
Applied Mathematical Sciences, Vol. 2, 2008, no. 22, 1053 - 1062

Viscosity Approximative Methods for Nonexpansive

Nonself-Mappings without Boundary Conditions

in Banach Spaces

Rabian Wangkeeree and Pramote Markshoe1

Department of Mathematics, Faculty of Science
Naresuan University, Phitsanulok 65000, Thailand

rabianw@nu.ac.th (R. Wangkeeree)
pramotem@nu.ac.th (P. Markshoe)

Abstract. Let C be a nonempty closed convex subset of a uniformly smooth
Banach space E, T : C −→ E be a nonexpansive mapping and P be a sunny
nonexpansive retraction of E onto C. For x0 ∈ C, the explicit iterative se-
quence {xn} is ginven by

xn+1 = P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn)) for n = 0, 1, 2, . . . ,

where {αn} and {βn} are sequences in (0, 1) and [0, 1) respectively satisfying
appropriate conditions, and f : C −→ C is a fixed contractive mapping. We
prove that {xn} converges strongly to a fixed point of T without boundary
conditions. The results presented extend and improve the corresponding ones
announced by Chen et al. [2], and others.
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1. Introduction

Let C be a nonempty closed convex subset of a Banach space E, and let
T : C −→ C be a nonexpansive mapping (i.e., ‖Tx − Ty ≤ ‖x − y‖ for all
x, y ∈ C). We use Fix(T ) to denote the set of fixed points of T ; that is ,
Fix(T ) = {x ∈ C : x = Tx}. Recall that a selfmapping f : C −→ C is a
contraction on C if there exists a constant β ∈ (0, 1) such that

‖f(x) − f(y)‖ ≤ β‖x − y‖, ∀x, y ∈ C. (1.1.1)

1The author is supported in part by Faculty of Science, Naresuan University, Thailand.
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Xu [8] defined the following two viscosity iterations for nonexpansive mappings:

xt = tf(xt) + (1 − t)Txt (1.1.2)

and

xn+1 = αnf(xn) + (1 − αn)Txn (1.1.3)

where {αn} is a sequence in (0, 1). Xu proved the strong convergence of {xt}
defined by (1.1.2) as t −→ 0 and {xn} defined by (1.1.3) in both Hilbert space
and uniformly smooth Banach space.

Recently, Song and Chen [4] proved if C is a closed subset of a real reflexive
Banach space E which admits a weakly sequentially continuous duality map-
ping from E to E, and if T : C −→ E is a nonexpansive nonself-mapping
satisfying the weakly inward condition, F (T ) �= ∅ , f : C −→ C is a fixed
contractive mapping, and P is a sunny nonexpansive retraction of E onto C,
then the sequences {xt} and {xn} defined by

xt = P (tf(xt) + (1 − t)Txt) (1.1.4)

and

xn+1 = P (αnf(xn) + (1 − αn)Txn) (1.1.5)

strongly converge to a fixed point of T . Very recently, Chen and Zhu [2]
established the strong convergence of both {xt} and {xn} defined by (1.1.4)
and (1.1.5) respectively, for a nonexpansive nonself-mapping T in a uniformly
smooth Banach space.

Let C be a nonempty closed convex subset of a uniformly smooth Banach
space E, T : C −→ E be a nonexpansive nonself-mapping and P be a sunny
nonexpansive retraction of E onto C, the purpose of this paper is to use the
following iterative process : x0 ∈ C,

xn+1 = P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn)) for n = 0, 1, 2, . . . ,
(1.1.6)

where {αn} and {βn} are sequences in (0, 1) and [0, 1) respectively, and f :
C −→ C is a fixed contractive mapping, to approximate to the fixed point of
nonexpansive mapping T without boundary conditions . Our results extend
and improve the corresponding ones announced by Chen et al. [2], and others.

2. Preliminaries

Let E be a real Banach space and let J denote the normalized duality
mapping from E into 2E∗

given by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖ = ‖x‖ = ‖f‖}, ∀x ∈ E

where E∗ be the dual space of E and and 〈·, ·〉 denotes the generalized duality
pairing. In the sequence, we will denote the single-valued duality mapping by
j, and xn −→ x will denote strong convergence of the sequence {xn} to x.
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In Banach space E, the following result (the Subdifferential Inequality) is well
known (Theorem 4.2.1 of [5]): ∀x, y ∈ E, ∀j(x + y) ∈ J(x + y), ∀j(x) ∈ J(x),

‖x‖2 + 2〈y, j(x)〉 ≤ ‖x + y‖2 ≤ ‖x‖2 + 〈y, j(x + y)〉. (2.2.1)

Recall that the norm of E is said to be Gâteaux differentiable if the limit

lim
t−→0

‖x + ty‖ − ‖x‖
t

(2.2.2)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. Such a Banach
space E is called smooth. The norm of a Banach space E is also said to
be uniformly Gâteaux differentiable if for each y ∈ U , the limit of (2.2.2)
is attained uniformly for x ∈ U . Finally, the norm is said to be uniformly
Frèchet differentiable (and E is said to be uniformly smooth) if the limit in
(2.2.2) is attained uniformly for (x, y) ∈ U × U . A Banach space E is said to
be smooth if and only if J is single valued. It is also well known that if E is
uniformly smooth, J is uniformly norm-to-norm continuous. These concepts
may be found in [5].

If C and D are nonempty subsets of a Banach space E such that C is
nonempty closed convex and D ⊂ C, then a mapping P : C −→ D is called
a retraction from C to D if P 2 = P . It is easily known that a mapping
P : C −→ D is retraction, then Px = x, for all x ∈ D. A mapping P : C −→ D
is called sunny if

P (Px + t(x + Px)) = Px,∀x ∈ C, (2.2.3)

whenever Px + t(x − Px) ∈ C for x ∈ C and t ≥ 0. A subset D of C is said
to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D. For more detail, see [5]

The following lemma is well known [5].

Lemma 2.1. Let C be a nonempty convex subset of a smooth Banach space E,
D ⊂ C, J : E −→ E∗ the (normalized) duality mapping of E, and P : C −→ D
a retraction. Then the following are equivalent:

(i) 〈x − Px, j(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ D
(ii) P is both sunny and nonexpansive.

Let C be a nonempty convex subset of a Banach space E, then for x ∈ C,
the inward set is given by [6, 7]

IC(x) = {y ∈ E : y = x + λ(z − x), z ∈ C, λ ≥ 0}. (2.2.4)

A mapping T : C −→ E is said to be satisfying the inward condition if Tx ∈
IC(x) for all x ∈ C. T is also said to be satisfying the weakly inward condition

if for each x ∈ C, Tx ∈ IC(x) where IC(x) is the closure of IC(x). Very recently
for a nonself-mapping T from C into E, Matsushita and Takahashi [3] studied
the following condition:

Tx ∈ Sc
x (2.2.5)
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for all x ∈ C, where Sx = {y ∈ C : y �= x, Py = x} and P is a sunny
nonexpansive retraction from E onto C. Then they proved the following three
lemmas.

Lemma 2.2. [3, Lemma 3.1] Let C be a closed convex subset of a smooth
Banach space E and let T be a mapping form C into E. Suppose that C is
a sunny nonexpansive retract of E. If T satisfies the condition (2.2.5), then
F (T ) = F (PT ), where P is a sunny nonexpansive retraction from E onto C.

Lemma 2.3. [3, Lemma 3.2] Let C be a closed convex subset of a smooth
Banach space E and let T be a mapping form C into E. Suppose that C is a
sunny nonexpansive retract of E. If T satisfies the weakly inward condition,
then T satisfies the condition (2.2.5).

Lemma 2.4. [3, Lemma 3.3] Let C be a closed convex subset of a strictly
convex Banach space E and let T be a nonexpansive mapping from C into E.
Suppose that C is a sunny nonexpansive retract of E. If F (T ) �= ∅ then T
satisfies the condition (2.2.5).

The following lemma can be founded in [1].

Lemma 2.5. [1] Let {sn} be a sequence of nonnegative real numbers, {γn} a
sequence of [0, 1] with

∑∞
n=1 γn = ∞, {βn} a sequence of nonnegative real num-

bers with
∑∞

n=1 βn < ∞ and {αn} a sequence of real numbers with lim supn−→∞ αn ≤
0. Suppose that

sn+1 ≤ (1 − γn)sn + γnαn + βn

for all n ∈ N. Then limn−→∞ sn = 0.

The following lemma can be founded in [8].

Theorem 2.6. [8] Let X be a uniformly smooth Banach space, C a closed
convex subset of X, T : C −→ C a nonexpansive mapping with Fix(T ) �= ∅,
and f : C −→ C a contractive mapping. Then as t −→ 0, {xt} defined by

xt = tf(t) + (1 − t)Txt (2.2.6)

converges strongly to a fixed point q of T such that q is the unique solution in
F (T ) to the following variational inequality:

〈(f − I)q, j(q − u)〉 ≤ 0 for all u ∈ F (T ). (2.2.7)

3. Main Results

Theorem 3.1. Let X be a uniformly smooth Banach space, C a closed convex
subset of X. Suppose that C is a sunny nonexpansive retract of E with P a
nonexpansive retraction. Let T : C −→ E a nonexpansive nonself-mapping
with Fix(T ) �= ∅, and f : C −→ C be a contractive mapping. Then as t −→ 0,
{xt} defined by

xt = tf(t) + (1 − t)PTxt (3.3.1)
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converges strongly to a fixed point q of T such that q is the unique solution in
F (T ) to the following variational inequality:

〈(f − I)q, j(q − u)〉 ≤ 0 for all u ∈ F (T ). (3.3.2)

Proof. Applying the Theorem 2.6 with the nonexpansive self-mapping PT , we
obtain that {xt} converges strongly as t −→ 0 to a fixed point of PT . Since
F (T ) �= ∅, using Lemma 2.2 and 2.4, we obtain F (T ) = F (PT ). The proof is
complete.

Theorem 3.2. Let E be a uniformly smooth Banach space, C is a nonempty
closed convex subset of E. Suppose that C is a sunny nonexpansive retract
of E. Let T : C −→ E be a nonexpansive nonself-mapping with F (T ) �= ∅,
and f : C −→ C a fixed contractive mapping with coefficient β ∈ (0, 1).
The sequence {xn} is defined by (1.1.6), where P is the sunny nonexpansive
retraction of E onto C, {αn} ⊂ (0, 1) and {βn} ⊂ [0, 1), and satisfying the
following conditions:

(i) limn−→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) limn−→∞ βn = 0;
(iv)

∑∞
n=0 |βn − βn−1| < +∞;

(v) either
∑∞

n=0 |αn − αn−1| < +∞ or limn−→∞(αn+1/αn) = 1.

Then as n −→ ∞, the sequence {xn} converges strongly to a fixed point q of T
such that q is the unique solution in F (T ) to the variational inequality (3.3.2).

Proof. First we show that {xn} is bounded. Take u ∈ F (T ), it follows that

‖xn+1 − u‖ = ‖P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn)) − Pu‖
≤ ‖αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn) − u‖
≤ αn‖f(xn) − u‖ + (1 − αn)‖βn(xn − u) + (1 − βn)(Txn − u)‖
≤ αnβ‖xn − u‖ + αn‖f(u) − u‖ + (1 − αn)βn‖xn − u‖

+(1 − βn)(1 − αn)‖xn − u‖
= (1 − (1 − βn)αn)‖xn − u‖ + αn‖f(u) − u‖
≤ max{‖xn − u‖, 1

1 − β
‖f(u) − u‖}.

By induction, we have

‖xn − u‖ ≤ max{‖x0 − u‖, 1

1 − β
‖f(u) − u‖}, ∀n ≥ 0.

Therefore {xn} is bounded, so are {Txn} and {f(xn)}. Then we get that

‖xn+1 − PTxn‖ = ‖P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn)) − PTxn‖
≤ ‖αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn) − Txn‖
≤ αn‖f(xn) − Txn‖ + (1 − αn)‖βnxn + (1 − βn)Txn − Txn‖
= αn‖f(xn) − Txn‖ + (1 − αn)βn‖xn − Txn‖
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−→ 0 as n −→ ∞. (3.3.3)

Next we shall show that

lim
n−→∞

‖xn+1 − xn‖ = 0. (3.3.4)

Indeed we have

‖xn+1 − xn‖ = ‖P (αnf(xn) + (1 − αn)(βnxn + (1 − βn)Txn))
−P (αn−1f(xn−1) + (1 − αn−1)(βn−1xn−1 + (1 − βn−1)Txn−1))‖

≤ αn‖f (xn) − f(xn−1)‖ + |αn − αn−1|‖f (xn−1)‖
+ (1− αn)‖βnxn + (1 − βn)Txn − βn−1xn−1 − (1 − βn−1)Txn−1‖
+ |αn − αn−1|‖βn−1xn−1 + (1 − βn−1)Txn−1‖

≤ αnβ‖xn − xn−1‖ + |αn − αn−1|‖f (xn−1)‖
+ (1− αn)[βn‖xn − xn−1‖ + |βn − βn−1|‖xn−1‖ + (1 − βn)‖xn − xn−1‖
+ |βn − βn−1|‖Txn−1‖] + |αn − αn−1|‖βn−1xn−1 − (1 − βn−1)Txn−1‖

= αnβ‖xn − xn−1‖ + (1 − αn)‖xn − xn−1‖ + |αn − αn−1|[‖f(xn−1)‖
+ ‖βn−1xn−1 − (1 − βn−1)Txn−1‖] + (1 − αn)|βn − βn−1|[‖xn−1‖ + ‖Txn−1‖]

= (1 − (1 − β)αn)‖xn − xn−1‖ + Kn.

where Kn = |αn − αn−1|[‖f(xn−1)‖ + ‖βn−1xn−1 − (1 − βn−1)Txn−1‖] + (1 −
αn)|βn − βn−1|[‖xn−1‖ + ‖Txn−1‖] . Since {xn} is bounded, there exists a
positive constant K such that

Kn ≤ K(|αn − αn−1| + |βn − βn−1|),
thus,

‖xn+1 − xn‖ ≤ (1 − (1 − β)αn)‖xn − xn−1‖ + K(|αn − αn−1| + |βn − βn−1|)
(3.3.5)

Assume that
∑∞

n=0 |αn − αn−1| < +∞. By Lemma 2.5 and the conditions on
{αn} and {βn} we get the required result.

Assume that limn−→∞(αn+1/αn) = 1. Then from (3.3.5), we have

‖xn+1 − xn‖ ≤ (1 − (1 − β)αn)‖xn − xn−1‖ + αn|1 − αn−1

αn

|K + K|βn − βn−1|.
(3.3.6)

By Lemma 2.5 and the conditions on {αn} and {βn} we also get the required
result. Using (3.3.3) and (3.3.4), we get

‖xn − PTxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − PTxn‖ −→ 0 as n −→ ∞. (3.3.7)

Let q = limt−→0 xt, where {xt} is defined in Theorem 3.1, we get that q is
the unique solution in F (T ) the following variational inequality:

〈(f − I)q, j(q − u)〉 ≤ 0 for all u ∈ F (T ). (3.3.8)

Next we shall show that

lim sup
n−→∞

〈f(q) − q, j(xn − q)〉 ≤ 0. (3.3.9)
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From (3.3.1) we can write

xt − xn = t(f(xt) − xn) + (1 − t)(PTxt − xn). (3.3.10)

It follows from (3.3.7) that

bn(t) = ‖xn − PTxn‖(‖xn − PTxn‖ + 2‖xn − xt‖) −→ 0 as n −→ ∞.
(3.3.11)

Using the inequality (2.2.1), we have

‖xt − xn‖2 ≤ (1 − t)2‖PTxt − xn‖2 + 2t〈f(xt) − xn, j(xt − xn)〉
≤ (1 − t)2‖PTxt − PTxn + PTxn − xn‖2 + 2t〈f(xt) − xt, j(xt − xn)〉

+ 2t‖xt − xn‖2

≤ (1 − t)2‖xt − xn‖2 + (1 − t)2‖xn − PTxn‖2

+ 2(1 − t)2‖PTxn − xn‖‖xt − xn‖ + 2t〈f(xt) − xt, j(xt − xn)〉
+ 2t‖xt − xn‖2

≤ (1 + t)2‖xt − xn‖2 + bn(t) + 2t〈f(xt) − xt, j(xt − xn)〉. (3.3.12)

The last inequality implies

〈f(xt) − xt, j(xn − xt)〉 ≤ t

2
‖xt − xn‖2 +

1

2t
bn(t). (3.3.13)

It follows from (3.3.11) that

lim sup
n−→∞

〈f(xt) − xt, j(xn − xt)〉 ≤ M.
t

2
, (3.3.14)

where M is a constant such that M ≥ ‖xt − xn‖2 forall t ∈ (0, 1). By letting
t −→ 0 in the last inequality we have

lim
t−→0

lim sup
n−→∞

〈f(xt) − xt, j(xn − xt)〉 ≤ 0. (3.3.15)

On the other hand, for all ε > 0 there exits a positive δ1 such that t ∈ (0, δ1),

lim sup
n−→∞

〈f(xt) − xt, j(xn − xt)〉 ≤ ε

2
. (3.3.16)

On the other hand, {xt} converges strongly to q, as t −→ ∞, the set {xt −xn}
is bounded, and the duality map J is norm-to-norm uniformly continuous on
bounded sets of uniformly smooth space E; from xt −→ q as t −→ 0, we get

‖f(q) − q − (f(xt) − xt)‖ −→ 0 as t −→ 0,

and

‖〈f(q) − q, j(xn − q)〉 − 〈f(xt) − xt, j(xn − xt)〉‖
= ‖〈f(q) − q, j(xn − q) − j(xn − xt)〉 + 〈f(q) − q − (f(xt) − xt), j(xn − xt)〉‖
≤ ‖f(q) − q‖‖j(xn − q) − j(xn − xt)‖

+ ‖f(q) − q − (f(xt) − xt)‖‖j(xn − xt)‖ −→ 0 as t −→ 0 (3.3.17)
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Hence for the above ε > 0, there exists δ2 > 0 such that for all t ∈ (0, δ2), for
all n, we have

‖〈f(q) − q, j(xn − q)〉 − 〈f(xt) − xt, j(xn − xt)〉‖ ≤ ε

2
. (3.3.18)

Therefore, we have

〈f(q) − q, j(xn − q)〉‖ ≤ 〈f(xt) − xt, j(xn − xt)〉 +
ε

2
. (3.3.19)

Taking δ = min{δ1, δ2}, for all t ∈ (0, δ), we have

lim sup
n−→∞

〈f(q) − q, j(xn − q)〉 ≤ lim sup
n−→∞

(〈f(xt) − xt, j(xn − xt)〉 +
ε

2
) ≤ ε

2
+

ε

2
= ε.

(3.3.20)

Since ε is arbitrary, we get the required inequality (3.3.9). Finally, we shall
show that xn −→ q as n −→ ∞. We note that

xn+1 − (αnf(xn) + (1 − αn)q) = (xn+1 − q) − αn(f(xn − q)).

Using the inequality (2.2.1), we have,

‖xn+1 − q‖2 = ‖xn+1 − (αnf(xn) + (1 − αn)q) + αn(f(xn − q))‖2

≤ ‖xn+1 − P (αnf(xn) + (1 − αn)q)‖2 + 2αn〈f(xn) − q, j(xn+1 − q)〉‖
≤ ‖xn+1 − P (αnf(xn) + (1 − αn)q)‖2 + 2αn〈f(xn) − q, j(xn+1 − q)〉‖
≤ ‖αnf(xn) + (1 − αn)(βnxn + (1 + βn)Txn) − (αnf(xn) + (1 − αn)q)‖2

+ 2αn〈f(xn) − f(q), j(xn+1 − q)〉‖ + 2αn〈f(q) − q, j(xn+1 − q)〉‖
≤ (1 − αn)2[βn‖xn − q‖ + (1 + βn)‖Txn − q‖]2

+ 2αn〈f(xn) − f(q), j(xn+1 − q)〉‖ + 2αn〈f(q) − q, j(xn+1 − q)〉‖
≤ (1 − αn)2‖xn − q‖2 + 2αn‖f(xn) − f(q)‖‖xn+1 − q‖

+ 2αn〈f(q) − q, j(xn+1 − q)〉‖
≤ (1 − αn)2‖xn − q‖2 + αn(‖f(xn) − f(q)‖2 + ‖xn+1 − q‖2

+ 2αn〈f(q) − q, j(xn+1 − q)〉.
Therefore we have

(1−αn)‖xn+1−q‖2 ≤ (1−2αn+α2
n)‖xn−q‖2+αnβ‖xn−q‖2+2αn〈f(q)−q, j(xn+1−q)〉.

Thus,

‖xn+1 − q‖2 ≤ (1 − 1 − β2

1 − αn
αn)‖xn − q‖2 +

α2
n

1 − αn
‖xn − q‖2

+
2αn

1 − αn
〈f(q) − q, j(xn+1 − q)〉

≤ (1 − γn)‖xn − q‖2 + λγnαn +
2

1 − β2
n

γn〈f(q) − q, j(xn+1 − q)〉,

where γn = 1−β2

1−αn
αn and λ is a constant such that λ > 1

1−βn
‖xn − q‖2. Hence

‖xn+1 − q‖2 ≤ (1 − γn)‖xn − q‖2
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+ γn(λαn +
2

1 − β2
n

γn〈f(q) − q, j(xn+1 − q)〉).(3.3.21)

It is easily seen that γn −→ 0,
∑∞

n=1 γn = ∞, and noting that

lim
n−→∞

(λαn +
2

1 − β2
n

γn〈f(q) − q, j(xn+1 − q)〉) ≤ 0.

Applying Lemma 2.5 onto (3.3.21), we have {xn} converges strongly to q. The
proof is complete.

If in Theorem 3.2 , βn = 0 for all n ≥ 0, then the iteration (1.1.6) reduces to
the iteration (1.1.5). Note that, the weakly inward conditions on the mapping
T can be dropped. In fact, the following Corollary can be obtained from
Theorem 3.2 immediately.

Corollary 3.3. [2, Theorem 3.4] Let E be a uniformly smooth Banach space,
C is a nonempty closed convex subset of E, let T : C −→ E be a nonexpansive
nonself-mapping satisfying the weakly inward conditions, and F (T ) �= ∅. Let
f : C −→ C a fixed contractive mapping. The sequence {xn} is defined by
(1.1.5), where P is the sunny nonexpansive retraction of E onto C, and {αn} ⊂
(0, 1), and satisfying the following conditions:

(i) limn−→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) either
∑∞

n=0 |αn − αn−1| < +∞ or limn−→∞(αn+1/αn) = 1.

Then as n −→ ∞, the sequence {xn} converges strongly to a fixed point q
of T such that q is the unique solution in F (T ) to the following variational
inequality:

〈(f − I)q, j(q − u)〉 ≤ 0 for all u ∈ F (T ).

If in Theorem 3.2 , T : C −→ C is the nonexpansive mapping and βn = 0
for all n ≥ 0, then the iteration (1.1.6) reduces to the iteration (1.1.3). In fact,
the following Corollary can be obtained from Theorem 3.2 immediately.

Corollary 3.4. [8, Theorem 4.2] Let E be a uniformly smooth Banach space,
C is a nonempty closed convex subset of E, let T : C −→ C be a nonexpansive
mapping with F (T ) �= ∅. Let f : C −→ C a fixed contractive mapping. The
sequence {xn} is defined by (1.1.3) and {αn} ⊂ (0, 1) satisfying the following
conditions:

(i) limn−→∞ αn = 0;
(ii)

∑∞
n=0 αn = ∞;

(iii) either
∑∞

n=0 |αn − αn−1| < +∞ or limn−→∞(αn+1/αn) = 1.

Then as n −→ ∞, the sequence {xn} converges strongly to a fixed point q
of T such that q is the unique solution in F (T ) to the following variational
inequality:

〈(f − I)q, j(q − u)〉 ≤ 0 for all u ∈ F (T ).
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