Applied Mathematical Sciences, Vol. 2, 2008, no. 22, 1063 - 1072

Numerical Results of Convergence Rates in Regularization for Ill-Posed Mixed Variational Inequalities

Nguyen Thi Thu Thuy

Faculty of Sciences Thainguyen University Thainguyen, Vietnam thuychip04@yahoo.com

Abstract

In this note some numerical experiments to illustration for convergence rates of regularized solution for ill-posed inverse-strongly monotone mixed variational inequalities are presented.

Keywords: Monotone operators, hemi-continuous, strictly convex Banach space, Fréchet differentiable, weakly lower semicontinuous functional and Tikhonov regularization

1 Introduction

Variational inequality problems appear in many fields of applied mathematics such as convex programming, nonlinear equations, equilibrium models in economics, technics (see [2], [7]). These problems can be defined over finitedimensional spaces as well as over infinite-dimensional spaces. In this paper, we suppose that they are defined on a real reflexive Banach space X having a property that the weak and norm convergences of any sequence in X infoly its strong convergences, and the dual space X^* of X is strictly convex. For the sake of simplicity, the norms of X and X^* are denoted by the symbol $\|.\|$. We write $\langle x^*, x \rangle$ instead of $x^*(x)$ for $x^* \in X^*$ and $x \in X$. Then, the mixed variational inequality problem can be formulated as follows: for a given $f \in X^*$, find an element $x_0 \in X$ such that

$$\langle A(x_0) - f, x - x_0 \rangle + \varphi(x) - \varphi(x_0) \ge 0, \quad \forall x \in X.$$
 (1)

where A is a hemi-continuous and monotone operator from X into X^* , and $\varphi(x)$ is an weakly lower semicontinuous and proper convex functional on X. We will suppose that problem (1) has at least one solution. For existence theorems, we refer the reader to [5]. Many problems can be seen as special cases of the problem (1). When φ is the indicator function of a closed convex set K in X, that is

$$\varphi(x) = I_K(x) = \begin{cases} 0, & \text{if } x \in K, \\ +\infty, & \text{otherwise,} \end{cases}$$

then the problem (1) is equivalent to that of finding $x_0 \in K$ such that

$$\langle A(x_0) - f, x - x_0 \rangle \ge 0, \quad \forall x \in K.$$

When K is the whole space X, this variational inequality is of the form of operator equation A(x) = f. When A is the Gâteaux derivative of a finite-valued convex function F defined on X, Problem (1) becomes the nondifferentiable convex optimization problem (see [5]):

$$\min_{x \in X} F(x) + \varphi(x). \tag{2}$$

The problem (1) is in general ill-posed. By ill-posedness we mean that solutions do not depend continuously on the data (A, f, φ) . Many methods have been proposed for solving Problem (1), for example the proximal point method [10], the auxiliary problem method [6] and the regularization method... The last introduced by Liskoves for solving mixed variational inequality problems (see [8]) by using the following mixed variational inequality

$$\langle A_h(x_\alpha^\tau) + \alpha U^s(x_\alpha^\tau - x_*) - f_\delta, x - x_\alpha^\tau \rangle + \varphi_\varepsilon(x) - \varphi_\varepsilon(x_\alpha^\tau) \ge 0, \quad \forall x \in X, \quad (3)$$

where α is regularization parameter, U^s is a generalized duality mapping of X, i.e., U^s is a mapping from X onto X^* satisfying $\langle U^s(x), x \rangle = ||x||^s$, $||U^s(x)|| = ||x||^{s-1}$, $s \geq 2$, $(A_h, f_\delta, \varphi_{\varepsilon})$ is approximation of (A, f, φ) , $\tau = (h, \delta, \varepsilon)$ and x_* is in X playing the role of a criterion of selection. By the choice of x_* , we can obtain approximate solutions.

In [8] it was shown that the existence and uniqueness of the solution x_{α}^{τ} for every $\alpha > 0$. The regularized solution x_{α}^{τ} converges to $x_0 \in S_0$, where S_0 is the set of solutions of (1) which is assumed to be nonempty with x_* -minimum norm solution, i.e.,

$$||x_0 - x_*|| = \min_{x \in S_0} ||x - x_*||,$$

if $(h + \delta + \varepsilon)/\alpha$, $\alpha \to 0$.

In this paper, we use inequality (3) with the following conditions posed on the perturbations: $A_h : X \to X^*$ is the hemi-continuous monotone operator approximated A in the sense

$$||A_h(x) - A(x)|| \le hg(||x||), \quad h \to 0$$

where g(t) is a nonegative function satisfying the condition $g(t) \leq g_0 + g_1 t^{\eta}$, $\eta = s - 1$, $g_0, g_1 \geq 0$, f_{δ} are approximations of $f : ||f_{\delta} - f|| \leq \delta$, $\delta \to 0$, φ_{ε} are functionals defined on X to be of the same properties as φ , and

$$\begin{aligned} |\varphi(x) - \varphi_{\varepsilon}(x)| &\leq \varepsilon d(||x||), \quad \varepsilon \to 0, \\ |\varphi_{\varepsilon}(x) - \varphi_{\varepsilon}(y)| &\leq C_0 ||x - y||, \quad \forall x, y \in X, \end{aligned}$$
(4)

for some positive constant C_0 and d(t) has the same properties as g(t). We also assume that the dual mapping U^s satisfies the following conditions

$$\langle U^{s}(x) - U^{s}(y), x - y \rangle \geq m_{s} ||x - y||^{s}, \quad m_{s} > 0, ||U^{s}(x) - U^{s}(y)|| \leq C(R) ||x - y||^{\nu}, \quad 0 < \nu \leq 1,$$

where C(R), R > 0 is a positive increasing function on $R = \max\{||x||, ||y||\}$. It is well-known that when $X = L^2[a, b]$ is a Hilbert space, then $U^s = I$, s = 2, $m_s = 1$, $\nu = 1$ and C(R) = 1, where I denotes the identity operator in the setting space (see [1], [12]).

The problem of choosing the value of the regularization parameter α depending on τ , i.e., $\alpha = \alpha(h, \delta, \varepsilon)$, and the convergence rate for the regularized solution x_{α}^{τ} are studied in [3]. We show that the parameter α can be chosen by solving the equation

$$\rho(\alpha) = (h + \delta + \varepsilon)^p \alpha^{-q}, \quad p, q > 0, \tag{5}$$

where $\rho(\alpha) = \alpha \|x_{\alpha}^{\tau} - x_*\|^{s-1}$.

The finite-dimensional approximation for (3) is the important problem. We approximate (3) by the sequence of finite-dimensional problems in [4]

$$\langle A_h^n(x_{\alpha,n}^{\tau}) + \alpha U^{sn}(x_{\alpha,n}^{\tau} - x_*^n) - f_{\delta}^n, x^n - x_{\alpha,n}^{\tau} \rangle + \varphi_{\varepsilon}(x^n) - \varphi_{\varepsilon}(x_{\alpha,n}^{\tau}) \ge 0, \quad \forall x^n \in X_n,$$

$$(6)$$

where $A_h^n = P_n^* A_h P_n$, $U^{sn} = P_n^* U^s P_n$, $x_*^n = P_n x_*$, $f_{\delta}^n = P_n^* f_{\delta}$, $P_n : X \longrightarrow X_n$ is a linear projection from X onto X_n , the finite-dimensional subspace of X, P_n^* is the conjugate of P_n , and

$$X_n \subset X_{n+1}, \quad \forall n \qquad ; \quad P_n x \longrightarrow x, \quad \forall x \in X, \quad \|P_n\| = 1.$$

As also for (3), variational inequality (6) has a unique solution $x_{\alpha,n}^{\tau}$ for every fixed $h, \delta, \varepsilon, \alpha > 0$ and n. In [4] we also consider the modified generalized discrepancy principle for selecting $\tilde{\alpha} = \alpha(h, \delta, \varepsilon, n)$ so that $x_{\tilde{\alpha},n}^{\tau}$ converges to x_0 as $h, \delta, \varepsilon \longrightarrow 0$ and $n \longrightarrow \infty$ in connection with the finite-dimensional and obtain the rates of convergence for the regularized solutions in this case.

2 The obtained results

Assumption 2.1. There exists a number $\tilde{\tau} > 0$ such that

$$||A(y) - A(x) - A'(x)(y - x)|| \le \tilde{\tau} ||A(y) - A(x)||, \quad \forall x \in S_0,$$

for y belonging to some neighbourhood of S_0 , in which A'(x) denotes the Fréchet derivative of A at x.

Rule 2.1. (see [4]) Choose $\tilde{\alpha} = \alpha(h, \delta, \varepsilon, n) \ge \alpha_0 := (c_1h + c_2\delta + c_3\varepsilon + c_4\gamma_n)^p$, $c_i > 1, i = 1, 2, 3, 4$ and 0 such that the following inequalities

$$\tilde{\alpha}^{1+q} \| x_{\tilde{\alpha},n}^{\tau} - x_*^n \|^{s-1} \ge (h+\delta+\varepsilon)^p,$$

$$\tilde{\alpha}^{1+q} \| x_{\tilde{\alpha},n}^{\tau} - x_*^n \|^{s-1} \le K_1 (h+\delta+\varepsilon)^p, \quad K_1 \ge 1,$$

hold.

The results on the convergence rate for regularized solution are studied in [3] as follows.

Theorem 2.1. Assume that the following conditions hold:

(i) A is an inverse-strongly monotone operator from X into X^* , i.e.

$$\langle A(x) - A(y), x - y \rangle \ge m_A ||A(x) - A(y)||^2, \quad \forall x, y \in X, \ m_A > 0,$$

Fréchet differentiable in some neighbourhood of S_0 , and satisfies Assumption 2.1 at $x = x_0$;

(ii) There exists an element $z \in X$ such that $A'(x_0)^* z = U^s(x_0 - x_*)$;

(iii) The parameter α is chosen by (5).

Then, we have

$$\|x_{\alpha(h,\delta,\varepsilon)}^{\tau} - x_0\| = O((h+\delta+\varepsilon)^{\mu_1}), \quad \mu_1 = \frac{1}{1+q} \min\left\{\frac{1+q-p}{s}, \frac{p}{2s}\right\}.$$

Remark 2.1. If α is chosen so that $\alpha \sim (h + \delta + \varepsilon)^{\eta}$, $0 < \eta < 1$, then

$$\|x_{\alpha(h,\delta,\varepsilon)}^{\tau} - x_0\| = O((h+\delta+\varepsilon)^{\mu_2}), \quad \mu_2 = \min\left\{\frac{1-\eta}{s}, \frac{\eta}{2s}\right\}.$$

And now, we consider the convergence and convergence rate for the sequence $\{x_{\tilde{\alpha},n}^{\tau}\}$ in [4].

Theorem 2.2. Assume that the following conditions hold:

(i) conditions (i), (ii) of Theorem 2.1;

(ii) the parameter $\tilde{\alpha} = \alpha(h, \delta, \varepsilon, n)$ is chosen by the Rule 2.1. Then, we have

$$\|x_{\tilde{\alpha},n}^{\tau} - x_0\| = O((h + \delta + \varepsilon + \gamma_n)^{\mu_3} + \gamma_n^{\mu_4}),$$

$$\mu_3 = \min\left\{\frac{1-p}{s}, \frac{p}{2s(1+q)}\right\}, \quad \mu_4 = \min\left\{\frac{1}{s}, \frac{\nu}{s-1}\right\}.$$

Remark 2.2. If $\tilde{\alpha}$ is chosen a priory such that $\tilde{\alpha} \sim (h+\delta+\varepsilon+\gamma_n)^{\eta}$, $0 < \eta < 1$, then

$$\|x_{\tilde{\alpha},n}^{\tau} - x_0\| = O((\gamma_n^{\mu_4} + (h + \delta + \varepsilon + \gamma_n)^{\mu_5}), \quad \mu_5 = \min\left\{\frac{1 - \eta}{s}, \frac{\eta}{2s}\right\}.$$

3 Numerical example

We now apply the obtained results of the previous sections to solve the following optimization problem:

$$\min_{x \in H} F(x) + \varphi(x) \tag{7}$$

with $F(x) = \frac{1}{2} \langle Ax, x \rangle$, where A is a self-adjoint linear bounded operator on a real Hilbert space H such that $\langle Ax, x \rangle \ge 0$, $\forall x \in H$. Because of the fact that F'(x) = Ax, x_0 is a solution of Problem (7) if and only if x_0 is a solution of the following problem (see [5])

$$\langle A(x_0), x - x_0 \rangle + \varphi(x) - \varphi(x_0) \ge 0, \quad \forall x \in H.$$

This is Problem (1) with $f = \theta \in H$.

Obviously, $A : H \to H$ is an inverse-strongly monotone operator (see [9]) and Fréchet differentiable with the Fréchet derivative A. In this case condition (ii) of Theorem 2.1 is described by

$$A(x_0)^* z = x_0, \quad (x_* = \theta).$$

The last equation holds if $A(x_0)^*$ satisfies coerciveness in H.

Consider the case φ is nonsmooth. It can be approximated by a sequence of smooth and monotone functions φ_{ε} (see [13]). So making use of the method of regularization (3) to be of the form

$$A_h(x_\alpha^\tau) + \alpha I(x_\alpha^\tau - x_*) + \varphi_\varepsilon'(x_\alpha^\tau) = f_\delta \tag{8}$$

we can find an approximation solution for (7), where $\alpha > 0$ is sufficiently small.

The computational results here are obtained by using MATLAB. We shall show this by examples.

3.1. Consider the case when $H = \mathbb{R}^M$, with • A is a $M \times M$ matrix defined by $A = B^T B$, with $B = (b_{ij})_{i,j=1}^M$,

$$b_{1j} = sin(1), \quad j = 1, ..., M$$

$$b_{2j} = 2sin(1), \quad j = 1, ..., M$$

$$b_{ij} = cos(i)sin(j), \quad i = 3, ..., M, \quad j = 1, ..., M.$$

 $A_h = Ih + A$, where *I* denotes the identity matrix. • $f_{\delta} = (\delta, 0, ..., 0)^T \in \mathbb{R}^M$ is an approximation of $f = (0, ..., 0)^T \in \mathbb{R}^M$. • The function $\varphi : \mathbb{R}^M \to \mathbb{R}$ is chosen as follows

$$\varphi(x) = \begin{cases} 0 & , & x_1 \le 0, \\ x_1 & , & x_1 > 0, \end{cases}$$

where $x = (x_1, x_2, ..., x_M) \in \mathbb{R}^M$. Then φ is a proper convex continuous, but it is not a differentiable function at $x = (0, x_2, ..., x_M)$. We can approximate φ by φ_{ε} :

$$\varphi_{\varepsilon}(x) = \begin{cases} 0 & , \quad x_1 \leq -\varepsilon, \\ \frac{(x_1 + \varepsilon)^2}{4\varepsilon} & , \quad -\varepsilon < x_1 \leq \varepsilon, \\ x_1 & , \quad x_1 > \varepsilon. \end{cases}$$

This function is nonegative, differentiable for every $\varepsilon > 0$. It is easy to see that φ satisfies the first of conditions (4). In the other hand, we have φ'_{ε} is a monotone operator from \mathbb{R}^M into \mathbb{R}^M with

$$\varphi_{\varepsilon}'(x) = \begin{cases} (0, 0, ..., 0) &, x_1 \leq -\varepsilon, \\ \frac{1}{2\varepsilon}(x_1 + \varepsilon, 0, ..., 0) &, -\varepsilon < x_1 \leq \varepsilon, \\ (1, 0, ..., 0) &, x_1 > \varepsilon, \end{cases}$$

and the second of conditions (4) is satisfied.

It is clear that, $x_0 = (0, 0, ..., 0)^T \in \mathbb{R}^M$ is a solution to the problem (7) with minimal norm. Apply Theorem 2.1 for $h = \delta = \varepsilon = \frac{1}{M^2}$ and $\alpha \sim (h + \delta + \varepsilon)^{2/3}$, we should obtain the convergence rates $r_{\alpha,M}^{\tau} = ||x_{\alpha,M}^{\tau} - x_0||$. Taking account of the iterative method in [14] for finding regularized solutions, with the following stopping criterion: if

$$\max_{1 \le j \le M} |x_j^{(m)} - x_j^{(m-1)}| \le 10^{-5}$$

then stop. We get the following tables of computational results:

1				
M	α	$r_{lpha,M}^{ au}$		
4	0.15749	0.011187		
8	0.0625	0.0070197		
16	0.024803	0.0027643		
32	0.0098431	0.00089026		
64	0.0039063	0.00044951		
Table 2.1				

3.2. Consider the case $H = L^2[0, 1]$, with • $A: L^2[0, 1] \rightarrow L^2[0, 1]$ is difined by

$$(Ax)(t) = \int_0^1 k_i(t,s)x(s)ds, \quad i = 1, 2,$$

where

$$k_1(t,s) = \begin{cases} t(1-s) &, & \text{if } t \le s, \\ s(1-t) &, & \text{if } s < t, \end{cases}$$

and

$$k_{2}(t,s) = \begin{cases} \frac{(1-s)^{2}st^{2}}{2} - \frac{(1-s)^{2}t^{3}(1+2s)}{6} + \frac{(t-s)^{3}}{6}, & \text{if } t \geq s, \\ \frac{s^{2}(1-s)(1-t)^{2}}{2} + \frac{s^{2}(1-t)^{3}(2s-3)}{6} + \frac{(s-t)^{3}}{6}, & \text{if } t < s, \end{cases}$$

are kernel functionals which are difined on the square $\{0 \le t, s \le 1\}$. Obviously, A is nonegative, self-adjoint and completely continuous linear operator on $L^2[0, 1]$.

$$(A_h x)(t) = \int_0^1 k_{ih}(t, s) x(s) ds, \quad i = 1, 2$$

is an approximation of A, where $k_{ih}(t,s) = k_i(t,s) + h(t,s)$, with $|h(t,s)| \le h$, $\forall t, s \text{ and } h \to +0$.

• The function $\varphi: L^2[0,1] \to \mathbb{R} \cup \{+\infty\}$ is defined by

$$\varphi(x) = F_1(\frac{1}{2}\langle Ax, x \rangle),$$

with $F_1 : \mathbb{R} \to \mathbb{R}$ is chosen as follows

$$F_1(t) = \begin{cases} 0 & , t \le a_0, \\ c(t - a_0) & , t > a_0, c, a_0 > 0. \end{cases}$$

The function $\varphi_{\varepsilon}(x) = F_{1\varepsilon}\left(\frac{1}{2}\langle Ax, x\rangle\right)$ is an approximation of $\varphi(x)$ with

$$F_{1\varepsilon}(t) = \begin{cases} 0 & , \quad t \le a_0, \\ \frac{c}{1+\varepsilon}(t-a_0)^{1+\varepsilon} & , \quad t > a_0. \end{cases}$$

Obviously, φ_{ε} satisfies the conditions in (4) and $\varphi'_{\varepsilon}(x) = F'_{1\varepsilon}(\frac{1}{2}\langle Ax, x \rangle)Ax$ is an monotone operator from $L^2[0, 1]$ to $L^2[0, 1]$.

• $f_{\delta}(t) = \delta, t \in [0, 1]$ is an approximation of $f = \theta \in L^2[0, 1]$.

We compute the regularized solutions $x_{\alpha,n}^{\tau}$ by approximating $L^2[0,1]$ by the sequence of the linear subspaces H_n which is a set of all linear combinations of $\{\phi_1, \phi_2, ..., \phi_n\}$ defined on uniform grid of n + 1 points in [0, 1]:

$$\phi_j(t) = \begin{cases} 1 & , & t \in (t_{j-1}, t_j] \\ 0 & , & t \notin (t_{j-1}, t_j] \end{cases}$$

Where

$$P_n x(t) = \sum_{j=1}^n x(t_j)\phi_j(t),$$

with $||P_n|| = 1$ and $||(I - P_n)x_0|| = O(n^{-1}), \forall x \in L^2[0, 1]$ (see [11]). Then, finite-dimensional regularized equation (8) has form

$$B_h \tilde{x} + \varphi_{\varepsilon}^{'n}(\tilde{x}) = f_{\delta}^n, \tag{9}$$

where

$$B_{h} = \begin{pmatrix} b_{1}k_{ih}(t_{1},t_{1}) + \alpha & b_{2}k_{ih}(t_{1},t_{2}) & \dots & b_{n}k_{ih}(t_{1},t_{n}) \\ b_{1}k_{ih}(t_{2},t_{1}) & b_{2}k_{ih}(t_{2},t_{2}) + \alpha & \dots & b_{n}k_{ih}(t_{2},t_{n}) \\ \dots & \dots & \dots & \dots \\ b_{1}k_{ih}(t_{n},t_{1}) & b_{2}k_{ih}(t_{n},t_{2}) & \dots & b_{n}k_{ih}(t_{n},t_{n}) + \alpha \end{pmatrix}$$

$$b_{1} = b_{2} = \dots = b_{n-1} = \frac{1}{n}, \ b_{n} = \frac{1}{2n},$$

$$\varphi_{\varepsilon}^{'n}(\tilde{x}) = (\varphi_{\varepsilon}'(\tilde{x}_{1}), \dots, \varphi_{\varepsilon}'(\tilde{x}_{n}))^{T}, \quad f_{\delta}^{n} = (\delta, \dots, \delta)^{T},$$

$$\tilde{x} = (\tilde{x}_{1}, \dots, \tilde{x}_{n})^{T}, \quad \tilde{x}_{j} \sim x(t_{j}), \ j = 1, \dots, n.$$

Apply Theorem 2.2 for $\tilde{\alpha} \sim (h + \delta + \varepsilon + \gamma_n)^{\eta}$, $0 < \eta < 1$, we should obtain the convergence rates $r_{\tilde{\alpha},n}^{\tau} = ||x_{\tilde{\alpha},n}^{\tau} - x_0||$. Taking account of the iterative method in [14] for finding regularized solutions, with the following stopping criterion: if $\max_{1 \le j \le n} |x_j^{(m)} - x_j^{(m-1)}| \le 10^{-5}$ then stop. We get the tables of computational results with c = 1/2, $a_0 = 10^{-3}$.

The numerical results for different two problems are presented in the following tables. The problems 1, 2 are respectively sudied to the functions $k_1(t,s)$, $F_1(t)$ and $k_2(t,s)$, $F_1(t)$.

Problem	n	\tilde{lpha}	$r^{ au}_{ ilde{lpha},n}$		
1	40	0.15811	0.073584		
2	40	0.15811	0.085569		
1	100	0.1	0.032054		
2	100	0.1	0.038583		
Table 2.2: $\eta = \frac{1}{2}, \ \delta = h = \varepsilon = \frac{1}{n}$					

Problem	n	\tilde{lpha}	$r^{ au}_{ ilde{lpha},n}$		
1	40	0.15811	0.0012529		
2	40	0.15811	0.0013798		
1	100	0.1	0.00036562		
2	100	0.1	0.0004154		
Table 2.3: $\eta = \frac{1}{2}, \ \delta = h = \varepsilon = \frac{1}{n^2}$					

From the numerical tables mentioned above we have the following remarks

- For h, δ, ε to be small, approximate solutions are near to the exact solution of the original problem;

- The convergence rates of regularized solutions depend on the choice of values of α depending on h, δ, ε .

References

- Ya. I. Alber and A. I. Notik, Geometrical characteristics of Banach spaces and approximative methods of solution for nonlinear operator equations, Dokl. Acad. Nauk SSSA Mathematics, 276 (1984), 1033-1037.
- [2] I. B. Badriev, O. A. Zadvornov and L. N. Ismagilov, On iterative regularization methods for variational inequalities of the second kind with pseudomonotone operators, Computational Methods in Applied Mathematics, 3 (2003), 223-234.
- [3] Ng. Buong and Ng. T. T. Thuy, Convergence rates in regularization for ill-posed mixed variational inequalities, Journal of Computer Science and Cybernetics, 21 (2005), 343-351 (Vietnam).
- [4] Ng. Buong and Ng. T. T. Thuy, On regularization parameter choice and convergence rates in regularization for ill-posed mixed variational inequalities, Int. J. of Contemp. Math. Sciences, Vol. 3 (2008), no.4, 181-198 (Accepted for publication).
- [5] I. Ekeland and R. Temam, *Convex Analysis and Variational Problems*, North-Holland Publ. Company, Amsterdam, Holland, 1970.
- [6] T. T. Hue, J. J. Strodiot and V. H. Nguyen, Convergence of the Approximate Auxiliary Problem Method for Solving Generalized Variational Inequalities, Journal of Optimization Theory and Applications, 121 (2004), 119-145.

- [7] I. V. Konnov and E. O. Volotskaya, Mixed variational inequalities and economic equilibrium problems, Journal of Applied Mathematics, 6 (2002), 289-314.
- [8] O. A. Liskovets, *Regularization for ill-posed mixed variational inequalities*, Soviet Math. Dokl., **43** (1991), 384-387 (in Russian).
- [9] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Analysis, 6 (1998), 313-344.
- [10] M. A. Noor, Proximal methods for mixed variational inequalities, Journal of Optimization Theory and Applications, 115 (2002), No.2, 447-452.
- [11] P. M. Prenter, Splines and Variational Methods, Wiley-Interscince Publ., New York, London, Sydney, Toronto, 1975.
- [12] I. P. Ryazantseva, An algorithm for solving nonlinear monotone equations with unknown input data error bound, Zh. Vychisl. Mat. i Mat. Fiz., 29 (1989), 225-229 (in Russian).
- [13] O. Shisha, Monotone approximations, Pacific J. of Math., 15 (1965), 667 -671.
- [14] Ng. T. T. Thuy and Ng. Buong, Iterative regularization method of zero order for unconstrained vector optimization of convex functionals, (Accepted for publication 2007) (Vietnam).

Received: November 21, 2007