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Abstract. Based on a new projective Riccati equations approach and Maple
software, a class of nonlinear evolution equation-Boussinesq equation is discussed
in this paper, some new explicit and exact solutions are obtained, such as
solitary-wave-like solutions and periodic-like solutions etc. What’s more, most of
solutions are scarcely seen in the recent research.
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§1 Introduction

Explicit exact solution, especially the explicit solitary wave solutions and
periodic wave solutions, which are widely applied in natural science, to the model
equations of physical systems are of fundamental importance in physical science
and nonlinear science. In the study of systems modeling wave phenomena, one of
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the important matters of investigation is the traveling wave exact solution, i.e., a
moving wave solution with a fixed velocity. It is well known that there are infinite
solutions for a nonlinear evolution equation and it is a difficult task to find an
exact solution. In recent decades, many powerful approaches have been devised,
such as inverse scattering theory!, Backlund transformation™, truncated
Painléve expansion method!®, Hirota’s bilinear method™, the mixed exponential
method™* Darboux transformation!®, hyperbolic tangent function-series method!?,
homogeneous balance method™?, multi-linear variable separation approach®® and
lie group method™".

Recently, a useful method of finding solitary wave solutions for nonlinear
PDE was proposed by Conte and Musette!?. The key idea of the method is that the
traveling wave solutions of nonlinear PDE can be expressed by a polynomial in
two variables, which are the components of solution for a projective Riccati
equations™ (PREs for short). This method also belongs to Sub-ODE method. Also,
Wang™ and Lu et.al'® developed this method and had done some useful work by
this approach.

In this paper, we would like to look for some explicit solutions for a class of
Boussinesq equation by the projective Riccati equations and Maple software. As
we know, the classical nonlinear Boussinesq equationt” is introduced as follow:

Uy —@U,, = B(U) o + YU =0, (1)

The rest of this paper is organized as follows. In Section 2, the main steps of
the projective Riccati equations approach is introduced. In Section 3, a serie of
solitary-wave-like solutions and periodic-like solutions are derived for the
Boussinesq eqution. In Section 4, some conclusion and discussion is provided.

§2 Projective Riccati equations method

In the following we would like to introduce the basic idea of the algorithm of
PREs method.For a given nonlinear evolution equation:

P(u,u,,u,u,,u,, U, U,,-)=0. (2)

where the left-hand side of Eq.(2) is a polynomail of u(x,t) and its

derivations.And we seek for solutions of the following type:
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u(eD) =u(@) = 3 a '@+ X b, T (©)9(E) 3)

where a;,b;are constants and & =¢&(x,t)is an arbitrary function of x,t,neN is
also a constant which is fixed by considering the banlance between the highest-
order nonlinear terms and the highest-order derivations in Eq.(2), while f(g),q®)

satisfies the following project Riccati equations:

(&) =-af (£)a(S),
(1) 19'&)=dll-g*(&)-rf (&)1 (4)
9°(§)=1-2rf () +(r* +&) F*(&) e =1

And the Egs.(4) have the following solution:

fl(é) = b - ; ;
cosh(g&) + csinh(qé) +ar (5)
0.(5) = bsinh(q&) +ccosh(qé)

bcosh(qé) +csinh(qé) +ar
Where a,b,c are arbitrary constants satisfies ¢ =a’+b*> when ¢=1and

b?=a?+c? when ¢=-1;

(&) =af (£)a(S),
(I 19'&)=dll+g*(&)-rf ()], (6)
9°(&) =-1+2rf (&) + 1-r*) F*(£)
And the Egs.(6) have the following solution:
a

bcos(gé) +csin(qé) +ar !

bsin(gé) —ccos(gé)
bcos(qé) +csin(qs) +ar

fz(é) =
(7)
gz(é:) =

Where a, b, ¢ are arbitrary constants satisfiesa® =b? +¢. If we substitute
(3). (4)and (3). (6)into (2), then setting the coefficients of the polynomial

(&g’ (&)(i=0,12,---; j=0,1) to zero yields a set of nonlinear algebra equations

(NLAES).Solving this NLAEs by Maple software we can obtain a series of
explicit solutions of Eq.(2).
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§3 Exact and explicit solutions to Eq.(1)

In this section we look for the following travelling wave solutions of Eq. (1):
u(x,t)=u(sé), &=Lx+Kt+¢
Then Eq. (1) is translated into following ODE of u(¢):
(K? —al®)u"-241%u"% =241 %uu"+ yL'u™ =0. (8)
Substitute (3) into (8) and banlance between the highest-order nonlinear terms

uu"(or u') and the highest-order derivations u‘” we obtain
m+(m+2)=m+4=m=2, thus,

u(é)=a, +a,f(&)+a,f*(£)+bg(&)+b, T (5)g(d), 9)
Case 1. If we substitute formula (4). (9) into Eq. (1), and set then setting the

coefficients of the polynomial f'(£)g’(£)(i=0,1,,---,6; j =0,1) to zero, we obtain
the following NLAESs by Maple:
f':9°K’a, +q'L'ya, —aq’Pa, —28q°*a,a, — 239°L*ab, + 239°rL’b? =0,
f2:409°K?%a, +3aq’rl’a, — S°L°(10r? + 4&)b — 4aq’L’a, + 6,89°rL%a,a, + 22 89°rL’bb,
-15q*rL*ya, —839°’a,a, —39°rK?a, +16q°*L'ya, —449°L°0 — 4pq°L%a’ =0,
f2:1459°r°h} —aq?(r* + &) %a, + 25q°r’L'ya, —65q'rL*ya, —3159°r’ b,
-940°’aa, +10q L ya, —289°r*a,a, +5480°r°al — 2 89°s 2,8, +50°r (ol —K?)a,
+78q°erl’t’ —1180%’bb, + K*g*(r* +&£)a, + 769°r° b +1089°r*a,a, =0,
f*:330q"r’L*ya, —6aq’ (r* + &) %a, —60q'r(r’ + £)L'ya, +120q"sL*ya,
+4289°r’aa, 16 fq°L°aZ +6659°r(r* + £)L’bb, +6K*q* (r* + £)a, —689°(r* +£)L*a]
~1289%(r* +&)’a,a, —6489°r*L2b2 —659° (r* +£)° L' — 22 8¢ L0’ =0,
f2:560°r(r’ + &)L’ —289%(r* + &) ’aa, + 29* (r’ + &)’ Lya,
-28q°r(r’ + &)L'ya, —289°L*(r’ + £)’bb, =0,
f2:6q*L(r* +&)?ya, — BQ°L*(r* + £)°b? — Bg°L*(r* + £)a’ =0,
£°9:3q°'L'(r* + &)’ yb, — BG*L*(r* + £)a,b, =0,
f49:39°L (r* +&)°yb, —30q°L'r(r* + &)yh, —3B89°L* (r* + £)ab,
—-3B9°L2(r* + &)ab, + 749’ Lrab, =0,
f°9:10q°L'eyb, —389°L%a,b, —aq’L* (r* + £)b, + 58q°L°r(ab, + a,b ) —6q°L'r(r* + &)y,
+Q°K2(r’ + )b, + 259 L*r*yh, — 2 89°L° (r* + £)ab, — 2 9L (r* + £)a,b, =0,
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f29:3aq’L’rb, —4B9°L* (a,b, +ab,) —15q*L'ryb, + g*°K?(r* + £)b, + 6 3q*L’r(ab, +a,b,)
—aQ’L2(r’ +&)b, —39°K?rb, — 280°L%(r* + £)a,b, + 4q*L'eyb, + 7q*L'r’yb, =0,
fg:q*K*(b, ~3rb) —289°L* (ab, +ab,) + 259’ L°rah, + (q*L'y —q’L*)(b, — rb;) = 0.
Solving the above NLAEs by Maple software,one can get the following four

sets of solutions,

2 2 214 2)2 212(42 2)2 2
a, = K —o;l'_m::yq L | =_3yqﬂLr,a2=37q Lﬁ(}r +8),b1=0,b2=37q L*Vr T€ whenr #0:
K?—al®+4yq°L* 6y9°L’s
a, = 251 , 3,=0, a,= , b=b, =0, whenr=0;
2 2 214 212 212
_Klzat -i;qu ,a1=0,a2=37qLg,b1=0,b2=iM,whenr:0;
2L B

Thus at this time, we can obtain the following solitary-wave-like solutions
of the Eq.(1),
0 (xt) = K?—al®+yq°L 3ayq’L’r N 3a%yq’L2(r® + &)
nee 217 Slbcosh(gé) +csinh(qé) +ar]  Blbcosh(gé) +csinh(gé) +ar]? (10)

N 3ayq’L’vr? + g[bsinh(gé) + ccosh(gé)] .
Blbcosh(gé) +csinh(gé) +ar]

and u,(x,t) = Kol +4yq’L + 6a2yq2L2.g ; (11)
2p1° Blbcosh(gé) +csinh(gé)[
0 (x0) = K?—al®+yq’L" 3a%yq’Le . 3ayq°L*e[bsinh(qg) +ccosh(qg)] (12)
s 217 Plbcosh(gf) +csinh(@f)F ~  Albcosh(gd) +csinh(@d)F

Where a, b, ¢ are arbitrary constants satisfies c¢*=a”*+b® wheng=1and
b*=a®+c¢® when ¢=-1 ;
Case 2. If we substitute formula (6). (9) into Eqg. (1), and set then setting the

coefficients of the polynomial f'(£)g’(£)(i=0.1,,---,6; j=0,1) to zero, we also obtain
the following NLAEs by Maple,
f':(al® —K?)g%a, +289°La,a +289°rL%b’ —289°L’bb, +q*L*ya, =0,
f2:49%*(al® —K?)a, -39°r(al? —K?)a, +83q°°a,a, —15q°*rL*ya, +16q*L'ya,
— B°L*(10r* —4)b? +459°L* (8] — b)) —64q°rL"a,a, +229°rL*bb, =0,
f2:789°Lr(r* =1)b’ + aq’L*(r* -1)a, — K*q*(r’ -a, +5q°r(K* - al?)a,
+989°Laa, +28q9°L*(r? —1)a,a, +1449°rLb? + 25q*r*L'ya, —58q°rL’a’
+ Bq°L*(11-31r*)bb, —-65q°rL'ya, —10q*L*ya, —104q°rL%a,a, =0,
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f*:3aq’L*(r’ -1)a, + Aq°L*(11-32r?)bZ —30q*y L'r(r* —1)a, + 6 39°L*(r* -1)a,a,
—-2159°r%aa, +389°L%(r* —1)a’ +q*L'y(115r° - 60)a, —34q°L*(r* —=1)b}
+80°L%a2 —3K?q?(r* —1)a, +334q°r(r* —1)L’bb, =0,

f°:580°L°r(r* —1)bZ —38q°L’ra’ + 2yq*L* (r* —-1)*a, — 28q*r(r* -1)L*ya,
+249°L°(r* ~1aa, - 249°L*(r* ~1)*bb, =0,

f°: 6yq*L'(r’ -1)%a, + Aq°L*(r* —1)a’ — fq°L*(r* —1)*b: =0,

f°9: B9°L*(r* —1)a,b, +3yq*L*(r* —1)°b, =0,

f49:3yq*L (r* -1)°b, +389°L*(r* -1)(a,b, + a,b,) —30yq*L*r(r* —1)b, - 739*L’ra,h, = 0,

f39:aq’L’(r* —1)b, —6yq*L'r(r’ =)b, — K*g*(r* —1)b, + 289°L*(r* -1)(ab, + a,b,)

+5yq°L*(5r* —2)b, +349°L*a,b, —589°L’r(a,b, +ab,) =0,

f29:289°L%(r* -1)a,b, —157q*L*rb, —6 8q°L?r (ab, +a,b,) + yq*L* (7r° — 4)b,

—K?q*(r’ =Db, +459°L*(ab, + a,b) +39°r(K? —aL?*)b, + aq?*L*(r’* —=1)b, =0,
fg: q°(al® —K?)b, +289°L%(ab, + a,b, —ra ) + yq*L (b, - rb) —g°r(al? — K*)b, =0,

Solving the above NLAEs by Maple software,one can also get the following
five sets of solutions,

2 2 214 212 212 2 22 2
ao:K —al —27q L ' _34 Lr' az:37/q L@-r ), b, =0, b2:i3;/q L'Vi-r when r#0;
2pL B B B
2 2 214 22 22
a, = K -al _27q L , a,=0, a2:3;/q L , b =0, bzziqu L ,whenr =0;
2L J;
2 2 214 2)2
_Kzat —247qL, =0, a2:67/q—L, b, =h, =0, when r =0;
2L B
And we can obtain the following periodic-like solutions of the Eq.(1),
b (1) = K?—al®-yg°L' 379°L’ra N 3yg’LP(1-r*)a’
s 2812 Blbcos(qé) +csin(qé) +ar]  B[bcos(q) +csin(qé) +ar]?
. 3ayq’L°V1-r’[bsin(q¢) —ccos(qs)] . (13)
~ B[bcos(qé) +csin(qé) +ar]
2 2 214 21242 212 H
0, ()= K*—al —zyq L N 3yq La_ : J_r3;/q La[bsm(qf)—_ccos(clf)]. (14)
2L Albcos(ag) +csin(@)l”  Albeos(qs) +csin(ag)]
2 2 2,14 212,42
UQ(X,t) _ K —aL —24]/q L " 67/q L a . g ’ (15)
2pL Blbcos(qs) +csin(as)]

where a®=b”+c” in the formula (13)—(15).
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§4 Conclusions and discussion

In this paper, the authors are successfully to get a series of new explicit solutions for
a class of Boussinesq equation, such as solitary-wave-like solutions and periodic-like
solutions etc., and most of them are scarcely seen in the recent research. What” more, the
solutions by this approach is a generalization of the traditional Projective Riccati
equations.

For example, if we take a=b=q=1c=0 , we can obtain the following type of

explicit solutions:

R LS S SRR 45 SR 5 i) o1
. 2pL plcosh(£)+r]  Bleosh(£)+rT  plcoth(£) +rcsch()]
« B K2—05L2+47/q2L4_6)/L2 2/ on.

U, (x,t) = 250 5 sech?(&);

00 = _OZZEN : +37ﬂL [sech? (&) % isech() tanh(£)]

U (1) = K2—al? _qu2|_4 N 3yL2(1-r?) . 3yL%r N 3y h_¢? singf) .
| 2pL plbcos(G)+r]”  pleos(g)+r]  pleos(S) +1]

Uz g(X,1) = K —o;ll_;_—zyqu“ + 372'2 [sech?(¢&) £ sech(&)tanh(£)];

Ug (x,t) = K —azl_;l24yq2|_“ + 67,/6’L2 sech®(&)-

In fact, this method is also applicable to other nonlinear evolution equations in
physics. Moreover, we are also able to discuss the explicit solutions for the nonlinear
evolution equations with variant coefficients, and this work lives for the future research.
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