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Abstract

We propose and analyze a heterogeneous, multigroup, susceptible-
infective-recovery (SIR) sexually transmitted disease (STD) model where
the desirability and acceptability in partnership formation are functions
of the infected individuals. Then we investigate the dependent repro-
ductive number (R0) at the βij (the probability of disease transmission
per contact between an infected partner in group j and a susceptible
individual in group i.), then we study the stability and unstability of
the model in different states.
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1 Introduction

The effectiveness of improved sanitation, antibiotics, and vaccination programs
created a confidence in the 1960s that infectious disease would soon be elimi-
nated. Consequently, chronic disease such as cardiovascular disease and cancer
received more attention in the United States and industrialized countries. But
infectious disease have continued to be the major causes of suffering and mor-
tality in developing countries.

Moreover, infectious disease agents adapt and evolve. So that new infec-
tious disease have emerged and some existing diseases have reemerged [16].
Newly identified diseases include Lyme disease (1975), Legionnaire’s disease
(1976), toxic-shock syndrome (1978), hepatitis C (1989), hepatitis E (1990),
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and hantavirus (1993). The human immunodeficiency virus (HIV), which is the
etiological agent for acquired immunodeficiency syndrome (AIDS), emerged in
1981 and has become an important sexually transmitted disease throughout
the world [5].

Antibiotic-resistant strains of tuberculosis, pneumonia, and gonorrhea have
evolved. Malaria, dengue, and yellow fever have reemerged and are spreading
into new regions as climate changes occur. Disease such as plague, cholera,
and hemorrhagic fevers (Bolivian, Ebola, Lassa, Marburg, etc.) continue to
erupt occasionally. Surprisingly, new infectious agents called prions have re-
cently joined the previously know agents: viruses, bacteria, protozoa, and
helminthies (worms). Recent popular books have given us exciting accounts
of the emergence and detections of new diseases [5]. It is clear that human
or animal invasions of new ecosystems, global warning, environmental degra-
dation, increased international travel, and changes in economic patterns will
continue to provide opportunities for new and changes in economic patterns
will continue to provide opportunities for new and existing infectious disease
[17].

The emerging and reemerging diseases have led to a revived interest in
infectious diseases. Mathematical models have become important tools in an-
alyzing the spread and control of infectious diseases. The model formulation
process clarifies assumptions, variables, and parameters; moreover, models pro-
vide conceptual results such as thresholds, basic reproduction numbers, contact
numbers, and replacement numbers.

Mathematical models and computer simulations are useful experimental
tools for building and testing theories, assessing quantitative conjectures, an-
swering specific questions, determining sensitivities to changes in parameter
values, and estimating key parameters from data. Epidemiology modeling can
contribute to the design and analysis of epidemiological surveys, suggest, cru-
cial data that should be collected, identify trends, make general forecasts, and
estimate the uncertainty in forecasts [6, 7, 5].

The spread of sexually transmitted disease (STD’s) is complex. It depends
on not only the transmission mechanism but also behavior of individuals in-
volved in the transmission process. One of the determinants of the spread is
the way that individuals select their sexual partners. In a mathematical model
for the spread of STD’s, it is important to understand and correctly account
for the formation of their partnerships [11]. In modeling partnerships, the
partnership formation must satisfy the balance constraints [1, 2, 3, 4, 11, 12,
13, 14]. There are mixing multigroup models where the balance constraints
are automatically satisfied.

To investigate effects of behavior changes on the transmission dynamics
a common approach is to use different sets of parameters and simulate the
model for the whole course of the epidemic. Because of the complexity of the
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transmission dynamics of STD’s and difficulty of partnership formation do not
change during the simulation [6].

A goal of this article is to better understand how models with dynamic part-
nership formation differ from the more traditional models where the number or
desirability of partnership formation is constant. By making the partnership
formation infection dependent, we can analyze how sensitive the transmission
dynamics of the epidemic are to changes in sexual behaviors, and study sensi-
tivity of model in different states.

2 Model Formation

Divide the susceptible, infected and recovered population into K groups, Si,
Ii and Ri, i = 1, ..., K, and consider the simple transmission model system,⎧⎪⎨

⎪⎩
dSi/dt = μ(S0

i − Si) − λiSi,
dIi/dt = λiSi − (μ + γi)Ii,
dRi/dt = γiIi − μRi,

i = 1, ..., K, (1)

where Si is the susceptibles, Ii is infectives, Ri is recovereds people, μ is the
natural death rate, 1/γi is the average infectious period, and λi is the rate of
infection. The formation of partnerships plays an essential role in determining
the functional λi, which is one of the important factors in modeling STD’s. We
define a partnership to be sexual activity between two individuals where the
infection can be transmitted. It depends on the desirability of these potential
partners. We assume that people in each group behave the same when selecting
a partner but that they have biases between groups. In other words, mixing
within each group is assumed to be homogeneous, but there is heterogeneous
mixing among the groups [10].

Let αij be the preference of people in group i to have a partner from j,
that is, the fraction of people in group j with whom each individual in group
i desires to form a partnership. This describes the desirability of group j to
group i. It is also the acceptability of people in group i to have a partner from
group j. If an individual from group i encounters an individual from group j,
then the conditional probability that a partnership will form is

qij ≡ αijαji. (2)

Define ci to be the number of social contacts per unit time for a person in group
i. The availability of partners from group j is the probability cjNj/N, where
Nk = Sk + Ik + Rk and N =

∑
k

ckNk. Hence, an encounter of someone group

i with another individual, the probability of a partnership forming between
individuals from group i and group j is qij(cjNj/N). We define βij to be the
probability of disease transmission per contact between an infected partner in
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group j and a susceptible individual in group i. The infection people rate of
people in group i is

λi = ci

K∑
j=1

qijβij(cjIj/N), (3)

where we assume that Ij/Nj is the probability that a random contact from
group j is with an infected individual [11, 10].

3 Features of the model

3.1 Balance constraints

A major advantage of the selective mixing model is that the balance constraints
are automatically satisfied because if we let the number of contacts per unit
time of people in group i with people in group j be Tij, then it follows form

Tij = qij(cjNj/
∑
k

ckNk)ciNi = qji(ciNi/
∑
k

ckNk)cjNj = Tji (4)

that the balance constraint is always satisfied [8, 9, 10, 11, 12, 13]. Using
the advantages of the selective mixing model, we further assume that the
desirability and acceptability depend on the fraction of infected individuals in
the populations. This assumption characterizes possible behavior changes of
sexually active individuals. More specifically, we assume that the desirability
of people in group i having a partner in group j or acceptability of people
in group j people in group i, qij , is a decreasing function of the fraction of
infected individuals in group j [10]. Then, the mutually acceptable rates for
partnership formation can be expressed as

qij = qji = αij(Ij/Nj)αji(Ii/Ni), (5)

and the infection rate are

λi = ci

K∑
j=1

βijαij(Ij/Nj)αji(Ii/Ni)(cjIj/
∑
k

ckNk). (6)

3.2 The number of partners

The number of sexual partners per individual in many multi-group models is
assumed to be ci. However,If the mixing is biased, the number of partners will
vary in time depending on the combination of desirability, acceptability, and
availability. From Section 2 and [11], the number of partners per person in
group i is

ni = ci

⎛
⎝ K∑

j=1

qij(cjNj/
∑
k

ckNk)

⎞
⎠ , (7)
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3.3 Example

Consider a two group model governed by⎧⎪⎨
⎪⎩

dSi/dt = μ(S0
i − Si) − λiSi,

dIi/dt = λiSi − (μ + γi)Ii,
dRi/dt = γiIi − μRi,

i = 1, 2, (8)

with

λi = ci

2∑
j=1

qijβij(cjIj/N) (9)

and

ni = ci

⎛
⎝ 2∑

j=1

qij(cjNj/
∑
k

ckNk)

⎞
⎠ , (10)

Now, we use the following model parameters,
S0

1 = 450, S0
2 = 200, S1(0) = 450, S2(0) = 200, I1(0) = 50, I2(0) = 350,

R1(0) = 0, R2(0) = 0, α11 = 0.7, α12 = 0.8, α21 = 0.6, α22 = 0.4, μ = 0.05,
γ1 = 0.1, γ2 = 0.05, c1 = 10, c2 = 5.
The dynamics of the susceptibles, infecteds and recovereds for different βij ’s
are shown in Fig.1, Fig.2, Fig.3, Fig.4, Fig.5 and Fig.6.

4 The Disease-Free Equilibrium

Since Ri does not effect Si or Ii in system (8), consider the equivalent system{
dSi/dt = μ(S0

i − Si) − λiSi,
dIi/dt = λiSi − (μ + γi)Ii,

i = 1, 2. (11)

Consider the case where is no infection, i.e. I ≡ 0. Then (11) reduces to

dSi/dt = μ(S0
i − Si). (12)

Setting dSi/dt = 0 here shows an equilibrium of (8) at E0 = (S0
i , 0). This is

the disease-free equilibrium. Thus, in the absence of infectives the suscepti-
bles have an equilibrium value of S0

i . Now investigating the stability of this
equilibrium will derive the so-called reproductive number, R0.

4.1 The Reproductive Number, R0

The Jacobian matrix (1) at Ii = 0 has the following form of

J0 =

⎛
⎜⎜⎜⎜⎝

c1β11q11(S
0
1/N

0) − δ1 c1β12q12(S
0
1/N

0) · · · c1β1Kq1K(S0
1/N

0)
c2β21q21(S

0
2/N

0) c2β22q22(S
0
2/N

0) − δ2 · · · c2β2Kq2K(S0
2/N

0)
...

...
. . .

...
cKβK1qK1(S

0
K/N0) cKβK2qK2(S

0
K/N0) · · · cKβKKqKK(S0

K/N0) − δK

⎞
⎟⎟⎟⎟⎠ ,

(13)
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with δi ≡ μ + γi and N0 =
2∑

j=1
cjS

0
j . Stability of this Jacobian matrix J0

gives threshold conditions for the epidemic. In general , it is difficult to derive
an explicit formula of the reproductive number and usually the eigenvalues
of (13) must be determined numerically. We have investigated this problem
analytically for the two-group model (8), where the classification of groups
may be social, economic, ethnic, or geographic by locating the eigenvalues of
the Jacobian matrix at the infection-free equilibrium. The Jacobian matrix of
(8) at Ii = 0 has the form of

J0 =

(
c1β11q11(S

0
1/N

0) − δ1 c1β12q12(S
0
1/N

0)
c2β21q21(S

0
2/N

0) c2β22q22(S
0
2/N

0) − δ2

)
. (14)

We simplify the notation by defining eij = ciqii(S
0
i /N

0). Then

J0 =

(
e11β11 − δ1 e12β12

e21β21 e22β22 − δ2

)
. (15)

The large eigenvalue of J0,

λ = (1/2)((a11 + a22) +
√

(a11 + a22)2 − 4(a11a22 − e12β12e21β21), (16)

with aii = eiiβii − δi, is real. If λ < 0, the zero solution of (8) is stable, and if
λ > 0, it is unstable. Now, if define the reproductive number by

R0 = (1/δ1 + δ2)(e11β11 + e22β22 +
√

σ2
1 − 4σ2, (17)

with σ1 = e11β11 + e22β22 − δ1 − δ2, and σ2 = (e11β11 − δ1)(e22β22 − δ2) −
e12β12e21β21. Then , if R0 > 1 the epidemic spreads in the population and if
R0 < 1 the epidemic dies out.

4.2 Sensitivity studies

Consider the two group where the probability of disease transmission people in
group 2, (β21, β22), and the average probability of disease transmission people
in group 1, a ≡ β11 + β12 are fixed. We now use β ≡ β12, 0 ≤ β ≤ a, as
a parameter to study the effects of the relative probability of transmission
people in group 2 on the reproductive number. A large β implies that the
probability of disease transmission per contact between an infected partner in
group 2 and a susceptible individuals in group 1 is more than the probability
of disease transmission per contact between an infected partner in group 1 and
a susceptible individuals in own group. In terms of β,

R0(β) = (1/(2μ − γ1 − γ2))(e11(a − β) + e22β22 +
√

σ2
1 − 4(σ2), (18)

with σ1 = e11(a−β)+e22β22−δ1−δ2, and σ2 = (e11(a−β)−δ1)(e22β22−δ2)−
e12βe21β21. By analyzing R0 as a function of β, we have the following result.
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4.2.1 Example

For two group model (8) with parameters,
S0

1 = 200, S0
2 = 400, α11 = 0.7, α12 = 0.8, α21 = 0.6, α22 = 0.4, β21 = 0.1,

β22 = 0.2, μ = 0.05, γ1 = 0.1, γ2 = 0.05, c1 = 10, c2 = 5, a = 1,
we let β22 increase from 0 to 0.8, we have Fig.7. The dynamics of the suscep-
tibles, infecteds and recovereds for different β’s are shown in Fig.8.

5 Generalization to a continuum

Let x be a continuous state vector of characteristics of individuals in the popu-
lation (such age, geographical positions, or behavioral traits) defined in a set X
[11]. Let S(t, x), I(t, x) and R(t, x) be continuous densities of the susceptible,
infecteds and recovereds respectively and Nk(t, x) = S(t, x) + I(t, x) + R(t, x).

Assume that the desirability of an individual of state x to from partner-
ship with an individual of state y is described by α(x, y), x, yεX . Then the
acceptability of an individual of state y to an individuals of state x is α(y, x).

Define c(x) to be the number of social contacts per unit time for a person
in state x. The availability of individuals with state y in the population is
c(x)Nk(t, x)/N(t) where N(t) =

∫
xεX

c(x)Nk(t, x)dx is the total population.

The infection rate of a susceptible individual of state x infected from an
infected individual of state y at time t can be expressed by

λ(t, x) = (c(x)/N(t))
∫

yεX

c(y)β(x, y)α(x, y)α(y, x)I(t, y)dy, (19)

where β(x, y) is the transmission rate of the disease from an infected indi-
vidual of state y to a susceptible individual of state x, and the number partners
of an individuals of state x per unit time is

n(t, x) = (c(x)/N(t))
∫

yεX

c(y)α(x, y)α(y, x)Nk(t, y)dy. (20)

The probability of a partnership forming q(x, y) ≡ α(x, y)α(y, x) is sym-
metric and the balance constraints are automatically satisfied.

The dynamics of the epidemic is governed by the following system,

⎧⎪⎨
⎪⎩

∂S(t, x)/∂t = μ(S0(x) − S(t, x)) − λ(t, x)S(t, x),
∂I(t, x)/∂t = λ(t, x)S(t, x) − (μ − γ(x))I(t, x),
∂R(t, x)/∂t = γ(x)I(t, x) − μR(t, x),

(21)

with λ(t, x) as in (9).
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Figure 1: (a) : 0 ≤ β11 ≤ 0.8, β12 = 0.1, β21 = 0.1, β22 = 0.2, (b) : β11 =
0.2, 0 ≤ β12 ≤ 0.8, β21 = 0.1, β22 = 0.2, (c) : β11 = 0.2, β12 = 0.1, 0 ≤ β21 ≤
0.8, β22 = 0.2, (d) : β11 = 0.2, β12 = 0.1, β21 = 0.1, 0 ≤ β22 ≤ 0.8.
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Figure 2: (a) : 0 ≤ β11 ≤ 0.8, β12 = 0.1, β21 = 0.1, β22 = 0.2, (b) : β11 =
0.2, 0 ≤ β12 ≤ 0.8, β21 = 0.1, β22 = 0.2, (c) : β11 = 0.2, β12 = 0.1, 0 ≤ β21 ≤
0.8, β22 = 0.2, (d) : β11 = 0.2, β12 = 0.1, β21 = 0.1, 0 ≤ β22 ≤ 0.8.
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Figure 3: (a) : 0 ≤ β11 ≤ 0.8, β12 = 0.1, β21 = 0.1, β22 = 0.2, (b) : β11 =
0.2, 0 ≤ β12 ≤ 0.8, β21 = 0.1, β22 = 0.2, (c) : β11 = 0.2, β12 = 0.1, 0 ≤ β21 ≤
0.8, β22 = 0.2, (d) : β11 = 0.2, β12 = 0.1, β21 = 0.1, 0 ≤ β22 ≤ 0.8.
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Figure 4: (a) : 0 ≤ β11 ≤ 0.8, β12 = 0.1, β21 = 0.1, β22 = 0.2, (b) : β11 =
0.2, 0 ≤ β12 ≤ 0.8, β21 = 0.1, β22 = 0.2, (c) : β11 = 0.2, β12 = 0.1, 0 ≤ β21 ≤
0.8, β22 = 0.2, (d) : β11 = 0.2, β12 = 0.1, β21 = 0.1, 0 ≤ β22 ≤ 0.8.
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Figure 5: (a) : 0 ≤ β11 ≤ 0.8, β12 = 0.1, β21 = 0.1, β22 = 0.2, (b) : β11 =
0.2, 0 ≤ β12 ≤ 0.8, β21 = 0.1, β22 = 0.2, (c) : β11 = 0.2, β12 = 0.1, 0 ≤ β21 ≤
0.8, β22 = 0.2, (d) : β11 = 0.2, β12 = 0.1, β21 = 0.1, 0 ≤ β22 ≤ 0.8.
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Figure 6: (a) : 0 ≤ β11 ≤ 0.8, β12 = 0.1, β21 = 0.1, β22 = 0.2, (b) : β11 =
0.2, 0 ≤ β12 ≤ 0.8, β21 = 0.1, β22 = 0.2, (c) : β11 = 0.2, β12 = 0.1, 0 ≤ β21 ≤
0.8, β22 = 0.2, (d) : β11 = 0.2, β12 = 0.1, β21 = 0.1, 0 ≤ β22 ≤ 0.8.
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Figure 7: (a): (S0
1 = 200, S0

2 = 400, c1 = 10, c2 = 5, (a1) : a = 1/2,
(a2) : a = 1), (b): (S0

1 = 400, S0
2 = 400, c1 = 10, c2 = 5, (a1) : a = 1/2,

(a2) : a = 1,) (c): (S0
1 = 400, S0

2 = 200, c1 = 10,c2 = 5, (a1) : a = 1/2,
(a2) : a = 1), (d): (S0

1 = 200, S0
2 = 400, a = 1, (a1) : c1 = 10, c2 = 5,

(a2) : c1 = 5, c2 = 10).
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Figure 8: S0
1 = 200, S0

2 = 400, α11 = 0.7, α12 = 0.8, α21 = 0.6, α22 = 0.4,
β21 = 0.1, β22 = 0.2, μ = 0.05, γ1 = 0.1, γ2 = 0.05, c1 = 10, c2 = 5, a = 1.


