Applied Mathematical Sciences, Vol. 2, 2008, no. 22, 1063-1072

Numerical Results of Convergence Rates in Regularization for Ill-Posed Mixed Variational Inequalities

Nguyen Thi Thu Thuy
Faculty of Sciences
Thainguyen University
Thainguyen, Vietnam
thuychip04@yahoo.com

Abstract

In this note some numerical experiments to illustration for convergence rates of regularized solution for ill-posed inverse-strongly monotone mixed variational inequalities are presented.

Keywords: Monotone operators, hemi-continuous, strictly convex Banach space, Fréchet differentiable, weakly lower semicontinuous functional and Tikhonov regularization

1 Introduction

Variational inequality problems appear in many fields of applied mathematics such as convex programming, nonlinear equations, equilibrium models in economics, technics (see [2], [7]). These problems can be defined over finitedimensional spaces as well as over infinite-dimensional spaces. In this paper, we suppose that they are defined on a real reflexive Banach space X having a property that the weak and norm convergences of any sequence in X infoly its strong convergences, and the dual space X^{*} of X is strictly convex. For the sake of simplicity, the norms of X and X^{*} are denoted by the symbol $\|$.$\| . We$ write $\left\langle x^{*}, x\right\rangle$ instead of $x^{*}(x)$ for $x^{*} \in X^{*}$ and $x \in X$. Then, the mixed variational inequality problem can be formulated as follows: for a given $f \in X^{*}$, find an element $x_{0} \in X$ such that

$$
\begin{equation*}
\left\langle A\left(x_{0}\right)-f, x-x_{0}\right\rangle+\varphi(x)-\varphi\left(x_{0}\right) \geq 0, \quad \forall x \in X \tag{1}
\end{equation*}
$$

where A is a hemi-continuous and monotone operator from X into X^{*}, and $\varphi(x)$ is an weakly lower semicontinuous and proper convex functional on X. We will suppose that problem (1) has at least one solution. For existence theorems, we refer the reader to [5]. Many problems can be seen as special cases of the problem (1). When φ is the indicator function of a closed convex set K in X, that is

$$
\varphi(x)=I_{K}(x)= \begin{cases}0, & \text { if } x \in K \\ +\infty, & \text { otherwise }\end{cases}
$$

then the problem (1) is equivalent to that of finding $x_{0} \in K$ such that

$$
\left\langle A\left(x_{0}\right)-f, x-x_{0}\right\rangle \geq 0, \quad \forall x \in K
$$

When K is the whole space X, this variational inequality is of the form of operator equation $A(x)=f$. When A is the Gâteaux derivative of a finite-valued convex function F defined on X, Problem (1) becomes the nondifferentiable convex optimization problem (see [5]):

$$
\begin{equation*}
\min _{x \in X} F(x)+\varphi(x) \tag{2}
\end{equation*}
$$

The problem (1) is in general ill-posed. By ill-posedness we mean that solutions do not depend continuously on the data (A, f, φ). Many methods have been proposed for solving Problem (1), for example the proximal point method [10], the auxiliary problem method [6] and the regularization method... The last introduced by Liskoves for solving mixed variational inequality problems (see [8]) by using the following mixed variational inequality

$$
\begin{equation*}
\left\langle A_{h}\left(x_{\alpha}^{\tau}\right)+\alpha U^{s}\left(x_{\alpha}^{\tau}-x_{*}\right)-f_{\delta}, x-x_{\alpha}^{\tau}\right\rangle+\varphi_{\varepsilon}(x)-\varphi_{\varepsilon}\left(x_{\alpha}^{\tau}\right) \geq 0, \quad \forall x \in X \tag{3}
\end{equation*}
$$

where α is regularization parameter, U^{s} is a generalized duality mapping of X, i.e., U^{s} is a mapping from X onto X^{*} satisfying $\left\langle U^{s}(x), x\right\rangle=\|x\|^{s},\left\|U^{s}(x)\right\|=$ $\|x\|^{s-1}, s \geq 2,\left(A_{h}, f_{\delta}, \varphi_{\varepsilon}\right)$ is approximation of $(A, f, \varphi), \tau=(h, \delta, \varepsilon)$ and x_{*} is in X playing the role of a criterion of selection. By the choice of x_{*}, we can obtain approximate solutions.

In [8] it was shown that the existence and uniqueness of the solution x_{α}^{τ} for every $\alpha>0$. The regularized solution x_{α}^{τ} converges to $x_{0} \in S_{0}$, where S_{0} is the set of solutions of (1) which is assumed to be nonempty with x_{*}-minimum norm solution, i.e.,

$$
\left\|x_{0}-x_{*}\right\|=\min _{x \in S_{0}}\left\|x-x_{*}\right\|,
$$

if $(h+\delta+\varepsilon) / \alpha, \alpha \rightarrow 0$.

In this paper, we use inequality (3) with the following conditions posed on the perturbations: $A_{h}: X \rightarrow X^{*}$ is the hemi-continuous monotone operator approximated A in the sense

$$
\left\|A_{h}(x)-A(x)\right\| \leq h g(\|x\|), \quad h \rightarrow 0
$$

where $g(t)$ is a nonegative function satisfying the condition $g(t) \leq g_{0}+g_{1} t^{\eta}, \eta=$ $s-1, g_{0}, g_{1} \geq 0, f_{\delta}$ are approximations of $f:\left\|f_{\delta}-f\right\| \leq \delta, \delta \rightarrow 0, \varphi_{\varepsilon}$ are functionals defined on X to be of the same properties as φ, and

$$
\begin{align*}
\left|\varphi(x)-\varphi_{\varepsilon}(x)\right| & \leq \varepsilon d(\|x\|), \quad \varepsilon \rightarrow 0 \\
\left|\varphi_{\varepsilon}(x)-\varphi_{\varepsilon}(y)\right| & \leq C_{0}\|x-y\|, \quad \forall x, y \in X \tag{4}
\end{align*}
$$

for some positive constant C_{0} and $d(t)$ has the same properties as $g(t)$.
We also assume that the dual mapping U^{s} satisfies the following conditions

$$
\begin{aligned}
& \left\langle U^{s}(x)-U^{s}(y), x-y\right\rangle \geq m_{s}\|x-y\|^{s}, \quad m_{s}>0 \\
& \left\|U^{s}(x)-U^{s}(y)\right\| \leq C(R)\|x-y\|^{\nu}, \quad 0<\nu \leq 1
\end{aligned}
$$

where $C(R), R>0$ is a positive increasing function on $R=\max \{\|x\|,\|y\|\}$. It is well-known that when $X=L^{2}[a, b]$ is a Hilbert space, then $U^{s}=I, s=2$, $m_{s}=1, \nu=1$ and $C(R)=1$, where I denotes the identity operator in the setting space (see [1], [12]).

The problem of choosing the value of the regularization parameter α depending on τ, i.e., $\alpha=\alpha(h, \delta, \varepsilon)$, and the convergence rate for the regularized solution x_{α}^{τ} are studied in [3]. We show that the parameter α can be chosen by solving the equation

$$
\begin{equation*}
\rho(\alpha)=(h+\delta+\varepsilon)^{p} \alpha^{-q}, \quad p, q>0 \tag{5}
\end{equation*}
$$

where $\rho(\alpha)=\alpha\left\|x_{\alpha}^{\tau}-x_{*}\right\|^{s-1}$.
The finite-dimensional approximation for (3) is the important problem. We approximate (3) by the sequence of finite-dimensional problems in [4]

$$
\begin{align*}
\left\langle A_{h}^{n}\left(x_{\alpha, n}^{\tau}\right)+\alpha U^{s n}\left(x_{\alpha, n}^{\tau}\right.\right. & \left.\left.-x_{*}^{n}\right)-f_{\delta}^{n}, x^{n}-x_{\alpha, n}^{\tau}\right\rangle \tag{6}\\
& +\varphi_{\varepsilon}\left(x^{n}\right)-\varphi_{\varepsilon}\left(x_{\alpha, n}^{\tau}\right) \geq 0, \quad \forall x^{n} \in X_{n},
\end{align*}
$$

where $A_{h}^{n}=P_{n}^{*} A_{h} P_{n}, U^{s n}=P_{n}^{*} U^{s} P_{n}, x_{*}^{n}=P_{n} x_{*}, f_{\delta}^{n}=P_{n}^{*} f_{\delta}, P_{n}: X \longrightarrow X_{n}$ is a linear projection from X onto X_{n}, the finite-dimensional subspace of X, P_{n}^{*} is the conjugate of P_{n}, and

$$
X_{n} \subset X_{n+1}, \quad \forall n \quad ; \quad P_{n} x \longrightarrow x, \quad \forall x \in X, \quad\left\|P_{n}\right\|=1
$$

As also for (3), variational inequality (6) has a unique solution $x_{\alpha, n}^{\tau}$ for every fixed $h, \delta, \varepsilon, \alpha>0$ and n. In [4] we also consider the modified generalized discrepancy principle for selecting $\tilde{\alpha}=\alpha(h, \delta, \varepsilon, n)$ so that $x_{\tilde{\alpha}, n}^{\tau}$ converges to x_{0} as $h, \delta, \varepsilon \longrightarrow 0$ and $n \longrightarrow \infty$ in connection with the finite-dimensional and obtain the rates of convergence for the regularized solutions in this case.

2 The obtained results

Assumption 2.1. There exists a number $\tilde{\tau}>0$ such that

$$
\left\|A(y)-A(x)-A^{\prime}(x)(y-x)\right\| \leq \tilde{\tau}\|A(y)-A(x)\|, \quad \forall x \in S_{0}
$$

for y belonging to some neighbourhood of S_{0}, in which $A^{\prime}(x)$ denotes the Fréchet derivative of A at x.
Rule 2.1. (see [4]) Choose $\tilde{\alpha}=\alpha(h, \delta, \varepsilon, n) \geq \alpha_{0}:=\left(c_{1} h+c_{2} \delta+c_{3} \varepsilon+c_{4} \gamma_{n}\right)^{p}$, $c_{i}>1, i=1,2,3,4$ and $0<p<1$ such that the following inequalities

$$
\begin{aligned}
& \tilde{\alpha}^{1+q}\left\|x_{\tilde{\alpha}, n}^{\tau}-x_{*}^{n}\right\|^{s-1} \geq(h+\delta+\varepsilon)^{p} \\
& \tilde{\alpha}^{1+q}\left\|x_{\tilde{\alpha}, n}^{\tau}-x_{*}^{n}\right\|^{s-1} \leq K_{1}(h+\delta+\varepsilon)^{p}, \quad K_{1} \geq 1
\end{aligned}
$$

hold.
The results on the convergence rate for regularized solution are studied in [3] as follows.
Theorem 2.1. Assume that the following conditions hold:
(i) A is an inverse-strongly monotone operator from X into X^{*}, i.e.

$$
\langle A(x)-A(y), x-y\rangle \geq m_{A}\|A(x)-A(y)\|^{2}, \quad \forall x, y \in X, m_{A}>0
$$

Fréchet differentiable in some neighbourhood of S_{0}, and satisfies Assumption 2.1 at $x=x_{0}$;
(ii) There exists an element $z \in X$ such that $A^{\prime}\left(x_{0}\right)^{*} z=U^{s}\left(x_{0}-x_{*}\right)$;
(iii) The parameter α is chosen by (5).

Then, we have

$$
\left\|x_{\alpha(h, \delta, \varepsilon)}^{\tau}-x_{0}\right\|=O\left((h+\delta+\varepsilon)^{\mu_{1}}\right), \quad \mu_{1}=\frac{1}{1+q} \min \left\{\frac{1+q-p}{s}, \frac{p}{2 s}\right\}
$$

Remark 2.1. If α is chosen so that $\alpha \sim(h+\delta+\varepsilon)^{\eta}, 0<\eta<1$, then

$$
\left\|x_{\alpha(h, \delta, \varepsilon)}^{\tau}-x_{0}\right\|=O\left((h+\delta+\varepsilon)^{\mu_{2}}\right), \quad \mu_{2}=\min \left\{\frac{1-\eta}{s}, \frac{\eta}{2 s}\right\}
$$

And now, we consider the convergence and convergence rate for the sequence $\left\{x_{\tilde{\alpha}, n}^{\tau}\right\}$ in [4].
Theorem 2.2. Assume that the following conditions hold:
(i) conditions (i), (ii) of Theorem 2.1;
(ii) the parameter $\tilde{\alpha}=\alpha(h, \delta, \varepsilon, n)$ is chosen by the Rule 2.1.

Then, we have

$$
\begin{gathered}
\left\|x_{\tilde{\alpha}, n}^{\tau}-x_{0}\right\|=O\left(\left(h+\delta+\varepsilon+\gamma_{n}\right)^{\mu_{3}}+\gamma_{n}^{\mu_{4}}\right) \\
\mu_{3}=\min \left\{\frac{1-p}{s}, \frac{p}{2 s(1+q)}\right\}, \quad \mu_{4}=\min \left\{\frac{1}{s}, \frac{\nu}{s-1}\right\} .
\end{gathered}
$$

Remark 2.2. If $\tilde{\alpha}$ is chosen a priory such that $\tilde{\alpha} \sim\left(h+\delta+\varepsilon+\gamma_{n}\right)^{\eta}, 0<\eta<1$, then

$$
\left\|x_{\tilde{\alpha}, n}^{\tau}-x_{0}\right\|=O\left(\left(\gamma_{n}^{\mu_{4}}+\left(h+\delta+\varepsilon+\gamma_{n}\right)^{\mu_{5}}\right), \quad \mu_{5}=\min \left\{\frac{1-\eta}{s}, \frac{\eta}{2 s}\right\} .\right.
$$

3 Numerical example

We now apply the obtained results of the previous sections to solve the following optimization problem:

$$
\begin{equation*}
\min _{x \in H} F(x)+\varphi(x) \tag{7}
\end{equation*}
$$

with $F(x)=\frac{1}{2}\langle A x, x\rangle$, where A is a self-adjoint linear bounded operator on a real Hilbert space H such that $\langle A x, x\rangle \geq 0, \forall x \in H$. Because of the fact that $F^{\prime}(x)=A x, x_{0}$ is a solution of Problem (7) if and only if x_{0} is a solution of the following problem (see [5])

$$
\left\langle A\left(x_{0}\right), x-x_{0}\right\rangle+\varphi(x)-\varphi\left(x_{0}\right) \geq 0, \quad \forall x \in H .
$$

This is Problem (1) with $f=\theta \in H$.
Obviously, $A: H \rightarrow H$ is an inverse-strongly monotone operator (see [9]) and Fréchet differentiable with the Fréchet derivative A. In this case condition (ii) of Theorem 2.1 is described by

$$
A\left(x_{0}\right)^{*} z=x_{0}, \quad\left(x_{*}=\theta\right)
$$

The last equation holds if $A\left(x_{0}\right)^{*}$ satisfies coerciveness in H.
Consider the case φ is nonsmooth. It can be approximated by a sequence of smooth and monotone functions φ_{ε} (see [13]). So making use of the method of regularization (3) to be of the form

$$
\begin{equation*}
A_{h}\left(x_{\alpha}^{\tau}\right)+\alpha I\left(x_{\alpha}^{\tau}-x_{*}\right)+\varphi_{\varepsilon}^{\prime}\left(x_{\alpha}^{\tau}\right)=f_{\delta} \tag{8}
\end{equation*}
$$

we can find an approximation solution for (7), where $\alpha>0$ is sufficiently small.
The computational results here are obtained by using MATLAB. We shall show this by examples.
3.1. Consider the case when $H=\mathbb{R}^{M}$, with

- A is a $M \times M$ matrix defined by $A=B^{T} B$, with $B=\left(b_{i j}\right)_{i, j=1}^{M}$,

$$
\begin{aligned}
b_{1 j} & =\sin (1), \quad j=1, \ldots, M \\
b_{2 j} & =2 \sin (1), \quad j=1, \ldots, M \\
b_{i j} & =\cos (i) \sin (j), \quad i=3, \ldots, M, \quad j=1, \ldots, M
\end{aligned}
$$

$A_{h}=I h+A$, where I denotes the identity matrix.

- $f_{\delta}=(\delta, 0, \ldots, 0)^{T} \in \mathbb{R}^{M}$ is an approximation of $f=(0, \ldots, 0)^{T} \in \mathbb{R}^{M}$.
- The function $\varphi: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is chosen as follows

$$
\varphi(x)=\left\{\begin{aligned}
0 & , \quad x_{1} \leq 0 \\
x_{1} & , \quad x_{1}>0
\end{aligned}\right.
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$. Then φ is a proper convex continuous, but it is not a differentiable function at $x=\left(0, x_{2}, \ldots, x_{M}\right)$. We can approximate φ by φ_{ε} :

$$
\varphi_{\varepsilon}(x)=\left\{\begin{aligned}
0 & , \quad x_{1} \leq-\varepsilon \\
\frac{\left(x_{1}+\varepsilon\right)^{2}}{4 \varepsilon} & , \quad-\varepsilon<x_{1} \leq \varepsilon \\
x_{1} & , \quad x_{1}>\varepsilon
\end{aligned}\right.
$$

This function is nonegative, differentiable for every $\varepsilon>0$. It is easy to see that φ satisfies the first of conditions (4). In the other hand, we have $\varphi_{\varepsilon}^{\prime}$ is a monotone operator from \mathbb{R}^{M} into \mathbb{R}^{M} with

$$
\varphi_{\varepsilon}^{\prime}(x)=\left\{\begin{aligned}
(0,0, \ldots, 0) & , \quad x_{1} \leq-\varepsilon \\
\frac{1}{2 \varepsilon}\left(x_{1}+\varepsilon, 0, \ldots, 0\right) & , \quad-\varepsilon<x_{1} \leq \varepsilon \\
(1,0, \ldots, 0) & , \quad x_{1}>\varepsilon
\end{aligned}\right.
$$

and the second of conditions (4) is satisfied.
It is clear that, $x_{0}=(0,0, \ldots, 0)^{T} \in \mathbb{R}^{M}$ is a solution to the problem (7) with minimal norm. Apply Theorem 2.1 for $h=\delta=\varepsilon=\frac{1}{M^{2}}$ and $\alpha \sim$ $(h+\delta+\varepsilon)^{2 / 3}$, we should obtain the convergence rates $r_{\alpha, M}^{\tau}=\left\|x_{\alpha, M}^{\tau}-x_{0}\right\|$. Taking account of the iterative method in [14] for finding regularized solutions, with the following stopping criterion: if

$$
\max _{1 \leq j \leq M}\left|x_{j}^{(m)}-x_{j}^{(m-1)}\right| \leq 10^{-5}
$$

then stop. We get the following tables of computational results:

M	α	$r_{\alpha, M}^{\tau}$
4	0.15749	0.011187
8	0.0625	0.0070197
16	0.024803	0.0027643
32	0.0098431	0.00089026
64	0.0039063	0.00044951

Table 2.1
3.2. Consider the case $H=L^{2}[0,1]$, with

- $A: L^{2}[0,1] \rightarrow L^{2}[0,1]$ is difined by

$$
(A x)(t)=\int_{0}^{1} k_{i}(t, s) x(s) d s, \quad i=1,2
$$

where

$$
k_{1}(t, s)= \begin{cases}t(1-s) & , \quad \text { if } \quad t \leq s \\ s(1-t), & \text { if } \quad s<t\end{cases}
$$

and

$$
k_{2}(t, s)=\left\{\begin{aligned}
& \frac{(1-s)^{2} s t^{2}}{2}-\frac{(1-s)^{2} t^{3}(1+2 s)}{6}+ \\
&+\frac{(t-s)^{3}}{6}, \text { if } t \geq s \\
& \frac{s^{2}(1-s)(1-t)^{2}}{2}+\frac{s^{2}(1-t)^{3}(2 s-3)}{6+\frac{(s-t)^{3}}{6},} \text { if } t<s
\end{aligned}\right.
$$

are kernel functionals which are difined on the square $\{0 \leq t, s \leq 1\}$. Obviously, A is nonegative, self-adjoint and completely continuous linear operator on $L^{2}[0,1]$.

$$
\left(A_{h} x\right)(t)=\int_{0}^{1} k_{i h}(t, s) x(s) d s, \quad i=1,2
$$

is an approximation of A, where $k_{i h}(t, s)=k_{i}(t, s)+h(t, s)$, with $|h(t, s)| \leq h$, $\forall t, s$ and $h \rightarrow+0$.

- The function $\varphi: L^{2}[0,1] \rightarrow \mathbb{R} \cup\{+\infty\}$ is defined by

$$
\varphi(x)=F_{1}\left(\frac{1}{2}\langle A x, x\rangle\right)
$$

with $F_{1}: \mathbb{R} \rightarrow \mathbb{R}$ is chosen as follows

$$
F_{1}(t)=\left\{\begin{aligned}
0 & , \quad t \leq a_{0} \\
c\left(t-a_{0}\right) & , \quad t>a_{0}, c, a_{0}>0
\end{aligned}\right.
$$

The function $\varphi_{\varepsilon}(x)=F_{1 \varepsilon}\left(\frac{1}{2}\langle A x, x\rangle\right)$ is an approximation of $\varphi(x)$ with

$$
F_{1 \varepsilon}(t)=\left\{\begin{aligned}
0 & , \quad t \leq a_{0} \\
\frac{c}{1+\varepsilon}\left(t-a_{0}\right)^{1+\varepsilon} & , \quad t>a_{0}
\end{aligned}\right.
$$

Obviously, φ_{ε} satifies the conditons in (4) and $\varphi_{\varepsilon}^{\prime}(x)=F_{1 \varepsilon}^{\prime}\left(\frac{1}{2}\langle A x, x\rangle\right) A x$ is an monotone operator from $L^{2}[0,1]$ to $L^{2}[0,1]$.

- $f_{\delta}(t)=\delta, t \in[0,1]$ is an approximation of $f=\theta \in L^{2}[0,1]$.

We compute the regularized solutions $x_{\alpha, n}^{\tau}$ by approximating $L^{2}[0,1]$ by the sequence of the linear subspaces H_{n} which is a set of all linear combinations of $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right\}$ defined on uniform grid of $n+1$ points in [0,1$]$:

$$
\phi_{j}(t)=\left\{\begin{array}{lll}
1, & t \in\left(t_{j-1}, t_{j}\right] \\
0, & t \notin\left(t_{j-1}, t_{j}\right]
\end{array}\right.
$$

Where

$$
P_{n} x(t)=\sum_{j=1}^{n} x\left(t_{j}\right) \phi_{j}(t)
$$

with $\left\|P_{n}\right\|=1$ and $\left\|\left(I-P_{n}\right) x_{0}\right\|=O\left(n^{-1}\right), \forall x \in L^{2}[0,1]$ (see [11]). Then, finite-dimensional regularized equation (8) has form

$$
\begin{equation*}
B_{h} \tilde{x}+\varphi_{\varepsilon}^{\prime n}(\tilde{x})=f_{\delta}^{n} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{h}=\left(\begin{array}{cccc}
b_{1} k_{i h}\left(t_{1}, t_{1}\right)+\alpha & b_{2} k_{i h}\left(t_{1}, t_{2}\right) & \ldots & b_{n} k_{i h}\left(t_{1}, t_{n}\right) \\
b_{1} k_{i h}\left(t_{2}, t_{1}\right) & b_{2} k_{i h}\left(t_{2}, t_{2}\right)+\alpha & \ldots & b_{n} k_{i h}\left(t_{2}, t_{n}\right) \\
\ldots & \ldots & \ldots & \ldots \\
b_{1} k_{i h}\left(t_{n}, t_{1}\right) & b_{2} k_{i h}\left(t_{n}, t_{2}\right) & \ldots & b_{n} k_{i h}\left(t_{n}, t_{n}\right)+\alpha
\end{array}\right) \\
b_{1}=b_{2}=\ldots=b_{n-1}=\frac{1}{n}, b_{n}=\frac{1}{2 n}, \\
\varphi_{\varepsilon}^{\prime n}(\tilde{x})=\left(\varphi_{\varepsilon}^{\prime}\left(\tilde{x}_{1}\right), \ldots, \varphi_{\varepsilon}^{\prime}\left(\tilde{x}_{n}\right)\right)^{T}, \quad f_{\delta}^{n}=(\delta, \ldots, \delta)^{T}, \\
\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)^{T}, \quad \tilde{x}_{j} \sim x\left(t_{j}\right), j=1, \ldots, n .
\end{aligned}
$$

Apply Theorem 2.2 for $\tilde{\alpha} \sim\left(h+\delta+\varepsilon+\gamma_{n}\right)^{\eta}, 0<\eta<1$, we should obtain the convergence rates $r_{\tilde{\alpha}, n}^{\tau}=\left\|x_{\tilde{\alpha}, n}^{\tau}-x_{0}\right\|$. Taking account of the iterative method in [14] for finding regularized solutions, with the following stopping criterion: if $\max _{1 \leq j \leq n}\left|x_{j}^{(m)}-x_{j}^{(m-1)}\right| \leq 10^{-5}$ then stop. We get the tables of computational results with $c=1 / 2, a_{0}=10^{-3}$.

The numerical results for different two problems are presented in the following tables. The problems 1,2 are respectively sudied to the functions $k_{1}(t, s), F_{1}(t)$ and $k_{2}(t, s), F_{1}(t)$.

Problem	n	$\tilde{\alpha}$	$r_{\tilde{\alpha}, n}^{\tau}$
1	40	0.15811	0.073584
2	40	0.15811	0.085569
1	100	0.1	0.032054
2	100	0.1	0.038583

Table 2.2: $\eta=\frac{1}{2}, \delta=h=\varepsilon=\frac{1}{n}$

Problem	n	$\tilde{\alpha}$	$r_{\tilde{\alpha}, n}^{\tau}$
1	40	0.15811	0.0012529
2	40	0.15811	0.0013798
1	100	0.1	0.00036562
2	100	0.1	0.0004154

Table 2.3: $\eta=\frac{1}{2}, \delta=h=\varepsilon=\frac{1}{n^{2}}$
From the numerical tables mentioned above we have the following remarks

- For h, δ, ε to be small, approximate solutions are near to the exact solution of the original problem;
- The convergence rates of regularized solutions depend on the choice of values of α depending on h, δ, ε.

References

[1] Ya. I. Alber and A. I. Notik, Geometrical characteristics of Banach spaces and approximative methods of solution for nonlinear operator equations, Dokl. Acad. Nauk SSSA Mathematics, 276 (1984), 1033-1037.
[2] I. B. Badriev, O. A. Zadvornov and L. N. Ismagilov, On iterative regularization methods for variational inequalities of the second kind with pseudomonotone operators, Computational Methods in Applied Mathematics, 3 (2003), 223-234.
[3] Ng. Buong and Ng. T. T. Thuy, Convergence rates in regularization for ill-posed mixed variational inequalities, Journal of Computer Science and Cybernetics, 21 (2005), 343-351 (Vietnam).
[4] Ng. Buong and Ng. T. T. Thuy, On regularization parameter choice and convergence rates in regularization for ill-posed mixed variational inequalities, Int. J. of Contemp. Math. Sciences, Vol. 3 (2008), no.4, 181-198 (Accepted for publication).
[5] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publ. Company, Amsterdam, Holland, 1970.
[6] T. T. Hue, J. J. Strodiot and V. H. Nguyen, Convergence of the Approximate Auxiliary Problem Method for Solving Generalized Variational Inequalities, Journal of Optimization Theory and Applications, 121 (2004), 119-145.
[7] I. V. Konnov and E. O. Volotskaya, Mixed variational inequalities and economic equilibrium problems, Journal of Applied Mathematics, 6 (2002), 289-314.
[8] O. A. Liskovets, Regularization for ill-posed mixed variational inequalities, Soviet Math. Dokl., 43 (1991), 384-387 (in Russian).
[9] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Analysis, 6 (1998), 313-344.
[10] M. A. Noor, Proximal methods for mixed variational inequalities, Journal of Optimization Theory and Applications, 115 (2002), No.2, 447-452.
[11] P. M. Prenter, Splines and Variational Methods, Wiley-Intetscince Publ., New York, London, Sydney, Toronto, 1975.
[12] I. P. Ryazantseva, An algorithm for solving nonlinear monotone equations with unknown input data error bound, Zh. Vychisl. Mat. i Mat. Fiz., 29 (1989), 225-229 (in Russian).
[13] O. Shisha, Monotone approximations, Pacific J. of Math., 15 (1965), 667 -671.
[14] Ng. T. T. Thuy and Ng. Buong, Iterative regularization method of zero order for unconstrained vector optimization of convex functionals, (Accepted for publication 2007) (Vietnam).

Received: November 21, 2007

