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Abstract. Let C be a nonempty closed convex subset of a uniformly smooth
Banach space E, T : C — E be a nonexpansive mapping and P be a sunny
nonexpansive retraction of £ onto C. For xy € C, the explicit iterative se-
quence {z,} is ginven by

Tng1 = P (onf(2n) + (1 = an)(Ban + (1 = 0n)Txy)) forn=0,1,2,...,

where {a,,} and {3,} are sequences in (0, 1) and [0, 1) respectively satisfying
appropriate conditions, and f : C' — (' is a fixed contractive mapping. We
prove that {x,} converges strongly to a fixed point of T" without boundary
conditions. The results presented extend and improve the corresponding ones
announced by Chen et al. [2], and others.
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1. INTRODUCTION

Let C' be a nonempty closed convex subset of a Banach space E, and let
T : C — C be a nonexpansive mapping (i.e., ||Tx — Ty < |z — y|| for all
z,y € C). We use Fiz(T) to denote the set of fixed points of T; that is ,
Fiz(T) = {z € C : x = Tx}. Recall that a selfmapping f : C — C'is a
contraction on C'if there exists a constant 3 € (0, 1) such that

1 () = FWIl < Blle = yll, Yo,y € C. (1.L.1)
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Xu [8] defined the following two viscosity iterations for nonexpansive mappings:
rp=tf(xy) + (1 —t) Ty (1.1.2)
and
Tpi1 = o f(zn) + (1 —an)Txy (1.1.3)

where {a,} is a sequence in (0, 1). Xu proved the strong convergence of {x;}
defined by (1.1.2) as t — 0 and {z,,} defined by (1.1.3) in both Hilbert space
and uniformly smooth Banach space.

Recently, Song and Chen [4] proved if C' is a closed subset of a real reflexive
Banach space E which admits a weakly sequentially continuous duality map-
ping from F to E, and if T': ' — FE is a nonexpansive nonself-mapping
satisfying the weakly inward condition, F(T) # 0 , f : C — C is a fixed
contractive mapping, and P is a sunny nonexpansive retraction of £ onto C,
then the sequences {z;} and {z,} defined by

xy = P(tf(z) + (1 —t)Txy) (1.1.4)
and
Tn1 = Planf(z,) + (1 — a,)Tx,) (1.1.5)

strongly converge to a fixed point of 7. Very recently, Chen and Zhu [2]
established the strong convergence of both {z;} and {z,} defined by (1.1.4)
and (1.1.5) respectively, for a nonexpansive nonself-mapping 7" in a uniformly
smooth Banach space.

Let C be a nonempty closed convex subset of a uniformly smooth Banach
space E, T : C — FE be a nonexpansive nonself-mapping and P be a sunny
nonexpansive retraction of £ onto C, the purpose of this paper is to use the
following iterative process : xy € C,

Tpi1 = P(anf(x,) + (1 — ay) By + (1 = B,)Txy,)) forn=0,1,2,...,
(1.1.6)

where {a,} and {f3,} are sequences in (0,1) and [0, 1) respectively, and f :
C — (' is a fixed contractive mapping, to approximate to the fixed point of
nonexpansive mapping 7" without boundary conditions . Our results extend
and improve the corresponding ones announced by Chen et al. [2], and others.

2. PRELIMINARIES

Let E be a real Banach space and let J denote the normalized duality
mapping from E into 2F" given by

J(@) ={f e E": (&, [) = [« Fl = ll=l = I F1I}, Vo € E

where E* be the dual space of E and and (-, -) denotes the generalized duality
pairing. In the sequence, we will denote the single-valued duality mapping by
j, and x, — z will denote strong convergence of the sequence {z,} to x.
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In Banach space E, the following result (the Subdifferential Inequality) is well
known (Theorem 4.2.1 of [5]): Vx,y € E,Vj(z +vy) € J(x +y),Vj(z) € J(x),
)1+ 2(y, 7(2)) < |z +yl* < [J2)I* + (v, 5 (z +y)). (2.2.1)
Recall that the norm of E is said to be Gateaux differentiable if the limit
ol iyl o]

t—0 t

(2.2.2)

exists for each z,y in its unit sphere U = {z € E : ||z|| = 1}. Such a Banach
space E is called smooth. The norm of a Banach space E is also said to
be uniformly Gateaur differentiable if for each y € U , the limit of (2.2.2)
is attained uniformly for x € U. Finally, the norm is said to be uniformly
Frechet differentiable (and E is said to be uniformly smooth) if the limit in
(2.2.2) is attained uniformly for (z,y) € U x U. A Banach space E is said to
be smooth if and only if J is single valued. It is also well known that if E is
uniformly smooth, J is uniformly norm-to-norm continuous. These concepts
may be found in [5].

If ¢ and D are nonempty subsets of a Banach space F such that C' is
nonempty closed convex and D C C, then a mapping P : C — D is called
a retraction from C to D if P? = P. It is easily known that a mapping
P : C — Disretraction, then Pz = z, forallz € D. A mapping P: C' — D
is called sunny if

P(Px +t(x + Px)) = Px,Vx € C, (2.2.3)

whenever Pz + t(z — Px) € C for x € C and t > 0. A subset D of C' is said
to be a sunny nonexpansive retract of C' if there exists a sunny nonexpansive
retraction from C' onto D. For more detail, see [5]

The following lemma is well known [5].

Lemma 2.1. Let C' be a nonempty convex subset of a smooth Banach space F,
D cC,J: E— E* the (normalized) duality mapping of E, and P : C'— D
a retraction. Then the following are equivalent:

(i) (x — Pz,j(y — Pz)) <0 forallx € C andy € D

(ii) P is both sunny and nonexpansive.

Let C' be a nonempty convex subset of a Banach space E, then for x € C,
the inward set is given by [6, 7]

Io(z)={ye E:y=a+ANz—1x),z€ C,\ >0} (2.2.4)

A mapping T : C — F is said to be satisfying the inward condition if Tx €
Io(z) for all z € C. T is also said to be satisfying the weakly inward condition
if for each x € C, Tx € I(z) where I(z) is the closure of I¢(x). Very recently
for a nonself-mapping 7' from C into E, Matsushita and Takahashi [3] studied

the following condition:
Tx €S, (2.2.5)
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for all x € C, where S, = {y € C : y # z,Py = x} and P is a sunny
nonexpansive retraction from £ onto C. Then they proved the following three
lemmas.

Lemma 2.2. [3, Lemma 3.1] Let C be a closed convex subset of a smooth
Banach space E and let T be a mapping form C into E. Suppose that C is
a sunny nonexpansive retract of E. If T satisfies the condition (2.2.5), then
F(T) = F(PT), where P is a sunny nonexpansive retraction from E onto C.

Lemma 2.3. [3, Lemma 3.2] Let C be a closed convex subset of a smooth
Banach space E and let T be a mapping form C into E. Suppose that C' is a
sunny nonexpansive retract of E. If T satisfies the weakly inward condition,
then T satisfies the condition (2.2.5).

Lemma 2.4. [3, Lemma 3.3] Let C' be a closed conver subset of a strictly
convex Banach space E and let T be a nonexpansive mapping from C into E.
Suppose that C' is a sunny nonexpansive retract of E. If F(T) # 0 then T
satisfies the condition (2.2.5).

The following lemma can be founded in [1].

Lemma 2.5. [1] Let {s,} be a sequence of nonnegative real numbers, {v,} a
sequence of [0,1] with >~77 | v = 00, {B.} a sequence of nonnegative real num-
bers with >~ | B, < oo and {a,} a sequence of real numbers with lim sup,,__, . o, <

0. Suppose that
Sn+1 S (1 - ’}/n)sn + YnOn + ﬂn
for alln € N. Then lim,,__ ., s, = 0.

The following lemma can be founded in [8].

Theorem 2.6. [8] Let X be a uniformly smooth Banach space, C' a closed
convex subset of X, T : C — C a nonexpansive mapping with Fix(T) # 0,
and f: C — C a contractive mapping. Then ast — 0, {x,;} defined by

r=1tf(t)+ (1 —t)Tx, (2.2.6)
converges strongly to a fixed point q of T' such that q is the unique solution in
F(T) to the following variational inequality:

(f—1)q,j(g—u)) <0 for allu € F(T). (2.2.7)

3. MaIN RESULTS

Theorem 3.1. Let X be a uniformly smooth Banach space, C a closed convex
subset of X. Suppose that C' is a sunny nonexpansive retract of E with P a
nonexpansive retraction. Let T : C' — FE a nonexpansive nonself-mapping
with Fiz(T) # 0, and f : C — C be a contractive mapping. Then ast — 0,
{z;} defined by

xp=tf(t)+ (1 —t)PTx, (3.3.1)
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converges strongly to a fixed point q of T such that q is the unique solution in
F(T) to the following variational inequality:

((f =Da,j(g—u)) <0 for allu € F(T). (3.3.2)

Proof. Applying the Theorem 2.6 with the nonexpansive self-mapping PT', we
obtain that {x;} converges strongly as ¢ — 0 to a fixed point of PT. Since
F(T) # 0, using Lemma 2.2 and 2.4, we obtain F(T) = F(PT). The proof is
complete. O

Theorem 3.2. Let E be a uniformly smooth Banach space, C' is a nonempty
closed convex subset of E. Suppose that C is a sunny nonerpansive retract
of E. Let T : C — E be a nonexpansive nonself-mapping with F(T) # 0,
and f : C — C a fized contractive mapping with coefficient 5 € (0,1).
The sequence {x,} is defined by (1.1.6), where P is the sunny nonexpansive
retraction of E onto C, {a,,} C (0,1) and {B,} C [0,1), and satisfying the
following conditions:

(i) lim, .o a, =0;

(i) Sy 00 = oo

(iil) lim, . B, =0;

() Y5 B0 — Buoa| < +00;

(v) either Y 0 o oy, — ap1| < +o0 or lim, o (any1/a) = 1.

Then as n — o0, the sequence {x,} converges strongly to a fixed point q of T
such that q is the unique solution in F(T) to the variational inequality (3.3.2).
Proof. First we show that {x,} is bounded. Take u € F(T), it follows that

[P (e f(@n) + (1 = on)(Bpan + (1 = Bn)T2n)) — Pul|
lan f(zn) + (1 = ) (Bun + (1 = Bo)Tyn) — ull
| f(2n) — ul| + (1 = )| Bulzn — u) + (1 = Bo) (T2, — v
anfBlzn — ull + ol f(u) — ul + (1 — an)Ballzn — ul
+(1 = 8,)(1 = an)|zn — ul|
(1= (1 = Bn)an)llzn = ull + om || f (u) — ull

1
< max{flzn - ull, 757 () — ull}-

[2n 1 —

IA AN A

By induction, we have
1
[ — ul] < max{|[zo — ull, me(U) — ul},Vn = 0.

Therefore {z,} is bounded, so are {T'z,,} and {f(z,)}. Then we get that
|2pi1 — PTa,|| = ||Planf(zn) + (1= an)(Bnzn + (1 = Ba)T3,)) — PTa,|
anllf(zn) = Tanll + (1 — an)[|Bun + (1 = o) Ty — Ty ||
anllf(zn) = Tanll + (1 — an)Bullwn — T

IAIN
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— 0 as n — oo. (3.3.3)
Next we shall show that
nli%mOO |Tpni1 — zn|| = 0. (3.3.4)

Indeed we have

[Znt1 —anl = [[Plonf(@n) + (1 = on)(Bpan + (1 = Bn)Txs))
= Plan-1f(zn-1) + (1 — an—1)(Ba—12n—1 + (1 = Bu1)Tzn—1))||
an | f(zn) = flan-1)ll + lom — an_1ll|f(zn-1)||
+ (1= an)|lBnzn + (1 = Bo)TTn — Bn—1@n—1 — (1 = Bp—1)Txp_1||
+lon — an—1|||Bn-12n—1 + (1 = Bn1)TTpn 1|
anfBllzn — xn-1l + [an — 1| f(zn-1)|l
+ (1 =) [Bullzn — Tn-1ll + [Bn — Ba—1lllzn—1ll + (1 = Bu)lzn — Tn-1]|
+18n = Bn-1lllTzn-1l] + on — an—1[l|Bn—12n—1 — (1 = Bn—1)Txp—1]|
= anfllzn — znall+ (1 — an)llzn — 21| + |on — - |[[[ f(@n-1)|
F18n-12n-1— (1= Bn1)Tan-all] + (1 — an)[Bn = Bu-rlllln—1ll + | Tzn-1]]
= (1-QQ=PBan)llzn —zp-1] + Kn.
where K, = |a, — an ||| f (@) || + |Bn-12n1 — (1 = Bp1) Tzna|l] + (1 =
a)|Bn = Bo—illl|Tn—1ll + |[Tzn-1]]] . Since {x,} is bounded, there exists a
positive constant K such that

Kn S K(’an - anfly + yﬂn - ﬂnfl‘)a

IN

IN

thus,

[Zns1 — 2|l < (1 — (1 = B)an)||zn — o || + K(Jaw — ane1| + [Bn — Bu-1l)
(3.3.5)

Assume that Y7 |, — a,-1] < +00. By Lemma 2.5 and the conditions on
{a,} and {3,} we get the required result.
Assume that lim,, (v 41/,) = 1. Then from (3.3.5), we have

|K + KBy — Bn-al.
(3.3.6)

Op—1

[2nt1 = zall < (1 = (1= B)aw)l[zn = 20l + an|l =

n

By Lemma 2.5 and the conditions on {«,} and {3,} we also get the required
result. Using (3.3.3) and (3.3.4), we get

|xn — PTx,|| < ||wn — Znat|| + [|Tner — PT2,|| — 0 as n — oo, (3.3.7)

Let ¢ = limy__¢ 2y, where {z;} is defined in Theorem 3.1, we get that ¢ is
the unique solution in F(T') the following variational inequality:

(f—1)q,j(qg—u)) <O0forall u e F(T). (3.3.8)
Next we shall show that

limsup(f(q) — ¢, j(zn — q)) <O0. (3.3.9)

n—-auoQo
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From (3.3.1) we can write
ry — xp = t(f(x) —xp) + (1 —8)(PTay — xp,). (3.3.10)

It follows from (3.3.7) that

by (t) = ||xn — PTx,||(||x, — PTxy|| + 2|z, — 2¢]]) — 0 as n — oc.
(3.3.11)

Using the inequality (2.2.1), we have

lze = 2ol < (1= )| PTay — al® + 2(f (21) — n, (21 — 20))

< (1= t)?|PTay — PTay, + PTay, — x| + 26(f(2) — x4, j (w0 — x))
+ 2t|| 2 — ||

< (1= 622y — 2l + (1= )% — PTa)?
+2(1 = )2 PTn — ooy — ol + 26(f (20) — 4, (s — 20))
+ 2t — anQ

< (L2 — znl|® + bu(t) + 2t(f (1) — 24, (T — 220)). (3.3.12)

The last inequality implies

. t 1
(f(xy) — g, gy — 21)) < §th — za|I? + Q—tbn(t). (3.3.13)
It follows from (3.3.11) that
t
lim Sup(f(xt) - xtaj(xn - xt)> < M§7 (3314)

where M is a constant such that M > ||x; — x,||* forall ¢ € (0,1). By letting
t — 0 in the last inequality we have

tlimo limsup(f(x;) — @y, j(x, — x4)) < 0. (3.3.15)

On the other hand, for all € > 0 there exits a positive §; such that ¢t € (0, d7),
lim sup (£ (z) — w0, (@0 — 7)) < 5. (3.3.16)

On the other hand, {x;} converges strongly to ¢, as t — oo, the set {x; —z,}
is bounded, and the duality map J is norm-to-norm uniformly continuous on
bounded sets of uniformly smooth space E; from x; — q as t — 0, we get

1/(q) = = (f(z:) = @) — O as t — 0,

and
1(f(q0) — ¢, (xn — @) — (f(2:) — 24, § (20 — 20)) |
= {f(@) = ¢, J(xn — @) — (@0 — 1)) + (f(q) — ¢ — (f(zs) — 21), j (20 — 21))|
< Nf(@) = qllli(rn — q) = j(zn — )|l

+I1f(@) =g — (fxe) —z)l[[l7(xn —20)|| — Oast —0 (3.3.17)
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Hence for the above e > 0, there exists d; > 0 such that for all ¢ € (0, ds), for
all n, we have

1{f (@) =, j(n — @) = {f (@) — 21, (2 — 20)) || <
Therefore, we have

(fla) = (@n — )l < (f (@) — 20, (20 — 21)) + g (3.3.19)
Taking § = min{dy, &2}, for all ¢ € (0,0), we have

i sup£(9) = 4.5 — @) < Hmsup({ () = 0,0 = 20)) +5) < 545 =
(

3.3.20)

(3.3.18)

wlm

Since ¢ is arbitrary, we get the required inequality (3.3.9). Finally, we shall
show that x, — ¢ as n — oo. We note that

Tn+1 — (anf(xn) + (1 - an)Q) - (xn—‘rl - Q) - an(f(xn - Q))
Using the inequality (2.2.1), we have,

znsr —al* = llzasr — (anf(zn) + (1= an)q) + an(f (@0 — )|

< ensr = Planf (2) + (1= an)@)|1? + 200 (f(x0) — g, (201 — @)l

< lwpsr — Planf(zn) + (1 - an)Q)HQ + 2an(f(zn) — (Tnt1 — @)l

< Nanf(@n) + (1= an) (Bawn + (1 + Bn)Tn) — (nf (2n) + (1 — o)) |?
+ 200 (f (2n) — f(), J(@nt1 — | + 200 (f (@) — ¢, (Tnt1 — @) |

< (1= an)®[Ballzn — qll + (1 + Bo)[|Tzn — gl]?
+ 20 (f(zn) = f(@), J(@nt1 — ) + 200 (f(q) — ¢ J(Tns1 — )|

< (1= an)*[len — ql* + 2an| f(2n) = f(@) 1201 — gl

+200,(f(q) = ¢, 5 (01 — Q)|
< (1= an)?lzn —dll® + anlll f(@n) = F@IP + [2n41 — gl
+2an(f(q) — 4,7 (Tnt1 — q))-
Therefore we have

(1 O‘n)Hxn-i-l_qHQ (1 2an+a )Hxn q” +anﬁ||xn qH +2an<f(q)_%j(xn+l_q>>'
Thus,

1— 32 a?
| —al* < (1—1— o Cn)llzn = al* + = o e = ql®
20, .
t o V(@) = ¢ (@ — )

2 .
< (1 =)lzn — qll* + Mman + 1_—BQ%<f(CJ) — ¢, j(Tn1 — q)),

where 7, = %an and A is a constant such that A > ﬁ“xn — q||*. Hence

lzner —all* < (1 =)z —qll®
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2 :
+ (Ao, + 1—7ﬁ2%<‘f@ — ¢, j(Tp41 — q)))(3.3.21)
It is easily seen that v, — 0,7, 7, = 00, and noting that

lim (/\an + %Vn(f(q) - Qaj(xn-i-l - q)>) S 0.

Applying Lemma 2.5 onto (3.3.21), we have {x,} converges strongly to ¢q. The
proof is complete. O

If in Theorem 3.2 | /3, = 0 for all n > 0, then the iteration (1.1.6) reduces to
the iteration (1.1.5). Note that, the weakly inward conditions on the mapping
T can be dropped. In fact, the following Corollary can be obtained from
Theorem 3.2 immediately.

Corollary 3.3. [2, Theorem 3.4] Let E be a uniformly smooth Banach space,
C' is a nonempty closed convex subset of E, let T : C' — E be a nonexpansive
nonself-mapping satisfying the weakly inward conditions, and F(T) # 0. Let
f:C — C a fized contractive mapping. The sequence {x,} is defined by
(1.1.5), where P is the sunny nonexpansive retraction of E onto C, and {«a,} C
(0,1), and satisfying the following conditions:

(i) lim,—0o a, = 0;

(i) 0y, = oo;

(iii) either Y o |an — 1] < +00 or lim, o0 (tny1/on) = 1.
Then as n — o0, the sequence {x,} converges strongly to a fized point q
of T such that q is the unique solution in F(T) to the following variational
inequality:

(f=1Dq,j(qg—u)) <0 for allu € F(T).

If in Theorem 3.2 , T : C' — (' is the nonexpansive mapping and 3, = 0
for all n > 0, then the iteration (1.1.6) reduces to the iteration (1.1.3). In fact,
the following Corollary can be obtained from Theorem 3.2 immediately.

Corollary 3.4. [8, Theorem 4.2] Let E be a uniformly smooth Banach space,
C' is a nonempty closed convex subset of E, let T : C' — C' be a nonexpansive
mapping with F(T) # 0. Let f : C — C a fized contractive mapping. The
sequence {x,} is defined by (1.1.3) and {a,} C (0, 1) satisfying the following
conditions:

(i) lim,—0o a, = 0;

(i) 32,20 am = 00;

(iii) either > 7 o loy, — ap_q] < 400 or lim, o (ayi1/0,) = 1.
Then as n — o0, the sequence {x,} converges strongly to a fized point q
of T such that q is the unique solution in F(T) to the following variational
mequality:

(f=1Dq,j(qg—u)) <0 for allu € F(T).
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