Periodic Boundary Value Problem for Second Order Ordinary Differential Equations

Slimane Benaicha
Department of Mathematics
University of Oran, Es-senia, Algeria
slimanebenaicha@yahoo.fr

Abstract

In this paper we study the periodic boundary value problem for a nonlinear ordinary differential equation of second order. We give sufficient and necessary conditions for the existence of periodic solutions.

Mathematics Subject Classification: 34B15
Keywords: Boundary value problems, periodic solution, operator equation

1 Introduction

In this paper we consider the following periodic boundary value problem (PBVP for short) of second order:

$$
\begin{align*}
& x^{/ /}+f(x)\left|x^{\prime}\right|+g(x)=h(t) \tag{1.1}\\
& x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi) \tag{1.2}
\end{align*}
$$

in which the functions $f: \mathbb{R} \longrightarrow \mathbb{R}, g: \mathbb{R} \longrightarrow \mathbb{R}$ and $h:[0,2 \pi] \longrightarrow \mathbb{R}$ are continuous. The equation (1.1) is called the Lienard equation with forcing term $f(x)$.If f is constant, we obtain the problem studied in [7]. The important case $f=0$ (also known as the conservative case) is treated in [4], [5], [8] and [9].

We shall establish some necessary and sufficient conditions to ensure the existence of a periodic solution for the problem (1.1)-(1.2) following the spirit of [7]. While studying this problem, we distinguish two cases for the nonlinearity namely
(1) when g is decreasing, in this case we use the method of upper and lower solutions,
(2) when g is increasing, first we show that the method of upper and lower solutions is not useful and in this case we employ an abstract existence theorem [3].

2 Preliminary results

We consider the equation

$$
\begin{equation*}
-x^{/ /}=k\left(t, x, x^{\prime}\right) \tag{2.1}
\end{equation*}
$$

where the function $k:[0,2 \pi] \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ is continuous.A function $\alpha \in C^{2}[0,2 \pi]$ will be called a lower solution of (2.1) on $[0,2 \pi]$ if

$$
-\alpha^{\prime /} \leq k\left(t, \alpha, \alpha^{\prime}\right)
$$

Similary $\beta \in C^{2}[0,2 \pi]$ will be called an upper solution of (2.1) on $[0,2 \pi]$ if

$$
-\beta^{\prime /} \geq k\left(t, \beta, \beta^{\prime}\right)
$$

Theorem 2.1[7]: Assume the following
(a) there exist α and β lower and upper solutions of (2.1) on $[0,2 \pi]$, respectively,with $\alpha(0)=\alpha(2 \pi), \beta(0)=\beta(2 \pi)$, and $\alpha(t) \leq \beta(t), t \in[0,2 \pi] ;$
(b) the inequalities $\alpha^{\prime}(0) \geq \alpha^{\prime}(2 \pi)$ and $\beta^{\prime}(0) \leq \beta^{\prime}(2 \pi)$ hold;
(c) k satisfies the following Nagumo condition relative to α, β :There exists $e \in C[[0, \infty[,(0, \infty)]$ such that $|k(t, u, v)| \leq e(|v|)$ whenever $\alpha(t) \leq x(t) \leq$ $\beta(t), t \in[0,2 \pi]$ and e is such that

$$
\int_{0}^{\infty} \frac{s d s}{e(s)}=\infty
$$

Then the PBVP

$$
\begin{equation*}
-x^{/ /}=k\left(t, x, x^{\prime}\right), x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi) \tag{2.2}
\end{equation*}
$$

has at least one solution x such that $\alpha(t) \leq x(t) \leq \beta(t), t \in[0,2 \pi]$.
We write $k\left(t, x, x^{\prime}\right)=f(x)\left|x^{\prime}\right|+g(x)-h(t)$ and we have the following result.

Lemma 2.1: Let α, β be lower and upper solutions of (1.1),respectively,satisfying the Conditions (a) and (b) of Theorem2.1.Then k satisfies the Nagumo Condition (c) of Theorem 2.1 relative to α, β.

Proof:From the notation of Theorem2.1 we have $k(t, u, v)=f(u)|v|+$ $g(u)-h(t)$. Taking into account that f, g and h are continuous we see that there exist positive constants K, L such that $|f(u)| \leq K$ and $|g(u)|+\mid h(t \mid \leq L$, for $\alpha(t) \leq u(t) \leq \beta(t), t \in[0,2 \pi]$. Thus we can take $e(s)=K s+L$.

3 Existence of solutions

Theorem 3.1: We assume that g is decreasing on \mathbb{R} and f satisfies the following condition
(a) $\exists M>0: f(x)-f(y) \geq-M(x-y), \forall x, y \in \mathbb{R}$.

Then the $\operatorname{PBVP}(1.1)-(1.2)$ has a solution if and only if

$$
\omega=\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t) d t \in \text { Range } g
$$

Proof: Assume that $\omega \in$ Range g.Then there exists $r \in \mathbb{R}$ such that $g(r)=\omega$. The problem

$$
\begin{equation*}
x^{/ \prime}+f(x)\left|x^{\prime}\right|=h(t)-g(r), \quad x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi) \tag{3.1}
\end{equation*}
$$

has a solution since $\int_{0}^{2 \pi}[h(t)-g(r)] d t=0$. Let u be the solution of (3.1) satisfying $\int_{0}^{2 \pi} u(t) d t=0$. Choose constants $a \in \mathbb{R}_{-}^{*}$ and $b \in \mathbb{R}_{+}^{*}$ such that

$$
u(t)+a \leq r \leq u(t)+b, \forall t \in[0,2 \pi]
$$

Take $\alpha=u+a \quad$ and $\beta=u+b$.Thus,

$$
-\alpha^{/ /}=-u^{\prime /}=f(u)\left|u^{\prime}\right|-h(t)+g(r)=f(\alpha-a)\left|\alpha^{\prime}\right|-h(t)+g(r)
$$

By Condition (a) of Theorem 3.1 we obtain for $x=\alpha$ and $y=\alpha-a$

$$
\exists M>0: f(\alpha)-f(\alpha-a) \geq-M a
$$

since $\alpha^{\prime}=u^{\prime}$ then $f(\alpha)\left|\alpha^{\prime}\right|+M a \alpha^{\prime} \geq f(\alpha-a)\left|\alpha^{\prime}\right|$ and hence

$$
-\alpha^{\prime \prime} \leq f(\alpha)\left|\alpha^{\prime}\right|+M a\left|\alpha^{\prime}\right|-h(t)+g(r) \leq f(\alpha)\left|\alpha^{\prime}\right|-h(t)+g(\alpha)
$$

so that α is lower solution of (1.1) such that

$$
\alpha(0)=\alpha(2 \pi), \alpha^{\prime}(0)=\alpha^{\prime}(2 \pi)
$$

Similary

$$
-\beta^{\prime \prime}=-u^{\prime /}=f(u)\left|u^{\prime}\right|-h(t)+g(r)=f(\beta-b)\left|\beta^{\prime}\right|-h(t)+g(r)
$$

Again by Condition (a) of Theorem3.1 we obtain for $x=\beta-b$ and $y=\beta$

$$
\exists M>0: f(\beta-b)-f(\beta) \geq M b
$$

Thus

$$
\begin{gathered}
-\beta^{\prime \prime} \geq f(\beta)\left|\beta^{\prime}\right|+M b\left|\beta^{\prime}\right|-h(t)+g(r) \geq f(\beta)\left|\beta^{\prime}\right|-h(t)+g(\beta) \\
\beta(0)=u(0)+b=u(2 \pi)+b=\beta(2 \pi) \\
\beta^{\prime}(0)=u^{\prime}(0)=u^{\prime}(2 \pi)=\beta^{\prime}(2 \pi)
\end{gathered}
$$

so that β is upper solution of (1.1). From Lemma2.1 and Theorem2.1 it follows that the $\operatorname{PBVP}(1.1)-(1.2)$ has a solution x such that $\alpha(t) \leq x(t) \leq \beta(t)$, $t \in[0,2 \pi]$.

Conversely suppose that x is a solution of the PBVP (1.1)-(1.2).Integrating(1.1) on $[0,2 \pi]$ and using (1.2), we get

$$
\int_{0}^{2 \pi} g(x(t)) d t=\int_{0}^{2 \pi} h(t) d t=2 \pi \omega
$$

Since g is decreasing, we have $g(\infty) \leq g(x) \leq g(-\infty), \forall x \in \mathbb{R}$, where

$$
g(\infty)=\lim _{x \longrightarrow \infty} g(x), g(-\infty)=\lim _{x \longrightarrow-\infty} g(x) .
$$

Then, we have

$$
\omega=\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t) d t \in[g(\infty), g(-\infty)]=\overline{\text { Range } g}
$$

Now if $\omega \notin$ Range g,then either $\omega=g(\infty)$ or $\omega=g(-\infty)$. For $\omega=g(\infty)$ we have $g(x(t))>\omega, \forall t \in[0,2 \pi]$ and hence $\int_{0}^{2 \pi} g(x(t)) d t>2 \pi \omega$, which is a contradiction.For $\omega=g(-\infty)$ we have $g(x(t))<\omega, \forall t \in[0,2 \pi]$ and hence $\int_{0}^{2 \pi} g(x(t)) d t<2 \pi \omega$, which is a contradiction. Then $\omega \in$ Range g.

Remark :For the case when g is increasing on \mathbb{R}, we first show that the method of upper and lower solutions described inTheorem2.1 is not useful since in this case we have $\alpha(t)=\beta(t)$ on $[0,2 \pi]$ which amounts to assuming the existence of a periodic solution.Indeed, assume that Conditions (a) and (b) of Theorem 2.1 hold and also assume that g is strictly increasing. We have from the definition of α and β

$$
\beta^{\prime \prime}-\alpha^{\prime /} \leq f(\alpha)\left|\alpha^{\prime}\right|-f(\beta)\left|\beta^{\prime}\right|+g(\alpha)-g(\beta)
$$

Integration on $[0,2 \pi]$ together with (1.2) yields

$$
\int_{0}^{2 \pi}[g(\alpha(t)-g(\beta(t)] d t \geq 0
$$

Since g is strictly increasing and $\alpha(t) \leq \beta(t)$ on $[0,2 \pi]$ then

$$
\int_{0}^{2 \pi}[g(\alpha(t)-g(\beta(t)] d t \leq 0
$$

Thus,

$$
\int_{0}^{2 \pi}[g(\alpha(t)-g(\beta(t)] d t=0
$$

which implies that $\alpha(t)=\beta(t)$ on $[0,2 \pi]$.
Also, we see that the conclusion of Theorem2.1 does not hold in general as may be seen from the following example.

Example: We consider the problem

$$
\begin{gathered}
x^{/ /}+x=h(t), t \in[0,2 \pi] \\
x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi)
\end{gathered}
$$

in this case we have $f(x)=0$ and $g(x)=x$,so that g is strictly increasing and Range $g=\mathbb{R}$. However, this problem has no solution unless

$$
\int_{0}^{2 \pi} h(t) \sin t d t=\int_{0}^{2 \pi} h(t) \cos t d t=0
$$

Therefore, in the case when g is increasing, we employ an abstract existence theorem [3] to study the PBVP (1.1)-(1.2). We consider the operator equation

$$
\begin{equation*}
L x=N x \tag{3.2}
\end{equation*}
$$

in which $L: D(L) \subset E \longmapsto F$ and $N: E \longmapsto F$ are linear and nonlinear operators respectively, and E and F are Banach spaces.
(I) Let us suppose that there exist projection operators $P: E \longmapsto E$ and $Q: F \longmapsto F$ (that is,linear,bounded, and idempotent) such that $E=$ $E_{0} \oplus E_{1}, F=F_{0} \oplus F_{1}$ with $E_{0}=P E=\operatorname{ker} L, E_{1}=(I-P) E, F_{0}=Q F$, $F_{1}=$ Range $L=(I-Q) F$ and $\operatorname{dim} E_{0}=\operatorname{dim} F_{0}<\infty$ and there exists a linear operator $H:(I-Q) F \longmapsto(I-P) E$, called the partial inverse of L, such that

$$
\begin{aligned}
& \text { (a) } H(I-Q) L x=(I-P) x \text {,for every } x \in D(L) \\
& \text { (b) } Q L x=L P x, \text { for every } x \in D(L)
\end{aligned}
$$

$$
\text { (c) } L H(I-Q) N x=(I-Q) N x, \text { for every } x \in E
$$

Equation (3.2) is equivalent to the system of auxiliary and bifurcation equations

$$
\begin{equation*}
x=P x+H(I-Q) N x \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
Q(L x-N x)=0 \tag{3.5}
\end{equation*}
$$

$(I I)$ In addition,suppose that there exist continuous maps $B: E \times F \longmapsto$ \mathbb{R}, and $J: F_{0} \longmapsto E_{0}$ such that
(i) B is bilinear and J is one-to-one and onto;
(ii) $y_{0} \in F_{0}, y_{0}=0$ iff $B\left(x_{0}, y_{0}\right)=0 \quad \forall x_{0} \in E_{0}$;
(iii) $J y_{0}=0$ iff $y_{0}=0$;
(iv) $B\left(J y_{0}, y_{0}\right) \geq 0 \quad \forall y_{0} \in F_{0}$;
(v) $B\left(J y_{0}, y_{0}\right)=0$ iff $y_{0}=0$;
(vi) $B\left(x_{0}, J^{-1} x_{0}\right)=0$ iff $x_{0}=0$;
(vii) $B\left(x_{0}, y_{0}\right)=B\left(J y_{0}, J^{-1} x_{0}\right), \forall x_{0} \in E_{0}, \forall y_{0} \in F_{0}$.

Note that if $E \subset F$ and F is a Hilbert space with inner product $\langle x, y\rangle$ we can define $B(x, y)=\langle x, y\rangle$.

Under assumptions (I) and (II),the operator equation (3.2) is equivalent to

$$
x=P x+H(I-Q) N x+J Q N x
$$

Theorem 3.2 [7] : Assume that hypotheses (I) and ($I I$) hold.In addition assume that H is compact and N maps bounded sets into bounded sets.Finally,suppose that there exists numbers $R>R_{0}>0$ such that
(a) the set
$C(R)=\left\{x_{1} \in E_{1}: x_{1}=\lambda H(I-Q) N\left(x_{0}+x_{1}\right)\right.$ for some $\lambda \in[0,1]$ and $x_{0} \in E_{0}$ with $\left\|x_{0}\right\| \leq R$
is bounded.
(b) $B\left(x_{0}, Q N\left(x_{0}+x_{1}\right)\right) \leq 0, x=x_{0}+x_{1},\left\|x_{0}\right\|=R_{0}, x_{1}=\lambda H(I-Q) N\left(x_{0}+\right.$ x_{1}) for some $\lambda \in[0,1]$

Then Equation (3.2) has at least one solution.
For the PBVP (1.1)-(1.2), we consider

$$
E=\left\{x \in C^{1}[0,2 \pi]: x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi)\right\}
$$

and $F=L_{2}[0,2 \pi]$.Define $L: D(L) \subset E \longrightarrow F$ by $L x=x^{/ /}$, in which $D(L)=$ $\left\{x \in E: x \in C^{2}[0,2 \pi]\right\}$ and $N: E \longrightarrow F$ by $N x=h(t)-f(x)\left|x^{\prime}\right|-g(x)$.The projections $P: E \longrightarrow E$ and $Q: F \longrightarrow F$ are given by $P x=x(0)$ and $Q x=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t$.Finally, the operator $H: F_{1} \longrightarrow E_{1}$ may be defined by $H y=x$ if and only if $x^{/ /}=y, \quad x(0)=x(2 \pi)=0 x^{\prime}(0)=x^{\prime}(2 \pi)=0$.Further,

$$
\begin{aligned}
E_{0} & =\operatorname{ker} L=\{x \in E: x=x(0)\} \\
\text { Range } L & =\left\{y \in F: Q y=\int_{0}^{2 \pi} y(t) d t=0\right\} .
\end{aligned}
$$

It is easy to see that the hypothesis (I) is satisfied.Now we define $B: E \times F \longmapsto$ \mathbb{R} and $J: F_{0} \longmapsto E_{0}$ respectively by $B(x, y)=\int_{0}^{2 \pi} x(t) y(t) d t$ and $J y_{0}=y_{0}$, so that $(I I)$ is satisfied. Clearly H is compact (the inclusion of H^{2} into C^{1} is compact [see 2]) and N maps bounded sets into bounded sets. We now verify the Conditions (a) and (b) of Theorem3.2.

Let $R>0$ and $x_{1} \in C(R)$,so that $x_{1}=\lambda H(I-Q) N\left(x_{0}+x_{1}\right)$ for some $\lambda \in[0,1]$ and $x_{0} \in E_{0}$.Hence, $x_{1}^{/ /}=\lambda(I-Q) N\left(x_{0}+x_{1}\right)$.Multiplying by $x_{1}^{/ /}$, we get

$$
\begin{gather*}
B\left(x_{1}^{/ /}, x_{1}^{/ /}\right)=\lambda B\left((I-Q) N\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right) \\
=\lambda B\left((I-Q) h, x_{1}^{/ /}\right)-\lambda B\left((I-Q) f\left(x_{0}+x_{1}\right)\left|\left(x_{0}+x_{1}\right)^{/}\right|, x_{1}^{/ /}\right) \\
-\lambda B\left((I-Q) g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right) \tag{3.6}
\end{gather*}
$$

we have

$$
B\left((I-Q) h, x_{1}^{/ /}\right)=B\left(h, x_{1}^{/ /}\right)-B\left(Q h, x_{1}^{/ /}\right)
$$

and

$$
B\left((I-Q) g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right)=B\left(g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right)-B\left(Q g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right)
$$

since $x_{1}^{/ /} \in F_{1}$, then
$B\left(Q h, x_{1}^{/ /}\right)=0, B\left(Q g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right)=0$ and $B\left(Q f\left(x_{0}+x_{1}\right)\left|\left(x_{0}+x_{1}\right)^{/}\right|, x_{1}^{/ /}\right)=0$
and hence (3.6) becomes

$$
\begin{aligned}
B\left(x_{1}^{\prime /}, x_{1}^{/ /}\right) & =\lambda B\left(h, x_{1}^{/ /}\right)-\lambda B\left(f\left(x_{0}+x_{1}\right)\left|\left(x_{0}+x_{1}\right)^{\prime}\right|, x_{1}^{/ /}\right)-\lambda B\left(g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right) \\
& =\lambda B\left(h, x_{1}^{/ /}\right)-\lambda B\left(f\left(x_{0}+x_{1}\right)\left|x_{1}^{\prime}\right|, x_{1}^{/ /}\right)-\lambda B\left(g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right),\left(x_{0} \in E_{0} \text { is a constant }\right)
\end{aligned}
$$

and this in turn yields

$$
\left\|x_{1}^{/ /}\right\|^{2}=\lambda\left\langle h, x_{1}^{/ /}\right\rangle-\lambda\left\langle f\left(x_{0}+x_{1}\right)\right| x_{1}^{\prime}\left|, x_{1}^{/ /}\right\rangle
$$

$-\lambda\left\langle g\left(x_{0}+x_{1}\right), x_{1}^{/ /}\right\rangle$, where \langle,$\rangle denotes the usual inner product in L_{2}$.
Using the Cauchy-Schwartz inequality we get

$$
\left\|x_{1}^{/ /}\right\|^{2} \leq \lambda\|h\|\left\|x_{1}^{/ /}\right\|+\lambda\left\|f\left(x_{0}+x_{1}\right)\left|x_{1}^{\prime}\right|\right\|\left\|x_{1}^{/ /}\right\|+\lambda\left\|g\left(x_{0}+x_{1}\right)\right\|\left\|x_{1}^{\prime /}\right\|
$$

$\lambda \in[0,1]$, then

$$
\begin{equation*}
\left\|x_{1}^{\prime /}\right\| \leq\|h\|+\left\|f\left(x_{0}+x_{1}\right)\right\|\left\|x_{1}^{\prime}\right\|+\left\|g\left(x_{0}+x_{1}\right)\right\| \tag{3.7}
\end{equation*}
$$

Since $\int_{0}^{2 \pi} x_{1}^{\prime}(t) d t=0$,by Wirtinger's inequality

$$
\int_{0}^{2 \pi}\left(x_{1}^{/}(t)\right)^{2} d t \leq \int_{0}^{2 \pi}\left(x_{1}^{/ /}(t)\right)^{2} d t
$$

(ie $\left\|x_{1}^{\prime}\right\| \leq\left\|x_{1}^{/ /}\right\|$) [see 1] and from(3.7) we have

$$
\left(1-\left\|f\left(x_{0}+x_{1}\right)\right\|\right)\left\|x_{1}^{\prime}\right\| \leq\|h\|+\left\|g\left(x_{0}+x_{1}\right)\right\|=A
$$

If $1-\left\|f\left(x_{0}+x_{1}\right)\right\| \neq 0$, then

$$
\begin{equation*}
\left\|x_{1}^{\prime}\right\| \leq \frac{A}{1-\left\|f\left(x_{0}+x_{1}\right)\right\|}=B . \tag{3.8}
\end{equation*}
$$

$\operatorname{Using}(3.8)$ in the identity $x_{1}(t)=x_{1}(0)+\int_{0}^{t} x_{1}^{\prime}(s) d s \quad\left(\right.$ with $\left.x_{1}(0)=0\right)$, we get

$$
\begin{gather*}
\left|x_{1}(t)\right| \leq \int_{0}^{t}\left|x_{1}^{\prime}(s)\right| d s \leq \int_{0}^{2 \pi}\left|x_{1}^{\prime}(s)\right| d s \leq \sqrt{2 \pi}\left(\int_{0}^{2 \pi}\left|x_{1}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}=\sqrt{2 \pi}\left\|x_{1}^{\prime}\right\| \\
\leq \sqrt{2 \pi} B=C \tag{3.9}
\end{gather*}
$$

From(3.9),(3.8) and (3.7) we obtain that $x_{1}, x_{1}^{/}$and $x_{1}^{/ /}$are bounded in L_{2} and so $C(R)$ is bounded in $H^{2}(0,2 \pi)$, and in consequence, $C(R)$ is bounded in $C^{1}[0,2 \pi]$ and in E independently of
$R>0$.Thus,Condition(a) of Theorem3.2 is satisfied.To verify the Condition (b) of Theorem 3.2 we have

$$
\begin{aligned}
B\left(x_{0}, Q N\left(x_{0}+x_{1}\right)\right) & =\int_{0}^{2 \pi} x_{0}\left[h(t)-f\left(x_{0}+x_{1}\right)\left|x_{1}^{\prime}\right|-g\left(x_{0}+x_{1}\right)\right] d t \\
& =2 \pi x_{0} Q N\left(x_{0}+x_{1}\right)
\end{aligned}
$$

Then Condition (b) of Theorem3.2 is equivalent to the following condition: there exists $R_{0}>0$ such that

$$
\begin{equation*}
Q N\left(R_{0}+x_{1}\right) \leq 0 \leq Q N\left(-R_{0}+x_{1}\right) \tag{3.10}
\end{equation*}
$$

for every x_{1} such that $x_{1}=\lambda H(I-Q) N\left(x_{0}+x_{1}\right)$.
By the above arguments we have proved the following theorem
Theorem 3.3:Suppose that g is increasing, $1-\left\|f\left(x_{0}+x_{1}\right)\right\| \neq 0$ and condition (3.10) holds.Then the $\operatorname{PBVP}(1.1)-(1.2)$ has at least one solution.

Now assume that $\lim _{x \rightarrow \pm \infty} g(x)=g(\pm \infty)$ exists and

$$
\begin{equation*}
g(-\infty) \leq g(x) \leq g(\infty), \text { for every } x \in \mathbb{R} \tag{3.11}
\end{equation*}
$$

The well-known Landesman-Lazer[6] is

$$
\begin{equation*}
g(-\infty)<\omega<g(\infty) \tag{3.12}
\end{equation*}
$$

Corollary 3.4:If g satisfies (3.11), $1-\left\|f\left(x_{0}+x_{1}\right)\right\| \neq 0$ and (3.12) holds, then the $\operatorname{PBVP}(1.1)-(1.2)$ has at least one solution.

Proof:We have from (3.8) and (3.9)

$$
\left\|x_{1}\right\|_{E}=\sup _{t \in[0,2 \pi]}\left|x_{1}(t)\right|+\left\|x_{1}^{\prime}\right\| \leq B+C=B(1+\sqrt{2 \pi})=\delta .
$$

Thus, we get $-\delta \leq x_{1}(t) \leq \delta$, for every $x_{1} \in C\left(R_{0}\right), t \in[0,2 \pi]$ and $R_{0}>$ 0 .From (3.12), there exists $T>0$ such that

$$
\begin{equation*}
g(-x)<\omega<g(x) \text { for } x>T \tag{3.13}
\end{equation*}
$$

Choose $R_{0} \geq \delta+T$ so that $R_{0}+x_{1}(t) \geq T$ and $-R_{0}+x_{1}(t) \leq-T$.By integration of (3.13) we get

$$
\int_{0}^{2 \pi}\left[h(t)-g\left(R_{0}+x_{1}(t)\right)\right] d t \leq 0 \leq \int_{0}^{2 \pi}\left[h(t)-g\left(-R_{0}+x_{1}(t)\right)\right] d t
$$

and thus condition (3.10) of Theorem 3.3 is satisfied.

4 References

[1] E.F.Beckenbach,R.Bellman:Inequalities.Springer-Verlag,1961.
[2] H.Bresis:Analyse fonctionnelle.Théorie et applications.Dunod,Paris, 1999
[3] L.Cesari,R.Kannan: An Abstract ExistenceTheorem at Resonance.Proceedings of the American Mathematical Society,V April1977,221-225.
[4] S.Fucik,V.Lovicar: Periodic solutions of the equation $x^{/ /}+g(x(t)=p(t)$, Casopis pest.Mat.,100(1975),160-175.
[5] R.Kannan,R.Ortega: Periodic solutions of pendulum-equations,J.Differential Equations, 59(1985),123-144
[6] E.M.Landesman,A.C.Lazer:Nonlinear perturbations of linear elliptic boundary value problems at resonance, J.Math.Mech.,19(1970), 609-623.
[7] J.J.Nieto,V.S.H.Rao: Periodic solutions for scalar Liénard equations. Acta Math.Hung. 57(1-2)(1991),15-27.
[8] J.J.Nieto,V.S.H.Rao: Periodic solutions of second order nonlinear differential equations.Acta Math.Hung. 48(1986),59-66.
[9] S.Tersian: On the periodic problem for the equation $\mathrm{x}^{/ /}+\mathrm{g}(\mathrm{x}(\mathrm{t}))=\mathrm{f}(\mathrm{t})$, Funkcialaj ekvacioj,28(1985),39-46.

Received: September 15, 2008

