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Abstract

Data Envelopment Analysis (DEA) can be regarded as a useful man-
agement tool to the assessment evaluation of decision making units
(DMUs) using multiple inputs to produce multiple outputs. In some
cases, to evaluate the efficiency having imprecise inputs and outputs
such as fuzzy or interval data the efficiency of DMUs won’t be exact as
well. Most researches have been conducted were based on getting define
efficiency and ranking so far. In this paper, the fuzzy efficiency scores
of decision making units are counted and the entropy of which is deter-
mined and at the same time, they will be ranked from a new view point.
To do this, maximum entropy as a special class weighting function is
used, and then the fuzzy efficiency of DMUs considering the optimistic
level will be computed. At the end, having a numerical example, the
concept of method analyzed.
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1 Introduction

Data envelopment analysis (DEA), as a very useful management and decision
tool, has found surprising development in theory and methodology and exten-
sive applications in the range of the whole world since it was first developed
by Charnes et al. Traditional DEA models require crisp input/output data.
However, in real-world problems inputs and outputs are often imprecise. Most
of the previous studies that deal with inexact and imprecise inputs and outputs
in DEA models have simply used simulation techniques like the one in Banker
et al.[1]. Cooper et al.[3] studied how to deal with imprecise data .The final
efficiency score for each DMU was derived as a deterministic numerical value
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less than or equal to unity. In recent years, fuzzy set theory has been proposed
as a way to quantify imprecise and vague data in DEA models. Sengupta [12]
was the first to introduce a fuzzy DEA model. The DEA models with fuzzy
data (”fuzzy DEA” models) can more realistically represent real-world prob-
lems than the conventional DEA models. Fuzzy set theory also allows linguistic
data to be used directly within the DEA models. Fuzzy DEA models take the
form of fuzzy linear programming models. A typical approach to fuzzy linear
programming requires a method to rank fuzzy sets and different fuzzy ranking
methods may lead to different results [11]. The problem of ranking fuzzy sets
has been addressed by many researchers. Good references on fuzzy ranking
methods and properties thereof are in Dubois and Prade [4]. As pointed by
Wang and Kerre[14].

Our aim in this paper is to explore the application entropy fuzzy in fuzzy DEA
model, and the ranking of decision making units (DMUs).

Entropy of fuzzy set describes the fuzziness degree of fuzzy set. Many scholars
have studied it from different points of view. For example, in 1972, De Luca
and Termini[5] introduced some axioms to describe the fuzziness degree of
fuzzy set. Kaufmann [10] proposed a method to measure the fuzziness degree
of fuzzy set by a metric distance between its membership function and the
membership function of its nearest crisp set. Another way given by Yager [15]
was to view the fuzziness degree of fuzzy set in terms of a lack of distinction
between the fuzzy set and its complement. Some authors have investigated
interval valued fuzzy set and it’s some relevant topics, for example, in 2004,
Grzegorzewski [8] studied distance between interval valued fuzzy sets based on
the Hausdroff metric, Burillo and Bustince[2] and Szmidt et al.[13] researched
entropy of interval valued fuzzy set from different point of views, respectively.
Liu[11] expanded centroid method of fuzzy number to a generic form with
weighting function.

The rest of this paper is organized as follows: In Sections 2 and 3 we re-
view fuzzy DEA model and entropy fuzzy. In Section 4 we investigated the
application entropy in DEA. An illustrative example is presented in Section 5.

2 Fuzzy DEA model

Fuzzy DEA models take the form of fuzzy linear programming models. Con-
sider n DMUs; each consumes varying amounts of m different fuzzy inputs
to produce s different fuzzy outputs. In the model formulation, z;, ¢ =
1,---,mand y,, r=1,---,s denote, respectively, the input and output val-
ues forDMU,, the DMU under consideration. The programming statement for
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the (input oriented) fuzzy CCR model is:
max E, = Z UpYro
s.t. Z ViTip =

Zury?j—ZvifijSO j=1---'n
= i=1
Up,v; >0 r=1,---,5 i=1---.m (1)

The a-cuts, also known as the a-level sets, of x;; and y,; are defined as
(Ti5)a =12 € X | floy(2) > a} = [l 2t ]

VK

and (g:j)a = {l' e X ’ :uyrj(ff 2 C(} [yrj7y71fj]
Applying the o — level of fuzzy DEA, the following model would be achieved:

max EO = Ei luT[yf“my:fo]
s.t. "ol k] =1
Zi:l UT[yT]7y7‘]] - ?llvz[l'i],l' ] < 0 .7: 1)"'7”
Up,; >0 r=1,---,8 , 1=1,---,m (2)

Now interval DEA model is developed for measuring the lower and upper
bounds of the best relative efficiency of each DMU with interval input and
output data.
max (EO)Z = Z =1 ur(yro)
s.t. S i), = 1

Sp o Ur(Yro)ts — Sy vi(io)l, <O

St (Yo — Xy viwy)a <0 j=1,n j#o

u,v; >0 r=1,---,s , 1=1---.m (3)

max (Eo>f)z = Zizl ur(yro>fx
s.t. m o)t =1
2= uT(yT0>la -2 UZ(%O) <0
Ei:lur(yrj)g_zz 11}@(%]) <0 Jj=1--n j#o
Up,v; >0 r=1,---.s , i=1---.m (4)

Theorem 2.1 for evera, E! <E!

Theorem 2.2 If oy <y then [E.  EY]C[E. ,E"]

ag? a1’

3 Entropy fuzzy

In physics, the word entropy has important physical implications as the amount
of "disorder” of a system; In mathematics, a more abstract definition is used.
Entropy is as a measure of probabilistic uncertainty. Concept of entropy has
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penetrated a wide range of disciplines, such as statistical mechanics, busi-
ness, pattern recognition, transportation, information theory, queuing the-
ory, linear and nonlinear programming and so on. To define entropy, Shan-
non (1948) proposed some axioms. (1)Expansibility (2)Symmetry (3)Con-
tinuity (4)Maximum (5)Additivity (6)Monotonicity (7)Branching (8)Normal-
ization. The Shannon entropy of a variable A (discrete set) is defined as
H(A) = =YX p(z). In(p(z))

where p(x)denotes the probability distribution in the universal set X for all
x € X, and the entropy of a continuous probability distribution with the prob-
ability density function p(x) as H(A) = — [p(x).In(p(z))dz

The first fuzzy entropy formula without reference to probabilities was proposed
in 1972 in the work of De Luca and Termini[5], who defined the entropy using
Shannon’s functional form.

H(A) = =X pa(e) In(pa(z)) = (1= pal))(In(l — pa(2)))(5)

Definition 3.1 A real function H : F — R™ is called entropy on F (fuzzy
set), if H has the following properties:
(P1) H(A)=0if A is a crisp set (P2) H(A) is a unique mazimum if pa(z) = 5
(P3) If A* is a sharpened version of A, then H(A*) < H(A); fuzzy set A* a
sharpened version of A, if jia-(x) > pa(z) when pa(z) > 3 andpa-(z) < pa(z)
when pa(z) < 5. (P4) H(A®) = H(A), where A is the standard complement
of A, i.e. pac(x) =1— pa(z).

The measure of fuzziness H(A) can be regarded as ”entropy” of a fuzzy
set A. At a fixed element = , H(pua(x)) = h(pa(x))where the entropy function
h : 10,1 — [0,1] is monotonically increasing in [0,0.5] and monotonically
decreasing in [0.5,1], moreover h(u) = 0, as u = 0 and 1; and h(u) = 1, as u=
0.5 . Some well-known entropy functions are shown in the following:

2u u e [0, 3]
h(u) = { 2(1—u) uel[31] ©)
h(u) = 4u(l — u) (7)
and h(u) = —u.In(u) — (1 —u).In(1 — u) (8)

where last is Shannon’s function. To determine a global entropy measure of
the fuzzy set A independent of x, if A is a discrete fuzzy set, entropy can be
defined as H(A) = Y c(x) h(pa(z))

and for a continuous fuzzy set A, we can integrate over the universal set X as
follows: H(A) = [,ex) Mpa(z))dx (9)
It is known that the larger H(A) is, the more is the fuzziness of the fuzzy set

A.
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3.1 Entropy of interval valued fuzzy set

In 2001, Szmidt et al.[13] extended De Luca and Termini [5] axioms for fuzzy
set to introduce entropy of intuitionistic fuzzy set. Based on this view point
of Szmidt et al.[13], Zeng and Shi[16] introduced the concept of entropy of
interval valued fuzzy set which is different from Bustince and Burillo [2].

Definition 3.2 A real function E : IVFS — [0,1] is called entropy on
IV FSs(interval valued fuzzy sets), if E satisfies the following properties:
(P1) H(A) = 0 iff A is a crisp set
(P2) H(A)=1 iff pa-(x) + pa+(x)) =1
(P3)H(A) < H(B) if A is less fuzzy than B, i.e., pus-(x) < pp-(r) and
pra+(x) < pp+ (@) for pp-(x)+pp+(x) < Lor pa-(x) = pp-(x)and pa+(z) =
pp+(2)) for pp-(x) + pp-(z) 21
(PAH(A) = H(A°),

Then we can give the following formulas to calculate entropy of interval valued
fuzzy set A:

Hi(A) =1— 320 | pa- (@) +par () —1 |
Hy(A) = 1—\/2?:1(%47 (@) + par (z:) — 1)°
Hy(A) = 1=52= [ | pa- (o) +par () =1 | da
Hy(A) = L a- @A(=pye (@)]da

[l la— @V (1—p g (2))dz
where the integral in A3 and H4 is Lebesgue integral.

4 Entropy in DEA

In most of the existing methods for possibilistic linear programming, where the
a-cut is used, the solution is obtained by comparing the intervals in left and
right hand side of the constraints. Different methodologies have been suggested
for the comparison of the intervals. In some of these methods simply the end
points of the interval are considered for justification that makes the model very
simple and hence a lot of information might have been lost. In the others the
complexity of the algorithm may cause computational inefficiency DEA assigns
an efficiency score less than one to inefficient DMUs and equal to one to efficient
DMUs. So, for inefficient DMUs a ranking is given but for efficient ones no
ranking can be given. Some methods for ranking efficient DMUs with crisp
data are developed. In this paper, by considering fuzzy DMUs, an alternative
ranking method based on entropy of efficiency of DMUs as weighting function
is proposed.

Definition 4.1 The weighting function expectation for fuzzy number A with
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b
z z) f(x)dx
supp(A) = [a, b] can be defined Vi (A) = %

where f(x) is called weighting f(x) > 0 with, and fff(x)dx #0 .

(14)

Definition 4.2 For weighting function of fuzzy number in [a,b], f(x), the
[} (z—a)f(x)dx (15)
(b-a) [ f(z)dx

As f() >0, 0< =2 <1z €a,b] s00< fBp <1
Some properties of the optimistic measure and the weighting function are as
the following:

optimistic degree is By =

Theorem 4.3 When A is a interval number as [a,b], V;(A) becomes the
linear combination of a and b with B;.  (Vy(A) =a+ (b—a)By)

Theorem 4.4 For weighting function f(x), and any fuzzy number A with
supp(A) = [a,b], if Br = 0= vs(A) —a if Bf = 1= vp(A) — b

As mentioned before, the weighting function can be seen as the decision
function representing the decision maker’s attitude. In this section, we will
propose a special class of weighting functions under given optimistic level with
maximum entropy principle. The entropy of weighting function f(x) can be
defined as  Hy = [P4f(z)(1 - f(z))dz (16)
with [° f(z)dz = 1.

The maximum entropy weighting function problem with given optimistic level
is

max Hy = /abllf(x)(l — f(z))dz

s.t Lbi:Zf(x)dx:ﬁ 0<p<1

/abf(x)dx =1 (17)

This is a variational optimization problem; the Lagrangian is

A(f (), f1(2), 2, A1, ho) = 4f (2)(1 = f(2) + M= (2) + Ao f ()

4 —=8f(x) + M2 f(x) + A f(x) =0

Considering the constraints of (17), we can get that

fla) = 725 (@ — 42 + 34, (18)
if =3 = f(z) =575 = Vi(4) = E(z)

This means the relative position of the preference expectation value should
remain when the membership function is translated, i.e., for fuzzy number A
with membership function pa(X) and supp(A) = [a,b], let B with ugp(z) =
pa(z—c) (cis a constant), then for given valuation optimistic level 3, V3(B) =
Vs(A) + ¢, where V3(A), V3(B) are the maximum entropy weighting function
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expectation of A, B with 3¢ = 3, respectively.
Let D : up(z) = pa(%) (c€ R—{0}), then

cV3(A)  ¢>0
V(D) = { cvf_ﬁ(A) <0

5 Numerical example

An example with two fuzzy inputs and two fuzzy outputs illustrated in Table
1 is considered. Interval efficiencies obtained from the models (3) and (4) for
different o values are listed in Table 2.

Table 1 - DMUs with two fuzzy inputs and two fuzzy outputs

DMU A B C D E
X, | (4,3545) | (29,2929 | (4.9,44,54) | (4.1,3.4,48) | (6.5,5.9,7.1)
X, | (2.1,1.9.2.3) | (1.5,1.4,1.6) | (2.6,2.2,3.0) | (2.3,2.2,2.4) | (4.2,3.6,4.6)
Y, | (2.6,24.2.8) | (2.2,2.222) | (3.22.7,3.7) | (2.9,2.5.2.3) | (5.1,4.4,5.8)
Y, | (4.1,3.84.4) | (353337 | (51,43,5.9) | (5.7,5.5,5.9) | (7.4,6.5.8.3)
Table 2 -Efficiency of DMUs
DMU A B C D E

a=00 | [0.654,1] |[0.836,1]| [0.57L,1] |[0.855.1] ] [0-638,1]

a=025] [0.702,1] |[0.908,1] | [0.642,1] |[0.943,1] | [0.735,1]

a =050 | [0.758,0.963] | [0.99,1] | [0.716,1] [1,1] | [0.845,1]

a =075 | [0.807,0.004] | [1,1] |[0.791,0.932] | [1,1] | [0.969,1]

a =100 | [0.855,0.855] | [1,1] |[0.861,0.861] | [1,1] 1,1]

To evaluate the entropy of illustrated DMUs, we make membership functions
of fuzzy efficiency of DMUs, u(x), and then the formula (7) for h(u(x)) is used.
The results computed entropy as (9), listed in table 3.

Table 3- Entropy of DMUs

DMU A B C D E

Entropy || 0.25217 | 0.1143 | 0.28225 | 0.08892 | 0.2678
Entropy figures out the uncertainty and fuzziness of score efficiency of DMUs,
therefore, the sums concluded of entropy will be more for DMUs having higher
or lower efficiency, thus value entropy isn’t able to ranking DMUs, But when
entropy use to making weighting function results suitable ranking for DMUs.
The preference expectations of fuzzy efficiency of DMUs with use weighting
function (18) and different valuation of optimistic levels are listed in Table 4.
Table 4 - Fuzzy efficiency of DMUs with different valuation of 3
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A B C D B
B =0.1] 0.6966 | 0.93512 | 0.70114 | 0.94634 | 0.7759
B =0.51 0.84449 | 0.9456 | 0.83035 | 0.95394 | 0.87783
B =0.7] 08787 | 0.9497 | 0.8642 | 0.95695 | 0.90108
B =0.91] 0.90266 | 0.95325 | 0.88881 | 0.95958 | 0.91720

Ranking of DMUs is as follow:

Table 5 - The ranking order for the five DMUs under different optimistic measure to 3

DMU | 6=01|8=05|8=07|3=0.9
A 5 4 4 4
B 2 2 2 2
C 4 5 5 5
D 1 1 1 1
B 3 3 3 3

6 Main Results

Since the efficiency being fuzzy in data envelopment analysis models with fuzzy
data, it will be difficult to rank the efficiencies. In this paper, an effective
method to rank efficient DMUs and inefficient DMUs is suggested. Compare
the other methods, it is more stable. This method is an extension of definite
class of weight function based on the principle of maximum entropy. Defin-
ing a parameter weight function regarding the optimistic view, the efficiency
is measured and contrasted. One of the most significant advantages of this
method is the compatibility and stability of which in ranking. Regarding the
[ index, the manager’s opinion to measure efficiency has been considered as
well. Also this approach has variety application in engineering industrial.
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