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Abstract

In this note some numerical experiments to illustration for conver-
gence rates of regularized solution for ill-posed inverse-strongly mono-
tone mixed variational inequalities are presented.
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1 Introduction

Variational inequality problems appear in many fields of applied mathe-
matics such as convex programming, nonlinear equations, equilibrium models
in economics, technics (see [2], [7]). These problems can be defined over finite-
dimensional spaces as well as over infinite-dimensional spaces. In this paper,
we suppose that they are defined on a real reflexive Banach space X having a
property that the weak and norm convergences of any sequence in X infoly its
strong convergences, and the dual space X∗ of X is strictly convex. For the
sake of simplicity, the norms of X and X∗ are denoted by the symbol ‖.‖. We
write 〈x∗, x〉 instead of x∗(x) for x∗ ∈ X∗ and x ∈ X. Then, the mixed vari-
ational inequality problem can be formulated as follows: for a given f ∈ X∗,
find an element x0 ∈ X such that

〈A(x0) − f, x − x0〉 + ϕ(x) − ϕ(x0) ≥ 0, ∀x ∈ X. (1)
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where A is a hemi-continuous and monotone operator from X into X∗, and
ϕ(x) is an weakly lower semicontinuous and proper convex functional on X.
We will suppose that problem (1) has at least one solution. For existence
theorems, we refer the reader to [5]. Many problems can be seen as special
cases of the problem (1). When ϕ is the indicator function of a closed convex
set K in X, that is

ϕ(x) = IK(x) =

{
0, if x ∈ K,

+∞, otherwise,

then the problem (1) is equivalent to that of finding x0 ∈ K such that

〈A(x0) − f, x − x0〉 ≥ 0, ∀x ∈ K.

When K is the whole space X, this variational inequality is of the form of op-
erator equation A(x) = f . When A is the Gâteaux derivative of a finite-valued
convex function F defined on X, Problem (1) becomes the nondifferentiable
convex optimization problem (see [5]):

min
x∈X

F (x) + ϕ(x). (2)

The problem (1) is in general ill-posed. By ill-posedness we mean that solutions
do not depend continuously on the data (A, f, ϕ). Many methods have been
proposed for solving Problem (1), for example the proximal point method [10],
the auxiliary problem method [6] and the regularization method... The last
introduced by Liskoves for solving mixed variational inequality problems (see
[8]) by using the following mixed variational inequality

〈Ah(x
τ
α) + αUs(xτ

α − x∗) − fδ, x − xτ
α〉 + ϕε(x) − ϕε(x

τ
α) ≥ 0, ∀x ∈ X, (3)

where α is regularization parameter, Us is a generalized duality mapping of X,
i.e., Us is a mapping from X onto X∗ satisfying 〈U s(x), x〉 = ‖x‖s, ‖U s(x)‖ =
‖x‖s−1, s ≥ 2, (Ah, fδ, ϕε) is approximation of (A, f, ϕ), τ = (h, δ, ε) and x∗ is
in X playing the role of a criterion of selection. By the choice of x∗, we can
obtain approximate solutions.

In [8] it was shown that the existence and uniqueness of the solution xτ
α

for every α > 0. The regularized solution xτ
α converges to x0 ∈ S0, where S0 is

the set of solutions of (1) which is assumed to be nonempty with x∗-minimum
norm solution, i.e.,

‖x0 − x∗‖ = min
x∈S0

‖x − x∗‖,

if (h + δ + ε)/α, α → 0.



Numerical results of convergence rates 1065

In this paper, we use inequality (3) with the following conditions posed
on the perturbations: Ah : X → X∗ is the hemi-continuous monotone operator
approximated A in the sense

‖Ah(x) − A(x)‖ ≤ hg(‖x‖), h → 0

where g(t) is a nonegative function satisfying the condition g(t) ≤ g0+g1t
η, η =

s − 1, g0, g1 ≥ 0, fδ are approximations of f : ‖fδ − f‖ ≤ δ, δ → 0, ϕε are
functionals defined on X to be of the same properties as ϕ, and

|ϕ(x) − ϕε(x)| ≤ εd(‖x‖), ε → 0,

|ϕε(x) − ϕε(y)| ≤ C0‖x − y‖, ∀x, y ∈ X,
(4)

for some positive constant C0 and d(t) has the same properties as g(t).
We also assume that the dual mapping Us satisfies the following conditions

〈U s(x) − Us(y), x− y〉 ≥ ms‖x − y‖s, ms > 0,

‖U s(x) − Us(y)‖ ≤ C(R)‖x − y‖ν, 0 < ν ≤ 1,

where C(R), R > 0 is a positive increasing function on R = max{‖x‖, ‖y‖}.
It is well-known that when X = L2[a, b] is a Hilbert space, then Us = I, s = 2,
ms = 1, ν = 1 and C(R) = 1, where I denotes the identity operator in the
setting space (see [1], [12]).

The problem of choosing the value of the regularization parameter α
depending on τ , i.e., α = α(h, δ, ε), and the convergence rate for the regularized
solution xτ

α are studied in [3]. We show that the parameter α can be chosen
by solving the equation

ρ(α) = (h + δ + ε)pα−q, p, q > 0, (5)

where ρ(α) = α‖xτ
α − x∗‖s−1.

The finite-dimensional approximation for (3) is the important problem.
We approximate (3) by the sequence of finite-dimensional problems in [4]

〈An
h(x

τ
α,n) + αUsn(xτ

α,n − xn
∗ ) − fn

δ , xn − xτ
α,n〉

+ ϕε(x
n) − ϕε(x

τ
α,n) ≥ 0, ∀xn ∈ Xn,

(6)

where An
h = P ∗

nAhPn, Usn = P ∗
nUsPn, xn

∗ = Pnx∗, fn
δ = P ∗

nfδ, Pn : X −→ Xn

is a linear projection from X onto Xn, the finite-dimensional subspace of X,
P ∗

n is the conjugate of Pn, and

Xn ⊂ Xn+1, ∀n ; Pnx −→ x, ∀x ∈ X, ‖Pn‖ = 1.

As also for (3), variational inequality (6) has a unique solution xτ
α,n for every

fixed h, δ, ε, α > 0 and n. In [4] we also consider the modified generalized
discrepancy principle for selecting α̃ = α(h, δ, ε, n) so that xτ

α̃,n converges to
x0 as h, δ, ε −→ 0 and n −→ ∞ in connection with the finite-dimensional and
obtain the rates of convergence for the regularized solutions in this case.
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2 The obtained results

Assumption 2.1. There exists a number τ̃ > 0 such that

‖A(y) − A(x) − A′(x)(y − x)‖ ≤ τ̃‖A(y) − A(x)‖, ∀x ∈ S0,

for y belonging to some neighbourhood of S0, in which A′(x) denotes the
Fréchet derivative of A at x.

Rule 2.1. (see [4]) Choose α̃ = α(h, δ, ε, n) ≥ α0 := (c1h + c2δ + c3ε + c4γn)p,
ci > 1, i = 1, 2, 3, 4 and 0 < p < 1 such that the following inequalities

α̃1+q‖xτ
α̃,n − xn

∗‖s−1 ≥ (h + δ + ε)p,

α̃1+q‖xτ
α̃,n − xn

∗‖s−1 ≤ K1(h + δ + ε)p, K1 ≥ 1,

hold.
The results on the convergence rate for regularized solution are studied in [3]
as follows.

Theorem 2.1. Assume that the following conditions hold:
(i) A is an inverse-strongly monotone operator from X into X∗, i.e.

〈A(x) − A(y), x − y〉 ≥ mA‖A(x) − A(y)‖2, ∀x, y ∈ X, mA > 0,

Fréchet differentiable in some neighbourhood of S0, and satisfies Assumption
2.1 at x = x0;

(ii) There exists an element z ∈ X such that A′(x0)
∗z = Us(x0 − x∗);

(iii) The parameter α is chosen by (5).
Then, we have

‖xτ
α(h,δ,ε) − x0‖ = O((h + δ + ε)μ1), μ1 =

1

1 + q
min

{
1 + q − p

s
,

p

2s

}
.

Remark 2.1. If α is chosen so that α ∼ (h + δ + ε)η, 0 < η < 1, then

‖xτ
α(h,δ,ε) − x0‖ = O((h + δ + ε)μ2), μ2 = min

{
1 − η

s
,

η

2s

}
.

And now, we consider the convergence and convergence rate for the sequence
{xτ

α̃,n} in [4].

Theorem 2.2. Assume that the following conditions hold:
(i) conditions (i), (ii) of Theorem 2.1;
(ii) the parameter α̃ = α(h, δ, ε, n) is chosen by the Rule 2.1.

Then, we have

‖xτ
α̃,n − x0‖ = O((h + δ + ε + γn)

μ3 + γμ4
n ),

μ3 = min

{
1 − p

s
,

p

2s(1 + q)

}
, μ4 = min

{
1

s
,

ν

s − 1

}
.
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Remark 2.2. If α̃ is chosen a priory such that α̃ ∼ (h+δ+ε+γn)η, 0 < η < 1,
then

‖xτ
α̃,n − x0‖ = O((γμ4

n + (h + δ + ε + γn)μ5), μ5 = min

{
1 − η

s
,

η

2s

}
.

3 Numerical example

We now apply the obtained results of the previous sections to solve the
following optimization problem:

min
x∈H

F (x) + ϕ(x) (7)

with F (x) =
1

2
〈Ax, x〉, where A is a self-adjoint linear bounded operator on a

real Hilbert space H such that 〈Ax, x〉 ≥ 0, ∀x ∈ H . Because of the fact that
F ′(x) = Ax, x0 is a solution of Problem (7) if and only if x0 is a solution of
the following problem (see [5])

〈A(x0), x − x0〉 + ϕ(x) − ϕ(x0) ≥ 0, ∀x ∈ H.

This is Problem (1) with f = θ ∈ H .
Obviously, A : H → H is an inverse-strongly monotone operator (see [9])

and Fréchet differentiable with the Fréchet derivative A. In this case condition
(ii) of Theorem 2.1 is described by

A(x0)
∗z = x0, (x∗ = θ).

The last equation holds if A(x0)
∗ satisfies coerciveness in H .

Consider the case ϕ is nonsmooth. It can be approximated by a sequence
of smooth and monotone functions ϕε (see [13]). So making use of the method
of regularization (3) to be of the form

Ah(x
τ
α) + αI(xτ

α − x∗) + ϕ′
ε(x

τ
α) = fδ (8)

we can find an approximation solution for (7), where α > 0 is sufficiently small.
The computational results here are obtained by using MATLAB. We

shall show this by examples.

3.1. Consider the case when H = R
M , with

• A is a M × M matrix defined by A = BT B, with B = (bij)
M
i,j=1,

b1j = sin(1), j = 1, ..., M

b2j = 2sin(1), j = 1, ..., M

bij = cos(i)sin(j), i = 3, ..., M, j = 1, ..., M.
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Ah = Ih + A, where I denotes the identity matrix.

• fδ = (δ, 0, ..., 0)T ∈ R
M is an approximation of f = (0, ..., 0)T ∈ R

M .

• The function ϕ : R
M → R is chosen as follows

ϕ(x) =

{
0 , x1 ≤ 0,

x1 , x1 > 0,

where x = (x1, x2, ..., xM) ∈ R
M . Then ϕ is a proper convex continuous, but

it is not a differentiable function at x = (0, x2, ..., xM ). We can approximate ϕ
by ϕε:

ϕε(x) =

⎧⎪⎨
⎪⎩

0 , x1 ≤ −ε,
(x1 + ε)2

4ε
, −ε < x1 ≤ ε,

x1 , x1 > ε.

This function is nonegative, differentiable for every ε > 0. It is easy to see
that ϕ satisfies the first of conditions (4). In the other hand, we have ϕ′

ε is a
monotone operator from R

M into R
M with

ϕ′
ε(x) =

⎧⎪⎨
⎪⎩

(0, 0, ..., 0) , x1 ≤ −ε,
1

2ε
(x1 + ε, 0, ..., 0) , −ε < x1 ≤ ε,

(1, 0, ..., 0) , x1 > ε,

and the second of conditions (4) is satisfied.

It is clear that, x0 = (0, 0, ..., 0)T ∈ R
M is a solution to the problem

(7) with minimal norm. Apply Theorem 2.1 for h = δ = ε =
1

M2
and α ∼

(h + δ + ε)2/3, we should obtain the convergence rates rτ
α,M = ‖xτ

α,M − x0‖.
Taking account of the iterative method in [14] for finding regularized solutions,
with the following stopping criterion: if

max
1≤j≤M

|x(m)
j − x

(m−1)
j | ≤ 10−5

then stop. We get the following tables of computational results:

M α rτ
α,M

4 0.15749 0.011187
8 0.0625 0.0070197
16 0.024803 0.0027643
32 0.0098431 0.00089026
64 0.0039063 0.00044951

Table 2.1
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3.2. Consider the case H = L2[0, 1], with
• A : L2[0, 1] → L2[0, 1] is difined by

(Ax)(t) =

∫ 1

0

ki(t, s)x(s)ds, i = 1, 2,

where

k1(t, s) =

{
t(1 − s) , if t ≤ s,
s(1 − t) , if s < t,

and

k2(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − s)2st2

2
− (1 − s)2t3(1 + 2s)

6
+

+
(t − s)3

6
, if t ≥ s,

s2(1 − s)(1 − t)2

2
+

s2(1 − t)3(2s − 3)

6
+

+
(s − t)3

6
, if t < s,

are kernel functionals which are difined on the square {0 ≤ t, s ≤ 1}. Obvi-
ously, A is nonegative, self-adjoint and completely continuous linear operator
on L2[0, 1].

(Ahx)(t) =

∫ 1

0

kih(t, s)x(s)ds, i = 1, 2

is an approximation of A, where kih(t, s) = ki(t, s) + h(t, s), with |h(t, s)| ≤ h,
∀ t, s and h → +0.
• The function ϕ : L2[0, 1] → R ∪ {+∞} is defined by

ϕ(x) = F1

(1

2
〈Ax, x〉),

with F1 : R → R is chosen as follows

F1(t) =

{
0 , t ≤ a0,

c(t − a0) , t > a0, c, a0 > 0.

The function ϕε(x) = F1ε

(1

2
〈Ax, x〉) is an approximation of ϕ(x) with

F1ε(t) =

{
0 , t ≤ a0,

c

1 + ε
(t − a0)

1+ε , t > a0.

Obviously, ϕε satifies the conditons in (4) and ϕ′
ε(x) = F ′

1ε

(1

2
〈Ax, x〉)Ax is an

monotone operator from L2[0, 1] to L2[0, 1].
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• fδ(t) = δ, t ∈ [0, 1] is an approximation of f = θ ∈ L2[0, 1].
We compute the regularized solutions xτ

α,n by approximating L2[0, 1] by
the sequence of the linear subspaces Hn which is a set of all linear combinations
of {φ1, φ2, ..., φn} defined on uniform grid of n + 1 points in [0, 1]:

φj(t) =

{
1 , t ∈ (tj−1, tj ]
0 , t /∈ (tj−1, tj ]

Where

Pnx(t) =

n∑
j=1

x(tj)φj(t),

with ‖Pn‖ = 1 and ‖(I − Pn)x0‖ = O(n−1), ∀x ∈ L2[0, 1] (see [11]). Then,
finite-dimensional regularized equation (8) has form

Bhx̃ + ϕ
′n
ε (x̃) = fn

δ , (9)

where

Bh =

⎛
⎜⎜⎝

b1kih(t1, t1) + α b2kih(t1, t2) ... bnkih(t1, tn)
b1kih(t2, t1) b2kih(t2, t2) + α ... bnkih(t2, tn)

... ... ... ...
b1kih(tn, t1) b2kih(tn, t2) ... bnkih(tn, tn) + α

⎞
⎟⎟⎠

b1 = b2 = ... = bn−1 =
1

n
, bn =

1

2n
,

ϕ
′n
ε (x̃) = (ϕ′

ε(x̃1), ..., ϕ
′
ε(x̃n))T , fn

δ = (δ, ..., δ)T ,

x̃ = (x̃1, ..., x̃n)T , x̃j ∼ x(tj), j = 1, ..., n.

Apply Theorem 2.2 for α̃ ∼ (h + δ + ε + γn)
η, 0 < η < 1, we should

obtain the convergence rates rτ
α̃,n = ‖xτ

α̃,n−x0‖. Taking account of the iterative
method in [14] for finding regularized solutions, with the following stopping

criterion: if max1≤j≤n |x(m)
j − x

(m−1)
j | ≤ 10−5 then stop. We get the tables of

computational results with c = 1/2, a0 = 10−3.
The numerical results for different two problems are presented in the

following tables. The problems 1, 2 are respectively sudied to the functions
k1(t, s), F1(t) and k2(t, s), F1(t).

Problem n α̃ rτ
α̃,n

1 40 0.15811 0.073584
2 40 0.15811 0.085569
1 100 0.1 0.032054
2 100 0.1 0.038583

Table 2.2: η =
1

2
, δ = h = ε =

1

n
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Problem n α̃ rτ
α̃,n

1 40 0.15811 0.0012529
2 40 0.15811 0.0013798
1 100 0.1 0.00036562
2 100 0.1 0.0004154

Table 2.3: η =
1

2
, δ = h = ε =

1

n2

From the numerical tables mentioned above we have the following re-
marks

- For h, δ, ε to be small, approximate solutions are near to the exact solution
of the original problem;

- The convergence rates of regularized solutions depend on the choice of values
of α depending on h, δ, ε.
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