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \alpha_{n}\left(1+r_{n}\right)\left\|y_{n}-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \alpha_{n}\left(1+r_{n}\right)\left\|\beta_{n}\left(T(P T)^{n-1} x_{n}-x^{*}\right)+\left(1-\beta_{n}\right)\left(x_{n}-x^{*}\right)\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \alpha_{n} \beta_{n}\left(1+r_{n}\right)\left(1+s_{n}\right)\left\|I(P I)^{n-1} x_{n}-x^{*}\right\|+\alpha_{n}\left(1-\beta_{n}\right)\left(1+r_{n}\right)\left\|x_{n}-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \alpha_{n} \beta_{n}\left(1+s_{n}\right)\left(1+r_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left(1-\beta_{n}\right)\left(1+r_{n}\right)^{2}\left(1+s_{n}\right)\left\|x_{n}-x^{*}\right\| \\
& +\left(1-\alpha_{n}\right)\left(1+r_{n}\right)^{2}\left(1+s_{n}\right)\left\|x_{n}-x^{*}\right\| \\
\leq & \left(1+r_{n}\right)^{2}\left(1+s_{n}\right)\left\|x_{n}-x^{*}\right\| .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} r_{n}<\infty, \sum_{n=1}^{\infty} s_{n}<\infty$, it follows from Lemma 2.1 that $\lim _{n \rightarrow \infty} \| x_{n}-$ $x^{*} \|$ exists. This completes the proof.

Lemma 3.2. Let X be a uniformly convex Banach space. Let $C, T, I,\left\{x_{n}\right\}$ be same as in Lemma 3.1. If T is uniformly L-Lipschitzian for some $L>0$ and $F_{1} \neq \emptyset$, then $\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|I x_{n}-x_{n}\right\|=0$.

Proof. By Lemma 3.1, for any $x^{*} \in F_{1}, \lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists, then $\left\{x_{n}\right\}$ is bounded. Assume $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=c \geq 0$. From (3.1), we have

$$
\begin{aligned}
\left\|y_{n}-x^{*}\right\| & \leq\left\|\beta_{n} T(P T)^{n-1} x_{n}+\left(1-\beta_{n}\right) x_{n}-x^{*}\right\| \\
& \leq \beta_{n}\left\|T(P T)^{n-1} x_{n}-x^{*}\right\|+\left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\| \\
& \leq \beta_{n}\left(1+s_{n}\right)\left\|I(P I)^{n-1} x_{n}-x^{*}\right\|+\left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\| \\
& \leq \beta_{n}\left(1+s_{n}\right)\left(1+r_{n}\right)\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}\right)\left(1+s_{n}\right)\left(1+r_{n}\right)\left\|x_{n}-x^{*}\right\| \\
& \leq\left(1+s_{n}\right)\left(1+r_{n}\right)\left\|x_{n}-x^{*}\right\| .
\end{aligned}
$$

Taking limsup on both sides in above inequality, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|y_{n}-x^{*}\right\| \leq c \tag{3.2}
\end{equation*}
$$

Since

$$
\left\|I(P I)^{n-1} y_{n}-x^{*}\right\| \leq\left(1+r_{n}\right)\left\|y_{n}-x^{*}\right\| .
$$

Taking limsup on both sides in above inequality and using (3.2) we have

$$
\limsup _{n \rightarrow \infty}\left\|I(P I)^{n-1} y_{n}-x^{*}\right\| \leq c
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x^{*}\right\|=c$, then $\lim _{n \rightarrow \infty} \| \alpha_{n}\left(I(P I)^{n-1} y_{n}-x^{*}\right)+(1-$ $\left.\alpha_{n}\right)\left(x_{n}-x^{*}\right) \|=c$. It follows from Lemma 2.2 that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I(P I)^{n-1} y_{n}-x_{n}\right\|=0 \tag{3.3}
\end{equation*}
$$

Next,

$$
\begin{aligned}
\left\|x_{n}-x^{*}\right\| & \leq\left\|x_{n}-I(P I)^{n-1} y_{n}\right\|+\left\|I(P I)^{n-1} y_{n}-x^{*}\right\| \\
& \leq\left\|x_{n}-I(P I)^{n-1} y_{n}\right\|+\left(1+r_{n}\right)\left\|y_{n}-x^{*}\right\|
\end{aligned}
$$

gives that $c=\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\| \leq \liminf _{n \rightarrow \infty}\left\|y_{n}-x^{*}\right\|$. By (3.2), we have $\lim _{n \rightarrow \infty}\left\|y_{n}-x^{*}\right\|=c$.

Since $\left\|T(P T)^{n-1} x_{n}-x^{*}\right\| \leq\left(1+s_{n}\right)\left\|I(P I)^{n-1} x_{n}-x^{*}\right\| \leq\left(1+s_{n}\right)(1+$ $\left.r_{n}\right)\left\|x_{n}-x^{*}\right\|$, we have $\limsup _{n \rightarrow \infty}\left\|T(P T)^{n-1} x_{n}-x^{*}\right\| \leq c$. Further, $\lim _{n \rightarrow \infty} \| y_{n}-$ $x^{*} \|=c$ means that

$$
\lim _{n \rightarrow \infty}\left\|\beta_{n}\left(T(P T)^{n-1} x_{n}-x^{*}\right)+\left(1-\beta_{n}\right)\left(x_{n}-x^{*}\right)\right\|=c
$$

Thus by Lemma 2.2, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T(P T)^{n-1} x_{n}-x_{n}\right\|=0 \tag{3.4}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& \left\|I(P I)^{n-1} x_{n}-x_{n}\right\| \\
\leq & \left\|I(P I)^{n-1} x_{n}-I(P I)^{n-1} y_{n}\right\|+\left\|I(P I)^{n-1} y_{n}-x_{n}\right\| \\
\leq & \left(1+r_{n}\right)\left\|x_{n}-y_{n}\right\|+\left\|I(P I)^{n-1} y_{n}-x_{n}\right\| \\
= & \left(1+r_{n}\right)\left\|\beta_{n}\left(x_{n}-T(P T)^{n-1} x_{n}\right)\right\|+\left\|I(P I)^{n-1} y_{n}-x_{n}\right\| \\
\leq & \beta_{n}\left(1+r_{n}\right)\left\|x_{n}-T(P T)^{n-1} x_{n}\right\|+\left\|I(P I)^{n-1} y_{n}-x_{n}\right\| .
\end{aligned}
$$

Thus by (3.3) and (3.4), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I(P I)^{n-1} x_{n}-x_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

Further, it follows from (3.4) and (3.5) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I(P I)^{n-1} x_{n}-T(P T)^{n-1} x_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

In addition, $\left\|x_{n+1}-x_{n}\right\| \leq \alpha_{n}\left\|I(P I)^{n-1} y_{n}-x_{n}\right\|$, by (3.3)

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Since $\left\|I(P I)^{n-1} y_{n}-x_{n+1}\right\| \leq\left\|I(P I)^{n-1} y_{n}-x_{n}\right\|+\left\|x_{n}-x_{n+1}\right\|$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I(P I)^{n-1} y_{n}-x_{n+1}\right\|=0 \tag{3.8}
\end{equation*}
$$

So,

$$
\begin{aligned}
\left\|x_{n+1}-y_{n}\right\| & \leq\left\|x_{n+1}-I(P I)^{n-1} y_{n}\right\|+\left\|I(P I)^{n-1} y_{n}-y_{n}\right\| \\
& \leq\left\|x_{n+1}-I(P I)^{n-1} y_{n}\right\|+\left\|y_{n}-x_{n}\right\|+\left\|x_{n}-I(P I)^{n-1} y_{n}\right\| \\
& \leq\left\|x_{n+1}-I(P I)^{n-1} y_{n}\right\|+\beta_{n}\left\|T(P T)^{n-1} x_{n}-x_{n}\right\|+\left\|x_{n}-I(P I)^{n-1} y_{n}\right\| .
\end{aligned}
$$

Using (3.3), (3.4) and (3.8), we obtain

$$
\begin{gather*}
\quad \lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=0 . \tag{3.9}\\
\left\|x_{n}-I x_{n}\right\|=\left\|x_{n}-I(P I)^{n-1} x_{n}+I(P I)^{n-1} x_{n}-I(P I)^{n-1} y_{n-1}+I(P I)^{n-1} y_{n-1}-I x_{n}\right\| \\
\leq\left\|x_{n}-I(P I)^{n-1} x_{n}\right\|\left\|I(P I)^{n-1} x_{n}-I(P I)^{n-1} y_{n-1}\right\|+\left\|I(P I)^{n-1} y_{n-1}-I x_{n}\right\| \\
\leq\left\|x_{n}-I(P I)^{n-1} x_{n}\right\|+\left(1+r_{n}\right)\left\|x_{n}-y_{n-1}\right\|+\left(1+r_{1}\left\|I(P I)^{n-2} y_{n-1}-x_{n}\right\| .\right.
\end{gather*}
$$

It follows from (3.5), (3.8) and (3.9), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Since T is uniformly L-Lipschitzian for some $L>0$,

$$
\begin{aligned}
\left\|T x_{n}-x_{n}\right\| \leq & \left\|T(P T)^{n-1} x_{n}-x_{n}\right\|+\left\|T(P T)^{n-1} x_{n}-T x_{n}\right\| \\
\leq & \left\|T(P T)^{n-1} x_{n}-x_{n}\right\|+L\left\|T(P T)^{n-2} x_{n}-x_{n}\right\| \\
\leq & \left\|T(P T)^{n-1} x_{n}-x_{n}\right\|+L\left\|T(P T)^{n-2} x_{n}-T(P T)^{n-2} x_{n-1}\right\| \\
& +L\left\|T(P T)^{n-2} x_{n-1}-x_{n-1}\right\|+L\left\|x_{n-1}-x_{n}\right\| \\
\leq & \left\|T(P T)^{n-1} x_{n}-x_{n}\right\|+L^{2}\left\|x_{n}-x_{n-1}\right\|+\left(L+L^{2}\right)\left\|T(P T)^{n-2} x_{n-1}-x_{n-1}\right\| .
\end{aligned}
$$

By (3.4) and (3.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0 \tag{3.11}
\end{equation*}
$$

This completes the proof.
Theorem 3.3. Let X be a uniformly convex Banach space and $C, T, I,\left\{x_{n}\right\}$ be same as in Lemma 3.2. If T, I satisfy the Condition (A'), then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of T and I.

Proof. By Lemma 3.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=c \geq 0$ exists for all $x^{*} \in F_{1}$. If $c=0$, there is nothing to prove.

Suppose that $c>0$, by Lemma 3.2, we have

$$
\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|I x_{n}-x_{n}\right\|=0
$$

In the proof of Lemma 3.1, we obtain

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq\left(1+r_{n}\right)^{2}\left(1+s_{n}\right)\left\|x_{n}-x^{*}\right\| . \tag{3.12}
\end{equation*}
$$

From (3.12), we have $0 \leq d\left(x_{n+1}, F_{1}\right) \leq d\left(x_{n}, F_{1}\right)$. Then, $\lim _{n \rightarrow \infty} d\left(x_{n}, F_{1}\right)$ exists. Now condition (A') guarantees that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F_{1}\right)\right)=0 \tag{3.13}
\end{equation*}
$$

Since f is a nondecreasing function and $f(0)=0$, it follows that $\lim _{n \rightarrow \infty} d\left(x_{n}, F_{1}\right)=$ 0 .

For any $\varepsilon>0$, since $\lim _{n \rightarrow \infty} d\left(x_{n}, F_{1}\right)=0$, there exists natural number N_{1} such that when $n \geq N_{1}, d\left(x_{n}, F_{1}\right)<\frac{\varepsilon}{3}$. Thus, there exists $x^{\prime *} \in F_{1}$ such that for above ε there exists positive integer $N_{2} \geq N_{1}$ such that as $n \geq N_{2},\left\|x_{n}-x^{\prime *}\right\|<\frac{\varepsilon}{2}$. Now for arbitrary $n, m \geq N_{2}$, consider $\left\|x_{n}-x_{m}\right\| \leq$ $\left\|x_{n}-x^{\prime *}\right\|+\left\|x_{m}-x^{\prime *}\right\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. This implies $\left\{x_{n}\right\}$ is a cauchy sequence.

Let $x_{n} \rightarrow x$. Now $\lim _{n \rightarrow \infty} d\left(x_{n}, F_{1}\right)=0$ gives that $d\left(x, F_{1}\right)=0$. By the routine method we can easily show that F_{1} is closed, therefore $x \in F_{1}$. The proof is completed.

Theorem 3.4. Let $X, C, T, I,\left\{x_{n}\right\}$ be same as in Lemma 3.2. If $F_{1} \neq \emptyset$ and I is a semi-compact mapping, then $\left\{x_{n}\right\}$ converges to a common fixed point of T and I.

Proof. Since I is a semi-compact mapping, $\left\{x_{n}\right\}$ is bounded and $\lim _{n \rightarrow \infty} \| x_{n}-$ $I x_{n} \|=0$, then there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges to x^{*}. It follows from Lemma 2.3, $x^{*} \in F(I)$. Further, $\| T x_{n_{j}}-$ $x^{*}\|\leq\| T x_{n_{j}}-x_{n_{j}}\|+\| x_{n_{j}}-I x_{n_{j}}\|+\| I x_{n_{j}}-I x^{*}\|+\| I x^{*}-x^{*} \|$. Thus, $\lim _{n \rightarrow \infty}\left\|T x_{n_{j}}-x^{*}\right\|=0$. This implies that $\left\{T x_{n_{j}}\right\}$ converges strongly to x^{*}. Since T is uniformly L-Lipschitzian for some $L>0, T x^{*}=x^{*}$. Since the subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{j}}\right\}$ converges to x^{*} and $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|$ exists, then $\left\{x_{n}\right\}$ converges strongly to the common fixed point $x^{*} \in F(T) \cap F(I)$. The proof is completed.

Theorem 3.5. Let $X, C, T, I,\left\{x_{n}\right\}$ be same as in Lemma 3.2. If $F_{1} \neq \emptyset, I$ is completely continuous mapping, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of T and I.

Proof. By Lemma 3.1, $\left\{x_{n}\right\}$ is bounded. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-I x_{n}\right\|=$ $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$, then $\left\{T x_{n}\right\}$ and $\left\{I x_{n}\right\}$ are bounded. Since I is completely continuous, that exists subsequence $\left\{I x_{n_{j}}\right\}$ of $\left\{I x_{n}\right\}$ such that $\left\{I x_{n_{j}}\right\} \rightarrow p$ as $j \rightarrow \infty$. Thus, we have $\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-T x_{n_{j}}\right\|=\lim _{j \rightarrow \infty} \| x_{n_{j}}-$ $I x_{n_{j}} \|=0$. So, by the continuity of I and Lemma 2.3, we have $\lim _{j \rightarrow \infty} \| x_{n_{j}}-$ $p \|=0, p \in F(I)$. And $\left\|T x_{n_{j}}-p\right\| \leq\left\|T x_{n_{j}}-x_{n_{j}}\right\|+\left\|x_{n_{j}}-I x_{n_{j}}\right\|+\| I x_{n_{j}}-$ $I p\|+\| I p-p \|$. Thus, $\lim _{n \rightarrow \infty}\left\|T x_{n_{j}}-p\right\|=0$. This implies that $\left\{T x_{n_{j}}\right\}$ converges strongly to p. Since T is continuous, $T p=p$. Further, from Lemma 3.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Thus $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=0$. The proof is completed.

References

[1] S.S. Chang, Y.J. Cho, H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., 38 (2001), 1245-1260.
[2] C.E. Chidume, E.U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 280 (2003), 364-374.
[3] M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl., 207 (1997), 96-103.
[4] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
[5] Hafiz Fukhar-ud-din, S.H. Khan, Convergence of iterates w ith errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl., 328 (2007), 821-829.
[6] J.S. Jung, S.S. Kim, Strong convergence theorems for nonexpansive nonself mappings in Banach spaces, Nonlinear Anal. 3(33) (1998), 321-329.
[7] S.H. Khan, H. Fukhar-ud-din, Weak and strong convergenc of a scheme with errors for two nonexpansive mappings, Nonlinear Anal., 61 (2005), 12951301.
[8] M. Maiti, M.K. Gosh, Approximating fixed points by Ishikawa iterates,

Bull. Austral. Math. Soc. 40, (1989), 113-117.
[9] M.O. Osilike, A. Udomene, Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings, J. Math. Anal. Appl., 256 (2001), 431-445.
[10] B.E. Rhoades and Seyit Temir, Convergence theorems for I-nonexpansive mappings, International Journal of Mathematics and Mathematical Sciences, 2006, 1-4.
[11] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1991), 407-413.
[12] H.F. Senter, W.G. Dotson, Approximating fixed points of nonexpansie mappings, Proc. Amer. Math. Soc., 44(2), (1974), 375-380.
[13] N. Shahzad, Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear Anal., 61 (2005), 1031-1039.
[14] N. Shahzad, H. Zegeye, Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Applied Mathematics and Computation, in press.
[15] W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers, Inc., Yokohama, 2000.
[16] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308.
[17] S. Temir, O. Gul, Convergence theorem for I-asymptotically nonexpansive mapping in Hilbert sapce, J. Math. Anal. Appl. in press.
[18] L. Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math Anal. Appl., 323 (2006), 550-557.
[19] H.K. Xu, X.M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Anal. 2(24) (1995), 223-228.

Received: October 4, 2007

[^0]: ${ }^{1}$ This work was supported by The Research Foundation of Yunnan Educational Commission (07c10208).

