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Abstract

In this paper, we introduce the iterative schemes by the iterative
method for finding a common element of the set of an equilibrium prob-
lem and the set of fixed points of countable nonexpansive mapping in a
Hilbert space. These result extended and improved the corresponding
result of Plubtieng and Panpaeng [ A general iterative method for equi-
librium problems and fixed point problems in Hilbert spaces, J. Math.
Anal. Appl. 336 (2007) 455-469], and many others.
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1 Introduction

Let H be a real Hilbert space and let C' be a nonempty closed convex subset
of H. Let F be a bifunction of C' x C' into R, where R is the real numbers.
The equilibrium problem for F': C' x ' — R is to find x € C such that

F(z,y) >0 forall yeC. (1)

The set of solutions of (1) is denoted by EP(F). Given a mapping 7' : C' — H,
let F(z,y) = (Tz,y — z) for all z,y € C. Then, z € EP(F) if and only if
(Tz,y — z) > 0 for all y € C. Numerous problems in physics, optimiza-
tion, and economics reduce to find a solution of (1). In 1997, Combettes and
Hirstoaga [3] introduced an iterative scheme of finding the best approximation
to the innitial data when E'P(F") is nonempty and proved a strong convergence
theorem.
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Let A be a strongly positive bounded linear operator on H: that is, there
is a constant ¥ > 0 with property

(Az,x) > 7||z|* forall » € H. (2)

A typical problem is to minimize a quadratic function over the set of the fixed
points of a nonexpansive mapping on a real Hilbert space H:

1
{Enelg§<Al',I> - <[L’,b>, (3>
where C' is the fixed point set of a nonexpansive mapping 7" on H and b is a
given point in H. In 2003, Xu [10] prove that the sequence {z,} defined by

iterative method below, with the initial guess xy € H, chosen arbitrarily:
Tpr1 = (I — a0, AT, + ayu, n >0, (4)

converges strongy to the unique solution of the minimization problem (3) pro-
vided the sequence {«,,} satisfies certain conditions that will be made prccise
in section 3.

On the other hand, Moudafi [4] introduced the viscosity approximation
method for nonexpansive mappings ( see [11] for further develovements in
both Hilbert and Banach spaces). Let f be a contraction on H. Starting with
an arbitrary innitial o € H, define a sequence {x,} recursively by

Tp1 = —on)Txy + onf(x,), n>0, (5)

where {0,} is a sequence in (0,1). It is proved [4, 11] that under certain
appropriate condition imposed on {o,}, the sequence {x,} generated by (5)
strongly converges to the unique solution z* in C' of the variational inequality

(I—-fz*,x—2*) >0, zeC. (6)

Recently, Marino and Xu [5] was combine the iterative method (4) with the vis-
cosity approximation (5) and consider the following general iterative method:

Tnp1 = (I — anA) Ty + oy flan), n 20, (7)

They proved that if the sequence {a,} of parameters satisfies appropriate
conditions, then the sequence {z,} generated by (7) converges strongly to the
unique solution of the variational inequality

(A=~fla*, e —2*) >0, ze€C. (8)

which is the optimality condition for the minimization problem

1;%%1 %(Ax, x) — h(z), 9)
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where h is a potential function for vf (i.e., h'(z) = vf(z) for = € H).

In 2007, S. Takahashi and W. Takahashi [9] introduced an iterative scheme
by the viscosity approximation method for finding a common element of the
set of solution (1) and the set of fixed points of a nonexpansive mapping in
Hilbert space. Let S : C' — H be a nonexpansive mapping. Starting with
arbitrary initial 1 € H, define sequences {z,} and {u,} recursively by

F(un,y) + %(y — Up, Uy — Ty) >0, Vv eC,
Tpt1 = anf(z,) + (1 — a,)Su,, Vn e N.

(10)

They proved that under certain appropriate conditions imposed on {«,}
and {r,}, the sequences {x,} and {u, } converge strongly to z € F(S)NEP(F),
where 2z = Pps)nepr)f(2).

Moreover, S. Plubtieng and R. Punpaeng [7] introduced an iterative scheme
by the general iterative method for finding a common element of the set of
solution (1) and the set of fixed points of a nonexpansive mapping in Hilbert
space.

Let S : H — H be a nonexpansive mapping. starting with an arbitrary
x1 € H, define sequence {z,} and {u,} by

T

F(unay)+%<y_un7un_xn> 207 VUGC)
Tpt+1 = Oén’yf(xn> + (I - O‘nA)Sum Vn € N.

(11)
They proved that if the sequence {a,} and {r,} of parameters satisfies

appropriate conditions, then {z,} generate by (11) converges strongly to the
unique solution of variational inequality

(A=~f)z,o—2) >0, Vxe F(S)NEP(F), (12)

which is the optimality condition for the minimization problem

) 1
min —

2€F(S)NEP(F) 2<Ax,w> —{@.0), (13)

where h is a potential function for ~f.

In this paper, motivated S. Takahashi and W. Takahashi [9] and S. Plub-
tieng and R. Punpaeng [7], we introduce an iterative scheme by the general
iterative method for finding a common element of the set of solution (1) and
the set of fixed points of a nonexpansive mapping in Hilbert space. Let {T,,}5°,
be family of nonexpansive mapping on H, starting with an arbitrary z; € H,
define sequence {z,} and {u,} by
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Tn

Flun,y) + 2y — tp, up — ) >0, Vy € H
Tnr1 = QY f(2n) + Buxn + (1 = )] — 0, A)Thu,, Vn € N.

(14)

We will prove in section 3 that if the sequences {a,, }, {5,} and {r,} of pa-
rameters satisfies appropriate conditions, then {z,,} generate by (14) converges
strongly to the unique solution of variational inequality

(A=~f)z,z —2) >0, Vxe F(S)NEP(F), (15)
which is the optimality condition for the minimization problem
1
min  —(Az,x) — (x,b), (16)

z€F(S)NEP(F) 2

where h is a potential function for v f.

2 Preliminary Notes

In this section, we collect some lemmas which will be used in the proof for the
main result in next section.

Lemma 2.1 [1] Let X be a real uniformly smooth Banach space and let
J : X — 2% be the normalized duality mapping. Then for any x,y € X we
have

lz +yl* < llel* +2(y,5), Vi€ J(z+y).

Lemma 2.2 [11] Let {a,} be a sequence of nonnegative real numbers, sat-
1sfying the property,

Ap+1 S (1 - 7n)an + bna n 2 07

where {v,} C (0,1), and {b,} is a sequence in R such that:
Z) Z?io:l’yn = 00,
i) lim sup,,_, :—: <0 or 392, |b,| < 0.

Then lim,,_, a,, = 0.

Lemma 2.3 [1] Suppose that ¥5°, sup{||Ths1z — Thz|| : z € C} < oc.
Then, for each y € C', converges strongly to some point of C. Moreover, let T
be a mapping of C' into itself defined by

Ty = JLIEOT"‘U for ally € C.

Then lim,, o, sup{||Tz — T,.z|| : z € C} = 0.
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Lemma 2.4 [8] Let {x,} and {y,} be bounded sequences in a Banach space
X and let{f3,} be a sequence in [0, 1] with 0 < liminf, . 5, < limsup,,_ . G, <
1. Suppose xy11 = (1=LFn)Yn+Bnxn for all integers n > 0 and lim sup,,_, o (||Yn+1—
Ynll = 1Zns1 — xal]) < 0. Then, lim, o [|yn — 0| = 0.

Lemma 2.5 There holds the identity in a Hilbert space H :
Az + (1 = Myll* = Allz|* + (1 = Myl = M1 = N[z -y
for all z,y € H and X € [0, 1].

Lemma 2.6 Let C' be a closed convex subset of a real Hilbert space H.
Given x € H and y € C. Then y = Pox if and only if there holds the
mequality

(x —y,y—2) >0, VzeCl.

Lemma 2.7 [5] Let H be a Hilbert space, C' be a nonempty closed convex
subset of H, and f : H — H be a contraction with coefficient 0 < a < 1, and
A be a strongly positive linear bounded operator with coefficient ¥ > 0. Then,
for0 <y < g,

(@ =y, (A="flr = A(A=1f)y) > 7 =)z —yl?, z.yeH
That is, A — v f is strongly monotone with coefficient 7 — ya.

Lemma 2.8 [5] Assume A is a strongly positive linear bounded operator
on a Hilbert space H with coefficient ¥ > 0 and 0 < p < ||A||~'. Then
11— pAl <1 - p7.

For solving the equilibrium problem for a bifunction F': C' x C' — R, let us
assume that F satisfies the following condition:

(Al) F(z,z) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each x,y € C,

lir% Ftz+ (1 —t)x,y) < F(x,y);
(A4) for each x € C,y — F(z,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [2].

Lemma 2.9 [2] Let C be a nonempty closed convex subset of H and let F
be a bifunction of C x C' into R satisfying (A1)-(A4). Let r >0 and x € H.
Then, there exists z € C' such that

1
Fiz,y)+—-(y—z,2z—2)>0 forallyeC.
r
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The following lemma was also given in [3].

Lemma 2.10 /3] Assume that F : C x C — R satisfying (A1)-(A4). For
r >0 and x € H, define a mapping

1
Tr(x):{zeC’:F(z,y)—l—;(y—z,z—x}ZO, VyEC’}

for all z € H. Then, the following hold:

1. T, is single-valued;

2. T, is firmly nonexpansive, i. e., |T,x — Ty||* < (Thx — Ty, x — y) for
all x,y € H;

3. F(T,) = EP(F);

4. EP(F) is closed and convex.

3 Main Results

In this section, we prove strong convergence theorems of sequence generate by
(14) for countable nonexpansive mappings in Hilbert spaces.

Lemma 3.1 [7] Let H be a real Hilbert space. Let F be a bifunction from
H x H — R satisfying (A1) — (A4) and let S be a nonexpansive mapping on
H such that F(T)NEP(F) # 0. Let f be a contraction of H into itself with
coefficient a € (0, 1), and let A a strongly positive bounded linear operator with
coefficient 7 > 0 and 0 < v < 2. Let {x,} and {u,} be sequence generated by
r1 € C and

Ty = apyf(x,) + (I — a,A)Suy,,
F(un,y) + 2y — tn, un — ) >0, WYy € C,

Tn

(17)

for all n € N, where u,, = T, x,,{a,} C [0,1] and {r,} C (0,00) satisfy
lim,, o a, = 0, liminf,, v, > 0. Then, {z,} and {u,} converge strongly to
z, where 2 = Ppirynppr) (I — A+ f) is the unique solution of the variational
inequalities (12).

Theorem 3.2 Let H be a real Hilbert space, {T,}22, be a family of non-
expansive mappings on H with 3% sup{||Ty+12 — Thz|| : 2 € B} < 00, such
that the common fized point set F(T) = N, F(T,) # 0. Let F be a bifunction
from H x H — R satisfying (A1) — (A4) and F(T)NEP(F) # (. Let f be
a contraction of H into itself with coefficient o € (0, 1), and let A a strongly
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positive bounded linear operator with coefficient 7 > 0 and 0 < v < g Let
{z,} and {u,} be sequence generated by xy € H and
Tn+l = an’Yf(xn) + ﬁnxn + ((1 - ﬁn) )T Un,
(18)

for all n € N, where u,, = T, x,,{an}, {6} C [0,1] and {r,} C (0,00)
satisfy lim, o o, = 0,522 v, = 00, X2 |1 — ap| < 00, lim, o 3, = 0,
Y2 |Bns1 — Bl < oo, liminf, .oy, > 0 and X221 |Vns1 — Y| < 00. Then
{xn} and {u,} converge strongly to z, where 2 = Ppirynppr)(I — A+ f) is
the unique solution of the variational inequalities (12).

Proof. Note that from the condition lim,,_, ., a;,, = 0, we may assume, without
loss of generality, that o, < (1 — 3,)||A||”'. Since A is a strongly positive
bounded linear operator on H, then

[A[] = sup{[(Az, z)| : = € H, [lx]| = 1}.

Observe that

<((1 - BTL) — Qn )33',$> =1- ﬂn - an(Aw,x>

>0,
that is to say (1 — (3,)I — «, A is positive. It follows that
11 = Bu)I — o All = sup{(((1 = Bu)] — anA)z,x) s & € H, ||| =1}
= sup{l — G, — an(Ax,x> cx € H,||z|]| =1}
<1-—0,—a,7.
We now observe that {z,} is bounded. Indeed pick any p € F(T)NEP(F).
Then from w,, = T, x,, we have ||u, — p|| = || T, 20 — T,p|| < ||z, — pl| for all

n € N. Thus, we have
|Znt1 = pll = llany f(20) + Ban + (1 = Bu)] — anA)Tu, — p|
= Han(’}/f(xn) _Ap)“’ﬂn(xn p) ((1 _Bn)[_&nA)(Tnun_p)”
< Haan(xn)_ApH +5n||xn_p|| + H((l_ﬁn)l_anA)HHTnun_pH
< lanvf(zn) =vf(p) +7f(p) — Apll + Bullzn — ||
+(1 = B — an¥)||lJun — pll
< apya|z, — pll + anllvf(p) — Apll + Bullzn — pll
+(1 — By — O‘TLW)H”Trnxn - pH
< apyal|z, — pll + anllvf(p) — Apll + Bullzn — pl|
+(1 - 671 - an7)||||xn - p”
= (1 = an(7 —va)|lzn — pll + anllvf(p) — Apl|

= (1 — an(F — 7)) ||Tn — p|| + an(F — var) L@=A2]
F—ra)
It follows from induction that
— A
. — pll < max{|lz; — lvf(p) = Apll, >0
| Pl {lz1 = pll, —=—"——1},

(7 — ya)
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and hence {z,} is bounded. We also obtain that {u,}, {f(z,)} and {T,x,}
are bounded. Next, we show that ||z, — z,| — 0. We have
|Znt1 —2ull = lnyf (20) + Bnzn + (1= Bo) ] — 0y A) Tty — (@17 f (T0-1)
+Bn1%n-1 + (1 = Booi)] — a1 A) T quy 1) ||
< Mlanyf(@n) — anavf(@n-1)|| + (1 = B — ,A)Truy,
—((1 = L) — an 1 A)Toatn—1) || + | Bun — Bu1@n1]]
< lanvf(zn) — anyf(zn-1) + 0y f (@n-1) 17 f (@n-1)
+||6nxn - ﬁnl‘n—l + ﬁnl‘n—l - Bn—lxn—IH
+((1 = ) — a A)Thuy — (1 = Bue1) — an—1A)Thuy,)
H((1=Pp-1) L —an_1A)Thu,)— (1= Gn1) I =1 A) T —1tp—1) ||
< apva|z, — ol +vlew — ana|[| f(@a-1) | 4 Bullzn — 2ol
+18n = Bualllznll + (1= Ba)l = an Al Toun — Toun||
(L = B)] = anA) = (1 = Bui)] — ana ATt |
(X = Ba-t)I — an All[| Torn—1 — T 1up—a|
< apyallzn, — zpal| +Y]an — a1 |[ K+ Ballwn — 2|
80 = Bp-1| K + [Bo1 = Bul K + (1 = B — an) [[tin — tn—1]]
Hap—1 — ap| K+ (1= Boot — an 1Y) [ Tnttn-1 — Tr—1tpn_1]|

(19)
where
K = sup{|| f(z)[| + [[zall + [ Tounll + [ATun || : n € N} < o0
On the other hand, we note that
1
F(unay)+_<y_unuun_-rn> 207 vyEHa (20>
Tn
and )
F(tny1,y) + " (Y = Ung1, Ups1 — Tny1) >0, Vy € H. (21)
n+1

Putting y = w41 in (20) and y = u,, in (21), we have
F(tn, Uns1) 4 7= (Ung1 — Un, Un — 2,) > 0 and
F(unJrl: un) + T’n1+1 <un — Up+1, Up+1 — xn+1> 2 O

and hence
<un+1 — Up,y Up — Up+1 + Up+1 — Tp — 7“:11 (un+1 - l‘n—l—l) Z O

Since lim inf,_, 7, > 0, we assume that there exists a real number b such that

r, > b >0 for all n € N. Thus, we have
Hun+1 - UnH2 < <un+1 — Up, Tpt1 — Tp + (1 - r:il)(un+l - xn+1)>

< untr = wnl{lJenss = 2ol + 11 = 2 fluntn = 2o}

and hence
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T'n
Tn+1

[untr = tnll < f[@nn = all + 1 = 2 lungy = Znga|

1
< Hxn—&-l - xn” + E|Tn+1 - Tn|L (22>

where L = sup{||tns1 — zny1]| : n € N}
From (19) we have
|Zni1 — Zall < anyal|z, — 20| +7llan — @ | K
+Ballzn — Tno1|| + 180 — Buoa| K + |81 — Bul K
FHon—1 — | K + (1 = By — 1) | Ttt—1 — Tt |
+(1 = B — {70 — Tpa || + %|7ﬂn — Tnal}-
= (1 = a7+ any)llzn — 2|l + (14 7) | — ap|
+2|5n - ﬁn—lDK + (1 - 571—1 - an—17)||Tnun—1 - Tn—lun—ln
—1—175"4;0‘"7\7“" — Tp|L
< (I—an(=y)[|[2n—2n-1 [|+((1+7) |y —tn-1]+2[Bn—Bn1[) K
+(1=Bn1 —ana)sup{||Th1z—Tyz|| : 2 € B} + %\rn — Tt
= (1= an(¥ —v))l|wn — Tna|| + ba
where b, := ((14+7)|an—n_1|+2|8n—LFn-1]) K+(1—Bn-1—n_17) sup{ || Tr112—

T.z|| : = € B} + %|r, — rp_q hence £22,]b,| < oco. By assumptions we
have lim, o || Zpy1 — @n|| = 0. From (22) and |r, — r,—1| — 0, we have
limy, oo [|Un+1 — || = 0.

It follows that
|20 — Totn || < 120 — Toatna || + [ To1tn—1 — Toun|
= Han—l'Vf(xn—l) + ﬁn—ll'n—l + ((1 - Bn—l)] - an—lA)Tn—lun—l
—Tnrtn—1| + Jun—1 — un|
< an|vf(zno1) = AT gt | + BuallTn-1 — Tartn ||
+[ttn—1 — |-
From lim,, ., a;, = 0,lim,, . 3, = 0, we have lim,, ., ||z, — Thu,|| = 0. For
p € F(T)N EP(F), we have
[tn = plI* = T 00 — T, pl?
(T, xp — T, p,xp — D)
(un = py 20 —p) = (1w = pI* + llzn — plI* = 20 — unll?)

I IA

and hence
[tn = pl|* < Nl2n = plI* = 20 — unl*. (23)

Therefore, we have
12011 = plI* = lanyf(20) + Bawn + (1 = )] — anA)Tyuy, — plf®

= (1= B )] =y A)(Tun —p) +an (v f (20) —Ap)+ﬁn(1‘n—p)|!2

< (1= BT — anAlP|lug — pl* + 200 (v f (1) — Ap, 241 — p)
+206,(xy — P, Tpi1 — P)

< (1= B = @7 lun = plI* + 200 (v f(20) = 7 (P)s Tnt1 — p)
20, (7 f(p) — Ap, ng1 — p) + 20ullzn — pll||201 — pll

< (1 - ﬁn - an7)2’|un - p”2 + QOznOz’nyn - p””‘rn-&-l - pH
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+2an |7 f(p) = Aplll|l#nta — pll + 20u]l2n — pllllns = pll
< (1= B0 — an¥)*{llzn = plI* = ll2n — uall*}
+2ana|[zn = pllllzns — pll + 2aa][7f (p) = Aplll[2nsa = pll
+20n[lzn = plll[ens = pl
< (1 =207 + (an¥)?)|zn — pl* = (1 = @) [l — unl|*}
+2ana|[zn = pllllzns — pll + 2aa][vf (p) = Aplll[2ns1 = pll
+26,llzn — pll||2n1 — pll
< lzn = pll* + cn¥?llan = plI* = (1 — an?)?||zn — ua|*}
+2anar|len = plllleny — pll + 20nl7f (p) = Aplllznsa — 2l
+26,llzn — pll||2n1 — pll
and hence
(1= )l = unll* < llzn = pl* = llznsr — plI* + 007?20 — pl®
+2anay[|zn = pll|zner — pll + 2007 f (p) — Aplll|2ns1 — pll
+2Bull2n — plll|l2nt1 — pl
< wn = zngal{llzn = pll + 2n4a — plI} + 07?20 — plf?
+2anar|len = pllllny — pll + 20nl7f (p) = Aplllznsa — 2l
+2Bnllxn — pllllznt1 — pl-
Since lim, .o ||2n — Tpi1|| = 0,lim, o @, = 0 and lim,, ., B, = 0, we have
|zn, — un|| — 0. Note that
[Tt — un|| < [|Thtn — x| + [lzn — ]
it follows that ||7,,u, — uy,|| — 0. Since ||Tu, — uy|| < || Tun — Totin || + || Tnttn —
Tl + ||zn — un|| and Lemma 2.3, it follows that || 7w, — u,| — 0. Next, we
show that
limsup((A —vf)z,z — x,) <0, (24)

n—oo

where z € F(T) N EP(F) is a unique solution of the variational inequality
(12). We can choose {u,,} of {u,} such that

ZEI&((A —vf)z, 2z — xn,) = limsup((A — vf)z, 2z — x,). (25)

n—oo

Since {uy, } is bounded, without loss of generality, we can assume that u,, — w.
We show that w € EP(F) . It follows by (18) and (A2) that

1
— (Y — Up, Uy, — ) > Fy, uy)
T'n
and hence
Up, — Tn,
(Y — up;, ———) = Fy, un,).

Since =“—" — 0 and u,, — w, it follows by (A4) that 0 > F(y,w) for all
y € H. For t € (0,1] and y € H let y, = ty + (1 — t)w. Since y,w € H, we
have y; € H and hence F'(y;, w) < 0. So from (Al) and (A4) we have

0= F(ye,ye) < tF(ye,y) + (1= ) F(ye, w)
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S tF(yt: y)
and hence 0 < F(y;,y). From (A3), we have 0 < F(w,y) for all y € H and
hence w € EP(F).
We shall show that w € F(T'). Assume that w # F(T). Since u,, — w
and w # Tw, it follows by Opial’s condition (see [6]) that
liminf; o ||u,, — w|| < liminf, o ||u,, — Tw||
< lminf; oo (||tn, — T, || + || Tun, — Twl|)
< liminf;_ o [Jun, —w]].
A contradiction. So, we get w € F(T). Therefore w € F(T) N EP(F). From
Lemma 3.1, we have z € F(T) N EP(F) is unique solution of variational
inequality (12), it follows that

limsup<(A—”yf)Z,z—xn> = ZEIEO«A_P”C)Z)Z_JZ.M) = <(A—7f)z,z—w> <0.

From ||T,u, — x,|| — 0 as n — oo and equation (26), it follows that
limsup,, . ((A—~f)z, 2z — Thu,) = limsup,_, (A —7vf)z,z — x,)
+limsup((A — vf)z, z, — Thu,) < 0. (27)

n—oo

Finally we prove that z,, — 2z as n — oo. Since and bounded of {z,}, {u,} we
set

M > |7 f(@n) = 2I* + | Ton — 2llll7f (22) — Az]

From ||u, — z|| = | T;,zn — Tr, 2|| < ||xn — z]|, it follows that
2041 = 2] = llany f () + Bpwn + (1 = Ba) ] — anA)Thu, — 2|2
= (1 = B = an A)(Totn — 2) + Bulwn — 2) + an(vf(z0) — 2)|I°
= (1 = BT = an A)(Ton — 2) + Bul@n — 2) |1 + ap |17 f (20) — 2|2
+2(((1 = Bu)I — an A)(Thun — 2) + Bu(n — 2), an(Vf(7n) — 2))

> [(1 = Bn — an¥)||un — 2[| + Bullzn — ZH]Q + O‘rQLM
+26n04n<$n -z, P)/f(xn) - AZ) + 2(1 - ﬂn)Oén<Tnun -z P)/f(xn) - AZ)
_2ai<A(Tnun - 2)7 Vf(xn) - AZ>

< [(1=Bu—an) a2+ Bl 20 —2[* +28pcn(n—2, 7 f (£) =7 (2))
+ar M+ 2(1 = Bu)an(Toun — 2,7f (xn) — 7f(2))
+2(1=B,)an (T —2,7f(2) — Az) _205721 (A(Thun—2), 7 f(x,) — Az)

< (1= a7 f|lwn — 2I1° + 2B, cnye|2, — 2|
2000 (tn — 2,7f(2) — Az) + ol M
+2(1 = Bo)anl| Toun — 2|7 f (20) — v f ()]
+2(1 = Bp)on(Toun — 2,7f(2) — Az) + 2a; M

< (1= a7 f|lwn — 2I° + 2B0cnye|2, — 2|
+2(1 = Bo)apyal|z, — z||* + 322 M + 28,an (1, — 2,7 f(2) — Az)
+2(1 — Bo)an(Thu, — 2,vf(2) — Az)

<1 =27 - ay)a)llzn — 2| + an(26n(zn — 2,7 f(2) — AZ)
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+2(1 — Bo)(Thun — z,vf(2) — Az) + 3a,, M).
=t (L= )llzn — 2[* + 6n

where v, = 2(F—a7)a,, and 6,, = @, (26, (X —2,7f(2) — Az)+2(1— B, ) (T u,—
z,7f(2) — Az) + 3a,, M ). From ¥2° v, = 00, we have X227, = oo and (35),
(36), we have limsup,,_, fy—jl < 0. Hence, by Lemma 2.2, the sequence {x,}
converge strongly to z. <&

If 6, =0and T, = S for all n € N, in Theorem 3.2 we obtain the following
corollary.

Corollary 3.3 [7] Let H be a real Hilbert space. Let F' be a bifunction from
H x H — R satisfying (A1) — (A4) and let S be a nonexpansive mapping on
H such that F(T) N EP(F) # (. Let f be a contraction of H into itself with
coefficient a € (0, 1), and let A a strongly positive bounded linear operator with
coefficient 7 > 0 and 0 < v < Z. Let {x,} and {u,} be sequence generated by
z1 € H and

F(un,y) + %(y—un,un —x,) >0, Vye H
{ Tnr1 = apyf(zn) + (I — @, A)Suy,

for all n € N, where u,, = T, x,,{a,} C [0,1] and {r,} C (0,00) satisfy

lim,, oo vy = 0,2°° a0, = 00, X222 |1 — @ < 00, liminf, v, > 0 and

Y2 a1 — n| < 0o Then {z,} and {u,} converge strongly to z, where

2 = Pprynppr) (I —A+vf) is the unique solution of the variational inequalities

(12). o

Theorem 3.4 Let H be a real Hilbert space, {T,,}°2, be a family of non-
expansive mappings on H with X0 sup{||Tni12 — Thz|| : 2 € B} < 00, such
that the common fized point set F(T) = N F(T,) # 0. Let F be a bifunction
from H x H — R satisfying (A1) — (A4) and F(T) N EP(F) # (. Let [ be
a contraction of H into itself with coefficient a € (0,1), and let A a strongly
positive bounded linear operator with coefficient 7 > 0 and 0 < v < g Let
{z,} and {u,} be sequence generated by x, € H and

Tn

F(tn,y) + =y — Un, Uy — ) >0, Vy € H

(28)
for alln € N, where u,, = T, xp, {a, }, {Bn} C [0,1] and {r,} C (0,00) satisfy

lim, oo 0, = 0,55° 00, = 00, X0 |1 — | < 00, 0 < liminf, ., 3, <
limsup,, o Bn < 1, 222, |Bns1 — Bl < oo, liminf, ooy, > 0 and 322 |1 —
Yn| < 00. Then {x,} and {u,} converge strongly to z, where 2 = Pprynppr) (I —

A+ ~f) is the unique solution of the variational inequalities (12).
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Proof. In the proof of theorem 3.2 we have, {z,} is bounded. We also
obtain that {u,}, {f(z,)} and {T,z,} are bounded. Next, we show that
|#ns1 — || — 0. Define the sequence z, = 222 (m"H((l{_%n)I*a"A)T"“", such
that x,11 = By + (1 — B4)2n, n > 0. Observe that from the definition of z,

we obtain

ang17f (@nt1)+H((1=Bnt1) I —ant1A) Tng1Uns1  onVSf(@n)+((1=Bn)I—anA)Trun

Fntl T Zn = 1—Bnt1 1=fn
— ant17f(Fnt1) _ onyf(@nt1) anyf(Tnt1) _ onyf(@n) anyf(zn)
1=Bnt1 1=PBnt1 1=Bnt1 1—Bnt1 1—Bn+1
_((1_6n+1)I_an+1A)Tn+1un+l _ ((1_ﬁn+1)1_an+1A)Tn+1un
1*671-!—1 1- 571 1
_‘_((1*ﬂn+1)1*an+1A)Tn+1un _ (=B I—anA)Thnt1un + (A=Bn)[—an A)Th11un
1-Bn+1 1- ﬂn+1 1-Bn+1
1_/371 I_Bn 1_ﬂn+1 1_6n+1
= (41 — ) (Vfﬁ(:jjl)) + 1 aggﬂ (f(@n41) = f(zn))
1 1 ((1 Bn 1)1 On 1A)( nt1Unt1—Th 1un)
"’(an’Yf(xn))(lfgnH T 1.8, ) + . +1 Bn+ 1+ - -

(A=Bni1)I—an41A4)—(A=Br) —anA)Thi1un | (A=Br)l—anA)(Tnt1Un—Tnun)
+ 1- ﬂn«i»l + 1—ﬂn+1

+((1 = B! — an A)Thun (=5 5 i 171571)‘

Thus,
1201 = Znll < laner — an||| Ofassl) | 4 220 (2 10) — f ()|

+Oén7Hf(xn)H‘ 1_@n+1 1= ﬂn’ + Ia- ﬁnfrl/)gi ?n+1A|| HTn+1un+1 - Tn+1unH
+II(1fﬁn+1)I*an+1A) ((A=Bn)I—on A)|[|Tr41Un]] + I1((1—=Bn) I —on A) [T 41 Un—Trntnll

1- ﬂn+1 1_6n+1
+I((1 = Bu)I — AT, Un|||m_ 175n|-
< Jatn i1 —ay| || QLD ||y cane iz, — g (|4 || f () ||| =505

X /87l_+1 1*571-!—1 AT
+( _5711t15:j—‘;t+1’7) Hun+1 _ unH + Hﬂn_ﬁnJrll“Flar{:g:illl” |HH n+1un||
o Lo=Pomeo DU n—Total 4 | (1 — 3, — ) | Tt || =225 55 |

From equation 22 in Theorem 3.2, we have

1
||un+1 - un” < Hxn—&-l - an + E|Tn+1 - Tn|L (29>

it follows that
HZnJrl ZnH < ’an+1 — Ogn‘ H Vfﬁ:::q)) H lg%iz'll Hxn+1 . an
+Oén7"f($n)"‘(1 g:ii) fnﬁn ’ + (- 57{-&-16*?:4—17) (H$n+1 . an

+l!rn+1 — 1| L) + [Be=BrtalFlan= gzﬁmmnnnﬂunu

n—Qn7 Tn Un—Thun _ 1 —Bn

< |an+1_an|‘|(7f(zn+l))“+ e ||In+1_xn||+an7“f(xn)”|%|

Brn+1 1—Bn+1 )
n n Tn
(||$n+1 _ l‘n“ + %|Tn+1 _ rn|L) + [18n—8 +1|+Iaqignﬁ\\\ I T 1wl

1-Bn—an Thi1un—Tnun — n+1—D0On
Ot Tatiall (1 — 3, — ,7) | Tyt | it

it implies that
2n 1 = 20ll = l[Ens1 = 2l < angs — ||| 2

G|+ 22522 s —
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ntl=—Pn 1—Bn—an) | Ta+1tn—Thun
ol o) + Lol i

5|1 — rn]L t [Bn=Bur|tlan= gzﬁmmnnnﬂunu
Since hm Supn—>00 HTTL+1UTL - TnunH = 07 hmnﬂoo ay = O, hmnaoo ‘an+l - C(n’ —

0,limy, oo | Bns1 — Bn] = 0 and lim,, . |71 — 70| = 0, it follows that

lim SUP(”Zn-H - Zn“ - Hxn—&-l - In“) <0. (3())

From 0 < liminf, .. 8, < limsup,_,. 3, < 1 and (30) by Lemma 2.4, we
have
lim ||z, — z,|| = 0. (31)

n—oo
We consider
|Zni1 — 2ull = [[(1 = Bn)2n — Bun — 2|

= (1= Bu)llzn — zal|

then
B i — = B (1= )2 — 2] =0
and from (29), we have lim,, . ||tn+1 — u,|| = 0. Next, we show that ||z, —
up|| — 0 as n — oo. For p € F(T)N EP(F) and from Lemma 2.1, we have
l2ns1 = pII* = llomyf (2n) + Buan + (1 = Bu)] — anA)Tun — pl*
= ||Bn(@n—p) +((1=Bu) ] — O‘nA)(T U —p) +an (7. f (2n) — Apl?
< |Bn(wn —p) + (A = Bu) I — c, A)(Toun — p)|I?

+20‘n<’7f(xn) Py Tnt+1 — p>
= Bullzn = pl* + (1 = Bl ot — plI? = Bu(1 = Bu) I Tnttn, — |2
200 (7 f (2n) = P, Tngr — p)
< Bullzn — p||2 + (1 = Bo) |t — p”2 — Bu(1 = Bo)|| Trun — an?
+2a,| f(zn) = plll|zn+1 — 1l
< Ballzn = plI* + (1 = Ba)(lzn = plI* = llzn — uall?)
—Bn(1 = B Trttr, — 0 ||? + 200, K
where M = || f(z,) — pl|||zns1 — p||- Then,
(1= Bu)l|l7n — unH2 < Bullzn _pH2 + (1 = Bp) ||z _pH2 — |70 _pH2
—Bn(1 = B Tnttr, — 2 ||* + 200, K
<@ = pI” = |#0s1 = plI* + 20, K
= ([lzn = pll = [[#n1 = P (lzn = pll + |T041 = pll) + 200 K
< lzn = znal[([[2n = pll + |01 = pll) + 200 K
— 0 as n — oo.
Hence lim,, . ||z, — u,|| = 0. Next, we show that lim,, .. ||T,u, — z,|| = 0.
Since
[Tt — x| < [|Totn = pga || 4 |21 — @
= |l f(@n) + Butn + (1 = Bo)I — aA)Tun + Touy ||
HlZns1 — ]
< anllvf(@n) — ATpun|| + Ballzn — Tattnl| + (|Tng1 — 24l
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it follows that
(1= Bl Toun — || < anllvf(2n) — ATyun || + |01 — 2al|-

Since {x, } and {u,} are bounded, lim,, o ||Zp+1—2,| = 0 and lim,, .., o, = 0,
thus
i (| Tuy — 2| = 0. (32)

Since || Ty — tn|| < || Thttn — 0| + |20 — uy]|, it follows that
(| Tup — u || = 0. (33)

Since [|[Tu, — up|| < ||Tup — Totin|| + | Tnttn, — wy]|, from (32) and Lemma 2.3,
we have
lim || Tu, — u,|| = 0. (34)

By argument in the proved of Theorem 3.2, we have

limsup((A —~f)z,z —x,) <0, forall z€ F(T)N EP(F) (35)

n—oo

and

limsup((A —vf)z, 2 — Thu,) <0 forall z € F(T)N EP(F). (36)
Finally we prove that z, — 2z as n — o0o. From Theorem 3.2 we can reduced
that

lzn = 2l < (1= 7a)llzn — 2[|* + on
where v, = 2(7_047)0571 and ¢, = an(Qﬁn<xn_Za ’Yf(z)_Az>+2(1_ﬁn)<Tnun_
z2,7f(2) — Az) + 3a,, M ). From ¥2° v, = 00, we have ¥2° 7, = oo and (35),
(36), we have limsup,,_, i—: < 0. By Lemma 2.2, we have lim,, o, ||z, —2||* =
0. This completed the proof. o
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