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Abstract
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nonlinear ordinary differential equation of second order. We give suffi-
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1 Introduction

In this paper we consider the following periodic boundary value problem (PBVP
for short) of second order:

x// + f(x)
∣∣x/

∣∣ + g(x) = h(t) (1.1)

x(0) = x(2π), x/(0) = x/(2π) (1.2)

in which the functions f : R −→ R, g : R −→ R and h : [0, 2π] −→ R are
continuous.The equation (1.1) is called the Lienard equation with forcing term
f(x).If f is constant, we obtain the problem studied in [7] .The important
case f = 0 (also known as the conservative case) is treated in [4],[5] , [8] and
[9] .

We shall establish some necessary and sufficient conditions to ensure the
existence of a periodic solution for the problem (1.1)-(1.2) following the spirit
of [7] .While studying this problem,we distinguish two cases for the nonlinearity
namely
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(1) when g is decreasing, in this case we use the method of upper and lower
solutions,

(2) when g is increasing, first we show that the method of upper and lower
solutions is not useful and in this case we employ an abstract existence theorem
[3] .

2 Preliminary results

We consider the equation

−x// = k(t, x, x/) (2.1)

where the function k : [0, 2π]×R
2 −→ R is continuous.A function α ∈ C2 [0, 2π]

will be called a lower solution of (2.1) on [0, 2π] if

−α// ≤ k(t, α, α/)

Similary β ∈ C2 [0, 2π] will be called an upper solution of (2.1) on [0, 2π] if

−β// ≥ k(t, β, β/)

Theorem 2.1[7]: Assume the following
(a) there exist α and β lower and upper solutions of (2.1) on [0, 2π] ,respectively,with

α(0) = α(2π), β(0) = β(2π),and α(t) ≤ β(t), t ∈ [0, 2π] ;
(b) the inequalities α/(0) ≥ α/(2π) and β/(0) ≤ β/(2π) hold;
(c) k satisfies the following Nagumo condition relative to α, β :There exists

e ∈ C [[0,∞[ , (0,∞)] such that| k(t, u, v)| ≤ e(|v|) whenever α(t) ≤ x(t) ≤
β(t), t ∈ [0, 2π] and e is such that∫ ∞

0

sds

e(s)
= ∞.

Then the PBVP

−x// = k(t, x, x/), x(0) = x(2π), x/(0) = x/(2π) (2.2)

has at least one solution x such that α(t) ≤ x(t) ≤ β(t), t ∈ [0, 2π] .
We write k(t, x, x/) = f(x)

∣∣x/
∣∣ + g(x) − h(t) and we have the following

result.
Lemma 2.1: Let α, β be lower and upper solutions of (1.1),respectively,satisfying

the Conditions (a) and (b) of Theorem2.1.Then k satisfies the Nagumo Con-
dition (c) of Theorem 2.1 relative to α, β .

Proof: From the notation of Theorem2.1 we have k(t, u, v) = f(u) |v| +
g(u)−h(t).Taking into account that f, g and h are continuous we see that there
exist positive constants K, L such that | f(u)| ≤ K and | g(u)|+ | h(t| ≤ L
, for α(t) ≤ u(t) ≤ β(t), t ∈ [0, 2π] .Thus we can take e(s) = Ks + L.
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3 Existence of solutions

Theorem 3.1: We assume that g is decreasing on R and f satisfies the fol-
lowing condition

(a) ∃M > 0 : f(x) − f(y) ≥ −M(x − y), ∀x, y ∈ R.
Then the PBVP(1.1)-(1.2) has a solution if and only if

ω =
1

2π

∫ 2π

0

h(t)dt ∈ Range g.

.
Proof: Assume that ω ∈ Range g.Then there exists r ∈ R such that

g(r) = ω.The problem

x// + f(x)
∣∣ x/

∣∣ = h(t) − g(r), x(0) = x(2π), x/(0) = x/(2π) (3.1)

has a solution since
∫ 2π

0
[h(t) − g(r)] dt = 0.Let u be the solution of (3.1)

satisfying
∫ 2π

0
u(t)dt = 0.Choose constants a ∈ R

∗
− and b ∈ R

∗
+ such that

u(t) + a ≤ r ≤ u(t) + b,∀t ∈ [0, 2π]

Take α = u + a and β = u + b.Thus,

−α// = −u// = f(u)
∣∣u/

∣∣ − h(t) + g(r) = f(α − a)
∣∣α/

∣∣ − h(t) + g(r)

By Condition (a) of Theorem 3.1 we obtain for x = α and y = α − a

∃M > 0 : f(α) − f(α − a) ≥ −Ma

since α/ = u/ then f(α)
∣∣α/

∣∣ + M a α/ ≥ f(α − a)
∣∣α/

∣∣ and hence

−α// ≤ f(α)
∣∣α/

∣∣ + Ma
∣∣α/

∣∣ − h(t) + g(r) ≤ f(α)
∣∣α/

∣∣ − h(t) + g(α)

so that α is lower solution of (1.1) such that

α(0) = α(2π), α/(0) = α/(2π)

.
Similary

−β// = −u// = f(u)
∣∣u/

∣∣ − h(t) + g(r) = f(β − b)
∣∣β/

∣∣ − h(t) + g(r)

Again by Condition (a) of Theorem3.1 we obtain for x = β − b and y = β

∃M > 0 : f(β − b) − f(β) ≥ Mb
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Thus

−β// ≥ f(β)
∣∣β/

∣∣ + Mb
∣∣β/

∣∣ − h(t) + g(r) ≥ f(β)
∣∣β/

∣∣ − h(t) + g(β)

β(0) = u(0) + b = u(2π) + b = β(2π)

β/(0) = u/(0) = u/(2π) = β/(2π)

so that β is upper solution of (1.1). From Lemma2.1 and Theorem2.1 it follows
that the PBVP(1.1)-(1.2) has a solution x such that α(t) ≤ x(t) ≤ β(t),
t ∈ [0, 2π] .

Conversely suppose that x is a solution of the PBVP (1.1)-(1.2).Integrating(1.1)
on [0, 2π] and using (1.2),we get

∫ 2π

0

g(x(t))dt =

∫ 2π

0

h(t)dt = 2πω.

Since g is decreasing, we have g(∞) ≤ g(x) ≤ g(−∞), ∀ x ∈ R,where

g(∞) = lim
x−→∞

g(x), g(−∞) = lim
x−→−∞

g(x).

Then,we have

ω =
1

2π

∫ 2π

0

h(t)dt ∈ [g(∞), g(−∞)] = Range g.

Now if ω /∈ Range g,then either ω = g(∞) or ω = g(−∞).For ω = g(∞)

we have g(x(t)) > ω, ∀t ∈ [0, 2π] and hence
∫ 2π

0
g(x(t))dt > 2πω,which is a

contradiction.For ω = g(−∞) we have g(x(t)) < ω, ∀t ∈ [0, 2π] and hence∫ 2π

0
g(x(t))dt < 2πω,which is a contradiction.Then ω ∈ Range g.
Remark :For the case when g is increasing on R, we first show that the

method of upper and lower solutions described inTheorem2.1 is not useful
since in this case we have α(t) = β(t) on [0, 2π] which amounts to assuming
the existence of a periodic solution.Indeed, assume that Conditions (a) and
(b) of Theorem 2.1 hold and also assume that g is strictly increasing.We have
from the definition of α and β

β// − α// ≤ f(α)
∣∣α/

∣∣ − f(β)
∣∣β/

∣∣ + g(α) − g(β)

Integration on [0, 2π] together with (1.2) yields

∫ 2π

0

[g(α(t) − g(β(t)] dt ≥ 0
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Since g is strictly increasing and α(t) ≤ β(t) on [0, 2π] then

∫ 2π

0

[g(α(t) − g(β(t)] dt ≤ 0

Thus,

∫ 2π

0

[g(α(t) − g(β(t)]dt = 0

which implies that α(t) = β(t) on [0, 2π] .
Also, we see that the conclusion of Theorem2.1 does not hold in general as

may be seen from the following example.
Example: We consider the problem

x// + x = h(t) , t ∈ [0, 2π]

x(0) = x(2π), x/(0) = x/(2π)

in this case we have f(x) = 0 and g(x) = x,so that g is strictly increasing and
Range g = R. However, this problem has no solution unless

∫ 2π

0

h(t) sin tdt =

∫ 2π

0

h(t) cos tdt = 0

Therefore, in the case when g is increasing,we employ an abstract existence
theorem [3] to study the PBVP (1.1)-(1.2). We consider the operator equation

Lx = Nx (3.2)

in which L : D(L) ⊂ E 
−→ F and N : E 
−→ F are linear and nonlinear
operators respectively, and E and F are Banach spaces.

(I) Let us suppose that there exist projection operators P : E 
−→ E
and Q : F 
−→ F (that is,linear,bounded,and idempotent) such that E =
E0 ⊕ E1, F = F0 ⊕ F1 with E0 = PE = ker L, E1 = (I − P )E, F0 = QF,
F1 = RangeL = (I − Q)F and dimE0 = dimF0 < ∞ and there exists a
linear operator H : (I−Q)F 
−→ (I−P )E,called the partial inverse of L, such
that

(a)H(I − Q)Lx = (I − P )x,for every x ∈ D(L)

(b) QLx = LPx, for every x ∈ D(L)
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(c) LH(I − Q)Nx = (I − Q)Nx, for every x ∈ E

Equation (3.2) is equivalent to the system of auxiliary and bifurcation equa-
tions

x = Px + H(I − Q)Nx (3.4)

Q(Lx − Nx) = 0 (3.5)

(II) In addition,suppose that there exist continuous maps B : E × F 
−→
R,and J : F0 
−→ E0 such that

(i) B is bilinear and J is one-to-one and onto;
(ii) y0 ∈ F0, y0 = 0 iff B( x0, y0 ) = 0 ∀x0 ∈ E0;
(iii) J y0 = 0 iff y0 = 0 ;
(iv) B( J y0, y0 ) ≥ 0 ∀y0 ∈ F0;
(v) B( J y0, y0 ) = 0 iff y0 = 0 ;
(vi) B( x0, J−1x0 ) = 0 iff x0 = 0 ;
(vii) B( x0, y0 ) = B( Jy0, J−1x0 ), ∀x0 ∈ E0, ∀ y0 ∈ F0.
Note that if E ⊂ F and F is a Hilbert space with inner product 〈x, y〉 we

can define B(x, y) = 〈x, y〉 .
Under assumptions (I) and (II),the operator equation (3.2) is equivalent

to

x = Px + H(I − Q)Nx + JQNx.

Theorem 3.2 [7] : Assume that hypotheses (I) and (II) hold.In addi-
tion assume that H is compact and N maps bounded sets into bounded
sets.Finally,suppose that there exists numbers R > R0 > 0 such that

(a) the set
C(R) = {x1 ∈ E1 : x1 = λH(I − Q)N(x0 + x1) for some λ ∈ [0, 1]

and x0 ∈ E0 with ‖x0‖ ≤ R
is bounded.
(b)B(x0, QN(x0+x1)) ≤ 0, x = x0+x1, ‖x0‖ = R0, x1 = λH(I−Q)N(x0 +

x1) for some λ ∈ [0, 1]
Then Equation (3.2) has at least one solution.
For the PBVP (1.1)-(1.2), we consider

E =
{
x ∈ C1 [0, 2π] : x(0) = x(2π), x/(0) = x/(2π)

}
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and F = L2 [0, 2π] .Define L : D(L) ⊂ E −→ F by Lx = x//, in which D(L) =
{x ∈ E : x ∈ C2 [0, 2π]} and N : E −→ F by Nx = h(t)−f(x)

∣∣x/
∣∣−g(x).The

projections P : E −→ E and Q : F −→ F are given by Px = x(0) and

Qx = 1
2π

∫ 2π

0
x(t)dt.Finally,the operator H : F1 −→ E1 may be defined by

Hy = x if and only if x// = y, x(0) = x(2π) = 0 x/(0) = x/(2π) = 0.Further,

E0 = ker L = {x ∈ E : x = x(0)} .

Range L =

{
y ∈ F : Qy =

∫ 2π

0

y(t)dt = 0

}
.

It is easy to see that the hypothesis (I) is satisfied.Now we define B : E×F 
−→
R and J : F0 
−→ E0 respectively by B(x, y) =

∫ 2π

0
x(t) y(t)dt and Jy0 = y0,so

that (II) is satisfied. Clearly H is compact (the inclusion of H2 into C1 is
compact [see 2] ) and N maps bounded sets into bounded sets.We now verify
the Conditions (a) and (b) of Theorem3.2.

Let R > 0 and x1 ∈ C(R),so that x1 = λH(I − Q)N(x0 + x1) for some

λ ∈ [0, 1] and x0 ∈ E0.Hence, x
//
1 = λ(I − Q)N(x0 + x1).Multiplying by x

//
1 ,

we get

B(x
//
1 , x

//
1 ) = λB((I − Q)N(x0 + x1), x

//
1 )

= λB((I − Q)h, x
//
1 ) − λB((I − Q)f(x0 + x1)

∣∣(x0 + x1)
/
∣∣ , x

//
1 )

−λB((I − Q)g(x0 + x1), x
//
1 ) (3.6)

we have

B((I − Q)h, x
//
1 ) = B(h, x

//
1 ) − B(Qh, x

//
1 )

and

B((I − Q)g(x0 + x1), x
//
1 ) = B(g(x0 + x1), x

//
1 ) − B(Qg(x0 + x1), x

//
1 )

since x
//
1 ∈ F1,then

B(Qh, x
//
1 ) = 0, B(Q g(x0 + x1), x

//
1 ) = 0 and B(Q f(x0 + x1)

∣∣(x0 + x1)
/
∣∣ , x

//
1 ) = 0

and hence (3.6) becomes

B(x
//
1 , x

//
1 ) = λB(h, x

//
1 ) − λB( f(x0 + x1)

�
�
�(x0 + x1)/

�
�
� , x

//
1 ) − λB( g(x0 + x1), x

//
1 )

= λB(h, x
//
1 ) − λB( f(x0 + x1)

�
�
�x

/
1

�
�
� , x

//
1 ) − λB( g(x0 + x1), x

//
1 ) , ( x0 ∈ E0 is a constant)
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and this in turn yields

∥∥∥x
//
1

∥∥∥2

= λ
〈
h, x

//
1

〉
− λ

〈
f(x0 + x1)

∣∣∣x/
1

∣∣∣ , x//
1

〉

−λ
〈

g(x0 + x1), x
//
1

〉
, where 〈, 〉 denotes the usual inner product in L2 .

Using the Cauchy-Schwartz inequality we get

∥∥∥x
//
1

∥∥∥2

≤ λ ‖h‖
∥∥∥x

//
1

∥∥∥ + λ
∥∥∥ f(x0 + x1)

∣∣∣x/
1

∣∣∣∥∥∥ ∥∥∥x
//
1

∥∥∥ + λ ‖ g(x0 + x1)‖
∥∥∥x

//
1

∥∥∥

λ ∈ [0, 1] , then

∥∥∥x
//
1

∥∥∥ ≤ ‖h‖ + ‖ f(x0 + x1)‖
∥∥∥x

/
1

∥∥∥ + ‖ g(x0 + x1)‖ . (3.7)

Since
∫ 2π

0
x

/
1(t)dt = 0 ,by Wirtinger’s inequality

∫ 2π

0

(x
/
1(t))

2dt ≤
∫ 2π

0

(x
//
1 (t))2dt

(ie
∥∥∥x

/
1

∥∥∥ ≤
∥∥∥x

//
1

∥∥∥) [see 1] and from(3.7) we have

(1 − ‖ f(x0 + x1)‖)
∥∥∥x

/
1

∥∥∥ ≤ ‖h‖ + ‖ g(x0 + x1)‖ = A.

If 1 − ‖ f(x0 + x1)‖ �= 0, then

∥∥∥x
/
1

∥∥∥ ≤ A

1 − ‖ f(x0 + x1)‖ = B. (3.8)

Using(3.8) in the identity x1(t) = x1(0) +
∫ t

0
x

/
1(s)ds (with x1(0) = 0 ),we

get

| x1(t)| ≤
∫ t

0

∣∣∣x/
1(s)

∣∣∣ ds ≤
∫ 2π

0

∣∣∣x/
1(s)

∣∣∣ ds ≤
√

2π(

∫ 2π

0

∣∣∣x/
1(t)

∣∣∣2 dt)
1
2 =

√
2π

∥∥∥x
/
1

∥∥∥

≤
√

2πB = C (3.9)

From(3.9),(3.8) and (3.7) we obtain that

x1, x
/
1 and x

//
1 are bounded in L2 and so C(R) is bounded in H2(0, 2π),and

in consequence, C(R) is bounded in C1 [0, 2π] and in E independently of
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R > 0.Thus,Condition(a) of Theorem3.2 is satisfied.To verify the Condition
(b) of Theorem 3.2 we have

B(x0, QN(x0 + x1)) =

∫ 2π

0

x0

[
h(t) − f(x0 + x1)

∣∣∣x/
1

∣∣∣ − g(x0 + x1)
]
dt

= 2πx0 QN(x0 + x1)

Then Condition (b) of Theorem3.2 is equivalent to the following condition:
there exists R0 > 0 such that

QN(R0 + x1) ≤ 0 ≤ QN(−R0 + x1) (3.10)

for every x1 such that x1 = λH(I − Q)N(x0 + x1).
By the above arguments we have proved the following theorem
Theorem 3.3:Suppose that g is increasing,1 − ‖ f(x0 + x1)‖ �= 0 and

condition (3.10) holds.Then the PBVP(1.1)-(1.2) has at least one solution.
Now assume that lim

x−→±∞
g(x) = g(±∞) exists and

g(−∞) ≤ g(x) ≤ g(∞), for every x ∈ R (3.11)

The well-known Landesman-Lazer[6] is

g(−∞) < ω < g(∞). (3.12)

Corollary 3.4:If g satisfies (3.11), 1 − ‖ f(x0 + x1)‖ �= 0 and (3.12)
holds,then the PBVP(1.1)-(1.2) has at least one solution.

Proof:We have from (3.8) and (3.9)

‖x1‖E = sup
t∈[0,2π]

| x1(t)| +
∥∥∥x

/
1

∥∥∥ ≤ B + C = B(1 +
√

2π) = δ.

Thus, we get −δ ≤ x1(t) ≤ δ, for every x1 ∈ C(R0), t ∈ [0, 2π] and R0 >
0.From (3.12),there exists T > 0 such that

g(−x) < ω < g(x) for x > T. (3.13)

Choose R0 ≥ δ + T so that R0 + x1(t) ≥ T and −R0 + x1(t) ≤ −T.By
integration of (3.13) we get

∫ 2π

0

[h(t) − g(R0 + x1(t))] dt ≤ 0 ≤
∫ 2π

0

[h(t) − g(−R0 + x1(t))] dt,

and thus condition (3.10) of Theorem 3.3 is satisfied.
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